

Araştırma Makalesi - Research Article

Geleneksel Donatılmış Betonarme Bağ Kirişlerin Şekil Değiştirme Esaslı Hasar Sınırlarının Araştırılması

Rohullah Jamal^{1*}, S. Bahadır Yüksel²

Geliş / Received: 30/04/2020

Revize / Revised: 22/09/2020

Kabul / Accepted: 01/10/2020

ÖZ

Türkiye Bina Deprem Yönetmeliği 2018 (TBDY, 2018)'de geleneksel donatılmış betonarme bağ kirişleri için öngörülen şekil değiştirme esaslı hasar sınırları analitik olarak incelenmiştir. Geleneksel donatılmış betonarme bağ kirişlerinin çekme ve başınç donatışı oranı, enine donatı çapı ve aralığı sabit tutulmuş net açıklık / derinlik oranı ve beton basınç dayanımını değiştirilerek SAP 2000 programı ile moment-eğrilik değerleri hesaplanmıştır. Bu calısmada; gercek malzeme davranısları esas alınmıştır. Elde edilen momenti-eğrilik iliskilerinden betonarme bağ kirişlerinin elastik ötesi davranışları incelenmiştir. Geleneksel donatılmış betonarme bağ kirişi modelleri için moment-eğrilik ilişkilerinden elde edilen veriler kullanılarak TBDY, (2018)'de verilen hasar sınır değerleri betonarme bağ kiriş modelleri için hesaplanmıştır. Şekil değiştirme değerleri TBDY (2018)'de tanımlanmış olan göçmenin önlenmesi (GÖ), kontrollü hasar (KH) ve sınırlı hasar (SH) performans seviyeleri için hesaplanmıştır. Geleneksel donatılmış betonarme bağ kirişleri için üç ayrı hasar sınırı ve bu hasar sınırlarına karşı gelen birim şekil değiştirme değerleri incelenmiştir. Geleneksel donatılmış betonarme bağ kirişlerde farklı performans düzeyi için beton ve donatı çeliği birim şekil değiştirmeleri ve plastik dönmeleri hesaplanarak performans düzeyleri araştırılmıştır. GÖ ve KH performans düzeyleri için plastik dönmelerin hasar sınırları; akma eğriliği, kopma eğriliği, plastik mafsal uzunluğu, kesme açıklığı ve boyuna donatı çapının fonksiyonu olarak tanımlanmıştır. Bu çalışmada; geleneksel donatılmış bağ kirişlerinin beton basınç dayanımının akma momentine (M_{ν}) , GÖ ve KH performans düzeyleri için plastik dönme sınırlarına $(\theta_p^{(KH)}$ ve $\theta_p^{(GÖ)})$ etkili olduğu gözlemlenmiştir. Net açıklık derinlik oranın (l_n/h) artırılması; geleneksel donatılmış betonarme bağ kirişlerininGÖ ve KH performans düzeyleri için izin verilen plastik dönme sınırlarına ($\theta_p^{(KH)}$ ve $\theta_p^{(GO)}$) ve akma durumu için yer değiştirmiş eksen dönmesi üzerine (θ_v) etkili olduğunu ispatlanmıştır.

Anahtar Kelimeler- Moment-Eğrilik, Performans Düzeyleri, Hasar Sınırları, Birim Şekil Değiştirme Sınırları, Plastik Dönme

^{1*}Sorumlu yazar iletişim: <u>jamal.rohullah@gmail.com</u> (https://orcid.org/0000-0001-5987-8502) Konya Teknik Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, İnşaat Mühendisliği Bölümü, Konya, Türkiye ²İletişim: <u>sbyuksel@ktun.edu.tr</u> (https://orcid.org/0000-0002-4175-1156) Konya Teknik Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, İnşaat Mühendisliği Bölümü, Konya, Türkiye

Investigation of Damage Limits of Conventional Reinforced Concrete Coupling Beams

ABSTRACT

Deformation based damage limits of conventional reinforced concrete coupling beams were analytically investigated considering the Turkish Seismic Building Code 2018 (TSC, 2018). Moment-curvature values of the conventional reinforced concrete beams were calculated with the SAP 2000 programs by taking constant tension and compression reinforcement ratios, transverse reinforcement diameter and spacing's and changing the net span/depth ratio and concrete compressive strengths. In this study, real material behaviour was taken into account. Inelastic behaviors of reinforced concrete coupling beams are investigated from the moment-curvature relations. The damage limit values given in TSC (2018) were calculated for reinforced concrete coupling beam models using the data obtained from moment-curvature relationships of conventionally reinforced concrete coupling beams models. Strain values are calculated for the collapse prevention (CP), controlled damage (CD) and limited damage (LD) performance levels defined in TSC (2018). Three different damage limits and unit strain values corresponding to these damage limits were examined for conventionally reinforced concrete coupling beams. The performance levels of the concrete and reinforcement steel deformations and plastic rotations were calculated for different performance levels of conventional reinforced concrete coupling beams. Damage limits of plastic rotations of the CP and CD performance levels are defined as functions of yield curvature, maximum curvature, plastic hinge length, shear length, and longitudinal reinforcement diameter. In this study; it has been observed that the concrete compressive strength affect the yield moment (M_{y}) , plastic rotation limits ($\theta_p^{(CD)}$ and $\theta_p^{(CP)}$) for performance levels of CP and CD of conventional reinforced coupling beams. It is proven that the net span depth to ratio (l_n/h) effect the; plastic rotation limits $(\theta_p^{(CD)})$ and $\theta_p^{(CP)}$ of the CP and CD performance levels and yield chord rotation (θ_{ν}) for the conventional reinforced concrete coupling beams.

