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Abstract