Keywords- Moment-Curvature, Performance Levels, Damage Limits, Strain Limits, Plastic Rotation

I. GİRİŞ

Yapı taşıyıcı sisteminin doğrusal sınır ötesindeki kapasitesinin de dikkate alındığı hesap yöntemleri son yıllarda yaygınlaşmıştır. Yapının dayanım ve yer değiştirme kapasitelerini ortaya çıkaran, göçme aşamasına kadar oluşacak hasarların adım adım izlenebildiği doğrusal olmayan hesap yöntemleri kullanılarak, yapı davranışı daha iyi anlaşılabilmektedir. Performans esaslı değerlendirme yönteminin en önemli aşamalarından birisi yapısal elemanların her birinin hasar düzeylerinin belirlenmesidir. Yapı performansı, amaçlanan deprem istemi etkisinde yapıda oluşması beklenen hasar durumu ile ilişkilidir. Doğrusal olmayan değerlendirme yöntemi ile analiz edilen yapılardaki yapısal elemanların kesitlerinde oluşan şekil değiştirme değerlerinin, yürürlükte olan yönetmelikteki kesit hasar seviyesine tekabül eden şekil değiştirme üst sınır değerleri ile kıyaslanması ile kesitin hasar seviyesi elde edilir. Dolayısı ile yapıların deprem güvenliğini belirlemede kesit hasar sınır değerlerinin doğru bir şekilde elde edilmesi oldukça önem arz etmektedir. [1, 2].

Bağ kirişleri genellikle orta ve yüksek binalarda, merdivenlerin ve asansörlerin çevresinde bulunan perde duvarların bağlanması amacıyla kullanılmaktadır. Bağ kirişlerinin deformasyon yapabilmesi elemanın kesme deformasyonu yapabilme kapasitesine bağlıdır. Bağ kirişleri iki perde duvarı birleştirerek kesme etkisinin perde duvarlara aktarılmasını sağlayarak, perde duvarların eğilme rijitliğinin artmasına sebep olmaktadır. Buna ilaveten bağ kirişleri, aşırı plastik deformasyonlara maruz kalarak sismik enerjisinin yutulmasını sağlarlar. Bağ kirişlerinin tasarımında amaç, bağ kirişlerinin sünek davranmasını, sismik yükler etkisi altında fazla dönme yapabilmesini ve daha fazla enerji tüketilmesini sağlayabilmektir [3]. Bağ kirişli betonarme perde duvarlar, orta ve yüksek katlı binalarda kullanılmaktadır. Bu tip taşıyıcı sistemler günümüzdeki yaygın olarak kullanılan sistemlerden biridir [4]. Boşluklu perde duvarlı taşıyıcı sistemlerde, sismik kuvvetler, perde duvarları ve bağ kirişleri tarafından bir çerçeve sistemi gibi karşılanmaktadır. Bu nedenle bağ kirişleri ve perde duvarları uygun bir şekilde tasarlanması gerekmektedir [5].

Türkiye Bina Deprem Yönetmeliği (TBDY, 2018)'de sünek elemanlar için kesit düzeyinde üç hasar durumu ve hasar sınırı tanımlanmıştır. Bunlar Sınırlı Hasar (SH), Kontrollü Hasar (KH) ve Göçme Öncesi Hasar (GÖ) durumları ve bunların sınır değerleridir. Sınırlı hasar ilgili kesitte sınırlı miktarda elastik ötesi davranışı, kontrollü hasar kesit dayanımının güvenli olarak sağlanabileceği elastik ötesi davranışı, göçme öncesi hasar durumu ise kesitte ileri düzeyde elastik ötesi davranışı tanımlamaktadır. Gevrek olarak hasar gören elemanlarda bu sınıflandırma geçerli değildir [6].

Bu çalışmada; C30 ve C45 beton sınıfı, farklı çekme ve basınç donatısı oranlarına ve farklı net açıklık/derinlik oranına sahip geleneksel donatılmış betonarme bağ kirişlerinin moment-eğrilik ilişkisi değerleri SAP 2000 [7] programı ile hesaplanmıştır. TBDY 2018'e göre KH performans düzeyi GÖ performans seviyesinin %75'i olarak tanımlanmıştır. SH performans düzeyinde ise beton ve donatı çeliği için izin verilen birim kısalma ve uzaması sabit olarak verilmiştir. SH performans düzeyi için taşıyıcı sistemde plastik mafsal oluşumuna izin verilmemiştir ($\theta_p^{(SH)} = 0$). Elde edilen moment ve eğrilik değerlerinden yararlanarak TBDY (2018)'e göre kesit hasar sınırları hesaplanmıştır. Bunun için 6 tip toplam 30 adet geleneksel donatılmış betonarme bağ kirişi tasarlanmıştır. Tip-1, 2 ve 3 olan betonarme bağ kirişlerde C30, Tip 4, 5 ve 6 olan betonarme bağ kirişilerde C45 beton sınıfları ve B420C donatı sınıfı kullanılmıştır. Tip-1, 2, 3, 4, 5 ve 6 olan geleneksel donatılmış betonarme bağ kirişlerde değişen parametreler; beton sınıfı, çekme ve basınç donatı oranı ve net açıklık/derinlik oranıdır. Tüm elemanlarda 10mm çapında 50mm aralığında (Φ 10/50mm) etriyeler ele alınarak hasar sınırları TBDY 2018'e göre hesaplanmıştır. Çalışmada değişen parametrelerin hasar sınırlarına etkisi araştırılmıştır. TBDY 2018'e göre, GÖ performans hasar sınırları izin verilen beton birim kısalmaları ($\varepsilon_c^{(G0)}$), donatı çeliği için izin verilen birim uzamaları ($\varepsilon_s^{(G0)}$) ve izin verilen performans dönme açıları ($\theta_p^{(G0)}$) hesaplanmıştır [6].

II. TBDY 2018'E GÖRE İZİN VERİLEN ŞEKİL DEĞİŞTİRME HASAR SINIRLARI

Göçme önlenmesi, kontrolü hasar ve sınırlı hasar performans düzeyi için yapılacak performans değerlendirmesinde kullanılmak üzere, yüksek binalar ve yeni betonarme bina elemanlarında yayılı plastik davranış modeline göre hesaplanan beton ve donatı çeliği toplam birim şekil değiştirmeleri için izin verilen hasar sınırları aşağıda tanımlanmıştır. GÖ, KH ve SH performans düzeyi için beton birim kısalması

 $(\varepsilon_c^{(G\ddot{0})}, \varepsilon_c^{(KH)} \nu e \varepsilon_c^{(SH)})$, donatı çeliği birim uzaması $(\varepsilon_s^{(G\ddot{0})}, \varepsilon_s^{(KH)} \nu e \varepsilon_s^{(SH)})$ ve izin verilen plastik dönme sınırları $(\theta_p^{(G\ddot{0})}, \theta_p^{(KH)} \nu e \theta_p^{(SH)})$ dikdörtgen en-kesitli kolon, kiriş ve perdeler için Tablo (1)'de verilen denklemler ile hesaplanmaktadır.

Tablo 1. Betonarme elemanları için izin verilen şekil değiştirme üst sınırların denklemleri [6]

Betonarme Elemanlari İçin İzin Verilen Şekil Değiştirme ve İç Kuvvet SınırlarıGöçme Öncesi Hasar (GÖ) $\varepsilon_c^{(G\bar{0})} = 0.0035 + 0.04\sqrt{\omega_{we}} \le 0.018, \varepsilon_s^{(G\bar{0})} = 0.40\varepsilon_{su}, \theta_p^{(G\bar{0})} = \frac{2}{3} \left[(k_u - k_y) L_p \left(1 - 0.5 \frac{L_p}{L_s} \right) + 4.5k_u d_b \right]$ $\omega_{we} = \alpha_{se} \rho_{sh,min} \frac{f_{ywe}}{f_{ce}}, \quad \rho_{sh} = \frac{A_{sh}}{b_{ks}}, \quad \alpha_{se} = \left(1 - \frac{\sum a_i^2}{6b_o h_o} \right) \left(1 - \frac{s}{2b_o} \right) \left(1 - \frac{s}{2h_o} \right)$ Kontrollü Hasar (KH) $\varepsilon_c^{(KH)} = 0.75\varepsilon_c^{(G\bar{0})}, \quad \varepsilon_s^{(KH)} = 0.75\varepsilon_s^{(G\bar{0})}ve\theta_p^{(KH)} = 0.75\theta_p^{(G\bar{0})}$ Sınırlı Hasar (SH), $\varepsilon_c^{(SH)} = 0.0025, \varepsilon_s^{(SH)} = 0.0075 \quad ve\theta_p^{(SH)} = 0$

Tablo 1'de verilen $\varepsilon_c^{(G\ddot{O})}$, $\varepsilon_c^{(KH)}$ ve $\varepsilon_c^{(SH)}$ sırasıyla GÖ, KH ve SH performans düzeyi için izin verilen beton birim şekildeğiştirmesidir. $\varepsilon_s^{(G\ddot{O})}$, $\varepsilon_s^{(KH)}$ ve $\varepsilon_s^{(SH)}$ sırasıyla GÖ, KH ve SH performans düzeyi için izin verilen donatı birim şekildeğiştirmesini göstermektedir. $\theta_p^{(G\ddot{O})}$, $\theta_p^{(KH)}$ ve $\theta_p^{(SH)}$ sırasıyla göçmenin önlenmesi, kontrolü hasar ve sınırlı hasar performans düzeyi için izin verilen dönme açılarıdır. Tablo (1)'de verilen denklemlerde ω_{we} etkin sargı donatısının mekanik donatı oranını, ε_{su} donatının çekme dayanımına karşı gelen birim uzamasını, k_u maksimum eğriliğini, k_y akma eğriliğini, L_p plastik mafsal uzunluğunu, L_s kesme açıklığını ve d_b boyuna donatı çapını göstermektedir. Hesaplarda yönetmeliğe göre boyuna donatı çapı çekme donatısının ortalama çapı olarak tanımlanmaktadır.

GÖ performans düzeyi için izin verilen beton birim kısalması ($\varepsilon_c^{(GO)}$) denklemindeki ilk terim (0.0035) sargısız betonun birim kısalmasına karşı gelmektedir. Etkin sargı donatısının mekanik donatı oranı (ω_{we}), sargı donatısı etkinlik katsayısı (α_{se}) ve kesitte hacimsel enine donatı oranı (ρ_{sh}) Tablo (1)'de verilen denklemler ile hesaplanmıştır. Tablo (1)'de, α_{se} , $\rho_{sh,min}, f_{ywe}$, A_{sh} ve ρ_{sh} sırasıyla sargı donatısının etkinlik katsayısını, dikdörtgen kesitte iki yatay doğrultuda hacimsel enine donatı oranının küçük olanını, enine donatının ortalama (beklenen) akma dayanımını, göz önüne alınan doğrultuda enine donatının alanını ve hacimsel oranını göstermektedir. Denklemlerde b_k dik doğrultudaki çekirdek boyutunu (en dıştaki enine donatı eksenleri arasındaki uzaklık), *s* enine donatı aralığını, b_o ve h_o sargı donatısı eksenlerinden ölçülen sargılı beton boyutlarını, a_i bir etriye kolu veya çiroz tarafından mesnetlenen boyuna donatıların eksenleri arasındaki mesafesini göstermektedir. Sınırlı hasar performans düzeyi için taşıyıcı sistemde plastik mafsal oluşumuna izin verilmeyecektir ($\theta_p^{(SH)} = 0$).

Akma durumu için yer değiştirmiş plastik mafsal eksen dönmesi θ_y Denklem (1) ile hesaplanmaktadır. Denklem (1)'de f_{ce} ve f_{ye} betonun ortalama (beklenen) basınç dayanımı ile donatının ortalama akma dayanımıdır. η katsayısı kiriş ve kolonlarda $\eta = 1$, perdelerde ise $\eta = 0.5$ 'dir. TBDY (2018)'de betonun ortalama (beklenen) basınç dayanımı ve donatının ortalama akma dayanımı $f_{ce} = 1.3f_{ck}$ ve $f_{ye} = 1.2f_{yk}$ olarak verilmiştir. f_{ck} ve f_{yk} sırasıyla beton karakteristik basınç dayanımı ve donatı çeliği karakteristik akma dayanımıdır.

$$\theta_y = \frac{k_y L_s}{3} + 0.0015 \,\eta \left(1 + 1.5 \frac{h}{L_s} \right) + \frac{k_y d_b f_{ye}}{8\sqrt{f_{ce}}} \tag{1}$$

Bu çalışmada geleneksel donatılmış betonarme bağ kirişlerinin deprem performansının belirlenmesi için TBDY, (2018)'de verilen kurallara göre sabit geometriye ve farklı parametrelere sahip 6 tip toplam 30 adet bağ

e-ISSN:2458-7575 (http://dergipark.gov.tr/bseufbd)

kiriş modeli tasarlanmıştır (Çizelge 3 ve 4). Tasarlanan geleneksel donatılmış betonarme bağ kirişlerde gerçek malzeme davranışları esas alınmıştır. Geleneksel donatılmış betonarme bağ kirişlerde farklı beton basınç dayanımı, çekme ve basınç donatısı oranı ve net açıklık/derinlik oranına göre moment-eğrilik ilişkilerinden; akma eğriliği (k_y), akma momenti (M_y), göçme öncesi eğriliği (k_u), göçme öncesi eğilme momenti (M_u) ve eğrilik sünekliği (μ) değerleri elde edilmiştir. Betonarme kiriş modellerinin moment-eğrilik ilişkilerinden elde edilen sonuçlara göre kiriş kesitlerinin davranışları incelenmiştir. Geleneksel donatılmış betonarme bağ kiriş modellerinde yapılan performans değerlendirmesinde GÖ, KH ve SH performans seviyeleri için şekil değiştirme ve iç kuvvet sınır değerleri hesaplanmıştır. Geleneksel donatılmış betonarme bağ kiriş elemanlarında sargı donatısı oranı sabit tutularak, farklı parametre olarak net açıklık/derinlik oranı, çekme ve basınç donatısı oranı ve beton basınç dayanımı ele alınmıştır. Geleneksel donatılmış betonarme bağ kirişlerinin beton ve donatı çeliği birim şekil değiştirmeleri, plastik mafsal akma dönmesi ve plastik dönmeleri hesaplanarak bağ kiriş kesitlerinin performans düzeyleri araştırılmıştır. Çalışmada çekme ve basınç donatısı miktarı (4 Φ 20, 4 Φ 26 ve 4 Φ 32) değişilerek enine donatı çapı ve aralığı Φ 10/50mm olarak sabit alınmıştır. Net açıklık-derinlik oranı ($l_n/h =$ 2, 2.5, 3, 3.5 ve 4) ve beton sınıfı C30 ve C45 değiştirilerek parametrik çalışma yapılmıştır.

Geleneksel donatılmış betonarme bağ kirişlerde süneklik oranı, kesitin dayanımında önemli bir azalma olmadan yapabileceği doğrusal ötesi deformasyon kapasitesi olarak tanımlanır. Eğilme etkisi altındaki elemanların sünekliği, eğrilik süneklik katsayısı (μ) Denklem (2) ile hesaplanmaktadır. Eğrilik süneklik katsayısı, kesitin kırılma anında yaptığı eğriliğin (k_u), çekme donatısının aktığı anda kesitte oluşan eğriliğe (k_y) oranıdır [8].

$$\mu = \frac{k_u}{k_y} \tag{2}$$

Şekil 1. Geleneksel donatılmış betonarme bağ kirişlerinin en-kesit boyutları ve donatı düzeni

III. MATERYAL VE METOT

Geleneksel donatılmış betonarme bağ kirişi modellerinde moment-eğrilik analizlerinden M_y , k_yM_u , k_u ve μ değerleri hesaplanmıştır. Moment ve eğrilik değerleri SAP 2000 fiber analiz modellerinden elde edilmiştir. Geleneksel donatılmış betonarme bağ kirişlerinin hasar sınırları TBDY 2018'e göre hesaplanmıştır. Şekil değiştirme ve iç kuvvet sınırlarının hesaplanmasında TBDY, (2018)'de tanımlanmış üç farklı hasar sınırı olan GÖ, KH ve SH performans seviyeleri göz önünde bulundurulmuştur. Geleneksel donatılmış betonarme bağ kirişlerinde farklı performans seviyesi için oluşan şekil değiştirme ve iç kuvvet sınırları hesaplanarak Çizelgeler

ve Grafikler halinde sunulmuştur. Birim şekil değiştirme istemlerinin belirlenmesi plastik şekil değiştirmelerin meydana geldiği betonarme sünek taşıyıcı sistem elemanlarında, farklı kesit hasar sınırlarında GÖ, KH ve SH performans düzeyleri için izin verilen beton ve donatı çeliği şekil değiştirme üst sınırları hesaplanmıştır. Yığılı plastik davranışına göre modellenen geleneksel donatılmış betonarme bağ kirişlerinin moment-eğrilik ilişkilerinden elde edilen k_y ve k_u değerlerine göre plastik mafsal dönmeleri hesaplanmıştır. Geleneksel donatılmış betonarme bağ kirişlerde çekme ve basınç donatısı miktarı 4 Φ 20mm, 4 Φ 26mm ve 4 Φ 32mm, enine donatı çapı Φ 10mm ve aralığı50mm (Φ 10/50mm) olarak belirlenerek beton sınıfı C30 ve C45 olarak seçilmiştir. Tüm elemanlarda boyuna ve enine donatı çeliği olarak B420C donatı sınıfı seçilmiştir. Geleneksel donatılmış betonarme bağ kirişlerinin tasarımında kullanılan malzeme özellikleri Tablo (2)'de, verilmiştir. Bağ kirişlerinin çekme ve basınç donatısı oranları ve modellerinde kullanılan parametreler sırasıyla Tablo (3) ve (4)'te verilmiştir.

1 abio 2. Malzeme modellerinde kullanilan parametreler (1BDY, 2018)	Tablo 2	. Malzeme	modellerinde	kullanılan	parametreler (7	(BDY, 2018)
--	---------	-----------	--------------	------------	-----------------	-------------

Malzeme	Parametre	Değer		
	Sargısız betonun maksimum gerilmeye ulaştığı birim şekil değiştirme değeri ($\epsilon_{co})$	0.002		
Beton Sınıfı: C30,45	Sargısız betonun nihai birim şekil değiştirmesi (ε_{cu})			
	Karakteristik beton basınç dayanımı (f _{ck})	30,45MPa		
	Donatı çeliğinin akma birim şekil değiştirmesi (ε_{sy})	0.0021		
	Donatı çeliğinin pekleşme birim şekil değiştirmesi (ε_{sp})	0.008		
Donatı Çeliği: B420C	Donatı çeliğinin kopma birim şekil değiştirmesi (ε_{su})	0.08		
	Donatı çeliğinin karakteristik akma dayanımı (f _{yk})	420MPa		
	Donatı çeliğinin karakteristik kopma dayanımı (fsu)	550MPa		

Tablo 3. Tip-1. 2 y	e 3 olarak tasarlanan	bağ kiris modellerir	ne ait donatı oranla	arı ve alanları
14010 CUTTP 1, 2 .	e o oraran tabarranan	oug ming mouthin	ie all active craine	

Kesit Grubu	Kesit No	l_n/h	Beton Sınıfı	A_s (mm^2)	A'_s (mm^2)	$\rho = \rho'$	
	B1-1	2.0					
	B1-2	2.5		400	400		
Tip-1	B1-3	3.0		4Φ20 1256.6	$4\Phi 20$ 1256.6	0.005585	
	B1-4	3.5					
	B1-5	4.0					
	B2-1	2.0		4Ф26 2123.7			
	B2-2	2.5			4Ф26 2123.7	0.009439	
Tip-2	B2-3	3.0	30				
	B2-4	3.5					
	B2-5	4.0					
	B3-1	2.0	•				
	B3-2	2.5		44.22	4422		
Tip-3	B3-3	3.0		4Ψ32 2017	4Φ32 3217	0.01430	
	B3-4	3.5		3217			
	B3-5	4.0					

Kesit Grubu	Kesit No	l_n/h	Beton Sınıfı	A_s (mm^2)	A'_s (mm^2)	$\rho = \rho'$
Tip-4	B4-1 B4-2 B4-3 B4-4 B4-5	2.0 2.5 3.0 3.5 4.0		4Φ20 1256.6	4Φ20 1256.6	0.005585
Tip-5	B5-1 B5-2 B5-3 B5-4 B5-5	2.0 2.5 3.0 3.5 4.0	45	4Φ26 2123.7	4Φ26 2123.7	0.009439
Tip-6	B6-1 B6-2 B6-3 B6-4 B6-5	2.0 2.5 3.0 3.5 4.0	•	4Φ32 3217	4Ф32 3217	0.01430

Tablo 4.Tip-4, 5 ve 6 olarak tasarlanan bağ kiriş modellerine ait donatı oranları ve alanları

IV. ARAŞTIRMA BULGULARI

Detayları Tablo (3 ve 4)'te verilen ve tip 1, 2, 3, 4, 5 ve 6 olarak tasarlanan geleneksel donatılmış betonarme bağ kirişi modelleri için moment-eğrilik analizlerinden akma ve maksimum moment ve eğrilik değerleri hesaplanmıştır. Doğrusal olmayan davranışın iyi anlaşabilmesi için bağ kirişlerinin uçlarına yakın bölgelerde yığılı plastik mafsal oluştuğu varsayılmıştır. Yığılı plastik davranışına göre modellenen betonarme bağ kirişlerinin değişen parametrelere göre hesaplanarak Tablo (5 ve 7)'de verilmiştir. Farklı tip betonarme bağ kirişlerinin değişen parametrelere göre hesaplanan ($\varepsilon_c^{(SH)}$), ($\varepsilon_s^{(SH)}$), ($\varepsilon_c^{(KH)}$), ($\varepsilon_s^{(KH)}$), ($\theta_p^{(KH)}$), ($\varepsilon_c^{(GO)}$), ($\varepsilon_s^{(GO)}$) ve ($\theta_p^{(GO)}$) değerleri Tablo (6 ve 8)'de özetlenmiştir. Tablolarda M_y , M_u değerleri; $kN \times m$, K_y , K_u değerleri; $Rad \times 1000/m$ ve Etkin eğilme rijitliği değerleri; $kN \times m^2$ biriminde verilmiştir.

Geleneksel donatılmış betonarme bağ kirişi kesitlerinin analiz ve hesap sonuçlarından elde edilen değerler karşılaştırmalı olarak Şekil (2, 3, 4, 5 ve 6)'da verilmiştir. Betonarme bağ kirişi modellerinde elde edilen GÖ ve KH performans düzeyi için izin verilen sargılı beton birim kısalması ($\varepsilon_c^{GÖ}$, ε_c^{KH}) değerlerinin net açıklık/derinlik oranına göre karşılaştırmalı grafikleri Şekil (2 ve 3)'te verilmiştir. GÖ ve KH performans düzeyi için izin verilen plastik dönme açılarının ($\theta_P^{GÖ}$, θ_P^{KH}) net açıklık/derinlik oranına göre karşılaştırmalı grafikleri Şekil (4 ve 5)'te verilmiştir. Akma durumu dönme açısı (θ_y) net açıklık/derinlik oranına göre karşılaştırmalı grafikleri Şekil (6)'da verilmiştir.

TBDY (2018)'de donatı çeliği için göçme öncesi ve kontrollü hasar performans düzeylerinde verilen hasar sınırları ($\varepsilon_s^{(KH)}, \varepsilon_s^{(GÖ)}$), donatı çeliğinin çekme dayanımına karşı gelen birim uzama değerini sabit katsayılar ile çarparak elde edilmektedir ($\varepsilon_s^{(GO)} = 0.4\varepsilon_{su}, \varepsilon_s^{(KH)} = 0.75\varepsilon_s^{(GO)}$). Sınırlı hasar performans düzeyi için verilen hasar sınırı ise sabit bir değer olarak verilmektedir ($\varepsilon_s^{(SH)} = 0.0075$). Sınırlı hasar performans düzeyi için izin verilen beton birim kısalması TBDY 2018'e göre sabit değer olarak verilmektedir ($\varepsilon_c^{(SH)} = 0.0025$). Göçme öncesi ve kontrollü hasar performans düzeyi için verilen plastik dönme hasar sınırları θ_p ; k_y , k_u , L_p , L_s ve d_b 'nin fonksiyonudur. Dolaysıyla basınç donatısı oranı, sargı donatısı oranı ve çekme donatısı oranı gibi k_y ve k_u değerlerini etkileyen parametreler θ_p 'yi de etkilemektedir. Sınırlı hasar performans düzeyinde taşıyıcı sistemlerde plastik mafsal oluşmasına izin verilmediği için farklı parametrelere göre betonarme kiriş kesitlerinde $\theta_p^{(SH)} = 0$ elde edilmiştir.

e-ISSN:2458-7575 (http://dergipark.gov.tr/bseufbd)

Kesit	Varid Na	Akma Durumu		Kırılm	a Durumu	k_u	
Grubu	Kesit No	M_y	k_y	M _u	k_u	$\mu = \frac{1}{k_y}$	0_{y}
Tip-1	B1-1						0.00539
	B1-2						0.00534
	B1-3	398	0.0039	485	0.0359	9.2	0.00538
	B1-4						0.00548
	B1-5						0.00561
Tip-2	B2-1		0.0041	770		8.6	0.00576
	B2-2				0.0355		0.00572
	B2-3	638					0.00578
	B2-4						0.00589
	B2-5						0.00604
	B3-1						0.00615
	B3-2					8.0	0.00613
Tip-3	B3-3	937	0.0043	1126	0.0349		0.00620
	B3-4						0.00633
	B3-5						0.00649

Tablo 5. Tip 1, 2 ve 3 olarak tasarlanan betonarme bağ kirişlerin M_y, k_y, M_u, k_u, μ ve θ_y değerleri

Tablo 6. Tip 1, 2 ve 3 olarak tasarlanan betonarme bağ kirişlerin hesaplanan performans seviyeleri

Kesit	Varit Na	(SH)			(KH)			(GÖ)		
Grubu	Kesit No	ε_{c}^{SH}	ε_s^{SH}	θ_P^{SH}	ε_c^{KH}	ε_s^{KH}	$\boldsymbol{\theta}_{P}^{KH}$	$m{arepsilon}_{c}^{G\ddot{\mathrm{O}}}$	$arepsilon_s^{G\ddot{\mathrm{O}}}$	$oldsymbol{ heta}_P^{G\ddot{ ext{O}}}$
	B1-1						0.00648			0.00864
	B1-2						0.00667			0.00889
Tip-1	B1-3	0.0025	0.0075	0	0 0.00979	00979 0.024	0.00681	0.01306	0.032	0.00907
	B1-4						0.00691			0.00921
	B1-5						0.00699			0.00932
	B2-1						0.00684			0.00913
	B2-2						0.00703			0.00938
Tip-2	B2-3	0.0025	0.0075	0	0.00986	0.024	0.00717	0.01314	0.032	0.00956
	B2-4						0.00727			0.00969
	B2-5						0.00734			0.00979
	B3-1						0.00716			0.00954
	B3-2						0.00734			0.00978
Tip-3	B3-3	0.0025	0.0075	0	0.00991	0.024	0.00747	0.01322	0.032	0.00996
	B3-4						0.00757			0.01009
	B3-5						0.00764			0.01019

e-ISSN:2458-7575 (http://dergipark.gov.tr/bseufbd)

Kesit	Varid Na	Akma Durumu		Kırılm	a Durumu	k_u	
Grubu	Kesit No	M_y	k_y	M _u	k_u	$\mu = \frac{1}{k_y}$	0_{y}
Tip-4	B4-1						0.00520
	B4-2		0.0038				0.00514
	B4-3	400		485	0.0362	9.5	0.00518
	B4-4						0.00527
	B4-5						0.00540
Tip-5	B5-1	636	0.0040	771		9.0	0.00548
	B5-2				0.0358		0.00544
	B5-3						0.00548
	B5-4						0.00559
	B5-5						0.00572
	B6-1						0.00579
	B6-2					8.5	0.00576
Tip-6	B6-3	939	0.0042	1128	0.0353		0.00582
	B6-4						0.00593
	B6-5						0.00608

Tablo 7. Tip 4, 5 ve 6 olarak tasarlanan betonarme bağ kirişlerin M_y, k_y, M_u, k_u, μ ve θ_y değerleri

Tablo 8. Tip 4, 5 ve 6 olarak tasarlanan betonarme bağ kirişlerin hesaplanan performans seviyeleri

Kesit	Kesit	Kesit (SH)			(KH)		(GÖ)			
Grubu	No	ε_c^{SH}	ε_s^{SH}	$\boldsymbol{\theta}_P^{SH}$	$\boldsymbol{\varepsilon}_{c}^{KH}$	ε_s^{KH}	$\boldsymbol{\theta}_{P}^{KH}$	$arepsilon_c^{G\ddot{\mathrm{O}}}$	$arepsilon_s^{G\ddot{\mathrm{O}}}$	$oldsymbol{ heta}_P^{G\ddot{ ext{O}}}$
	B4-1						0.00655			0.00873
	B4-2						0.00675			0.00899
Tip-4	B4-3	0.0025	0.0075	0	0.00848	0.024	0.00688	0.01130	0.032	0.00918
	B4-4						0.00699			0.00932
	B4-5						0.00707			0.00942
	B5-1						0.00693			0.00924
	B5-2						0.00712			0.00949
Tip-5	B5-3	0.0025	0.0075	0	0.00853	0.024	0.00726	0.01137	0.032	0.00967
	B5-4						0.00736			0.00981
	B5-5						0.00744			0.00991
	B6-1						0.00727			0.00970
	B6-2						0.00746	0.01144	0.032	0.00994
Tip-6	B6-3	0.0025	0.0075	0	0.00858	0.024	0.00759			0.01012
	B6-4						0.00769			0.01025
	B6-5						0.00777			0.01036

e-ISSN:2458-7575 (http://dergipark.gov.tr/bseufbd)

Şekil 2. Betonarme bağ kirişlerinin $\epsilon_c^{KH}-l_n/h$ değerlerinin karşılaştırılmalı grafikleri

Şekil 3. Betonarme bağ kirişlerinin $\epsilon_c^{G\ddot{0}}-l_n/h$ değerlerinin karşılaştırılmalı grafikleri

e-ISSN:2458-7575 (http://dergipark.gov.tr/bseufbd)

Şekil 4. Betonarme bağ kirişlerinin $\theta_P^{KH} - l_n/h$ değerlerinin karşılaştırılmalı grafikleri

Şekil 5. Betonarme bağ kirişlerinin $\theta_P^{G\ddot{0}}-l_n/h$ değerlerinin karşılaştırılmalı grafikleri

e-ISSN:2458-7575 (http://dergipark.gov.tr/bseufbd)

Şekil 6. Betonarme bağ kirişlerinin $\theta_y - l_n/h$ değerlerinin karşılaştırılmalı grafikleri

Geleneksel donatılmış betonarme bağ kirişlerin hasar sınırlarını tanımlayan birim şekil değiştirme ve iç kuvvet değerleri TBDY 2018'e göre hesaplanmıştır. Hesaplanan hasar sınırları diğer bir deyişle izin verilen beton birim kısalması, donatı çeliğin birim uzaması ve izin verilen dönme açıları Tablo (6 ve 8)'de verilmiştir. Araştırma bulgular bölümünde, betonarme bağ kirişlerinin davranışı için elde edilen yorum ve değerlendirmeler araştırma sonuçları bölümünde karşılaştırarak yorumlanmıştır.

V. SONUÇ

Araştırma bulgular bölümünde geleneksel donatılmış betonarme bağ kirişlerinin hasar sınırlarının sonuçları maddeler halinde aşağıda verilmiştir.

Geleneksel donatılmış betonarme bağ kirişlerinde; beton basınç dayanımının artması ile:

- Akma momenti (M_v) ve maksimum moment (M_u) değerleri yaklaşık olarak sabit kalmaktadır.

- Akma eğriliği (k_y) %2,6 azalmakta ve maksimum momente karşı gelen eğrilik (k_u) değerleri %0,83 artmaktadır.

- Eğrilik süneklik (μ)değerleri yaklaşık %3,26 artmaktadır.

- Plastik mafsal akma dönmesi (θ_v) değerleri %3,5'den %5,85'e kadar azalmaktadır.

- Kontrollü hasar ve Göçme öncesi performans düzeyinde izin verilen beton birim kısalması ($\varepsilon_c^{(KH)}$ ve $\varepsilon_c^{(G\bar{0})}$) değerleri %13,4'ten %13,48'e kadar azalmaktadır.

- Kontrollü hasar ve Göçme öncesi performans düzeyinde izin verilen plastik mafsal dönmesi değerleri ($\theta_p^{(KH)}$ ve $\theta_n^{(GO)}$) sırasıyla %1,07'den %1,84'e ve %1,03'ten %1,64'e kadar artmaktadır.

Geleneksel donatılmış betonarme bağ kirişlerinde; net açıklık derinlik oranının artması ile:

- Akma ve maksimum moment taşıma kapasitesi (M_y, M_u) , akma ve maksimum momente karşı gelen eğrilikleri (k_y, k_u) ve eğrilik süneklik (μ) değerleri sabit kalmaktadır.

- Net açıklık/derinlik oranı 2 ve 2.5 arasında olan betonarme bağ kirişlerde plastik mafsal akma dönme açısı değerleri (θ_{y}) %0,32'den %1,15'e kadar azalmaktadır.

- Net açıklık derinlik oranı 2,5 ve 4 arasında olan betonarme bağ kirişlerde plastik mafsal akma dönme açısı değerleri (θ_y) %3,7'den %5,29'e kadar artmaktadır.

- KH ve GÖ performans düzeyi için beton birim kısalması ($\varepsilon_c^{(KH)}$ ve $\varepsilon_c^{(GÖ)}$) değerleri sabit kalmaktadır.

- KH ve GÖ düzeyleri için izin verilen dönme açısı değerleri ($\theta_p^{(KH)}$ ve $\theta_p^{(GÖ)}$) sırasıyla %6,28'den %11,7 ve %6,37'den %7,32'ye kadar artmaktadır.

Geleneksel donatılmış betonarme bağ kirişlerinde; çekme ve basınç donatısı oranı artması ile:

- Akma momenti (M_y) %135, maksimum moment (M_u) %132,2 ve akma eğriliği (k_y) %9,3'ten %10,5'e kadar değerleri artmaktadır.

- Maksimum momente karşı gelen eğrilik (k_u) %2,55'ten %2,86 ve eğrilik sünekliği (μ) %11,76'dan %15'e kadar değerleri azalmaktadır.

- Plastik mafsal akma dönmesi (θ_y) %11,3'ten %15,7'ye kadar değerleri artmaktadır.

- Kontrollü hasar ve göçme öncesi performans düzeyinde izin verilen beton birim kısalması ($\varepsilon_c^{(KH)}$ ve $\varepsilon_c^{(GO)}$) sırasıyla %1,2 ve %1,24 değerleri artmaktadır.

- Kontrollü hasar ve göçme öncesi performans düzeyinde izin verilen dönme açıları ($\theta_p^{(KH)}$ ve $\theta_p^{(GO)}$) sırasıyla %9,3'ten %10,99 ve %9,33'ten %11,11'e kadar değerleri artmaktadır.

Beton basınç dayanımın artırılması, geleneksel donatılmış betonarme bağ kirişlerin akma momentine (M_y) , kırılma momentine (M_u) , kontrollü hasar ve göçmenin önlenmesi performans düzeyi dönme açılarına $(\theta_p^{(KH)} \text{ ve } \theta_p^{(G\"0)})$ etkili olduğu ispatlanmıştır.

Geleneksel donatılmış betonarme bağ kirişlerinin net açıklık derinlik/oranın artırılması; KH ve GÖ performans düzeyleri için izin verilen plastik dönme açılarına ($\theta_p^{(KH)}$ ve $\theta_p^{(GO)}$) ve akma durumu için yer değiştirmiş eksen dönmesi üzerine (θ_v) etkili olduğunu gözlemlenmiştir.

Çekme ve basınç donatısı oranı artırılması, geleneksel donatılmış betonarme bağ kirişlerin akma ve maksimum moment taşıma kapasitesine, akma eğriliğine, akma dönme açısına, kontrollü hasar ve göçme öncesinin performans seviyesinde izin verilen beton birim kısalmasına ve dönme açılarına etkili olduğunu ispatlanmıştır.

KAYNAKLAR

- [1] Ersoy, U. ve Özcebe G. (1998). Sarılmış Betonarme Kesitlerde Moment-Eğrilik İlişkisi Analitik Bir İnceleme. *Teknik Dergi*, 9(4), 1998-1827.
- [2] Sönmez, İbrahim K, 2010. "Betonarme Yapı Sistemlerinde Yapısal Performans Düzeyini Belirleyen bir Bilgisayar Programı Geliştirilmesi", Yüksek Lisans Tezi, İTÜ Fen Bilimleri Enstitüsü.
- [3] S. F Breña, O. Ihtiyar, "Performance of conventionally reinforced coupling beams subjected to cyclic loading". J StructEng, 137:665-76, 2011.
- [4] S. El-Tawil, K. A. Harries, P. J. Fortney, B. M. Shahrooz, and Y. Kurama, "Seismic design of hybrid coupled wall systems: state of the art" *Journal of structural engineering*, vol. 136, no. 7, pp. 755–769, 2010.
- [5] C.-C. Hung and W.-T. Lu, "A performance-based design method for coupled wall structures," *Journal of Earthquake Engineering*, vol. 21, no. 4, pp. 579–603, 2016.
- [6] TBDY, 2018, Türkiye Bina Deprem Yönetmeliği, T.C. Bayındırlık ve İskân Bakanlığı, Ankara.
- [7] SAP2000. *Structural software for analysis and design*, Computers and Structures, Inc. Version 20.0.0. USA.

- [8] Çağlar, N., Akkaya, A., Demir, A., Öztürk, H., 2004. Farklı Kesit Geometrilerine Sahip Betonarme Kolonların Davranışının İncelenmesi, ISITES2014, p. 2095-2105, Karabük/Türkiye.
- [9] TS500, 2000, Betonarme Yapıların Tasarım ve Yapım Kuralları, Türk Standartları Enstitüsü, TSE, Ankara.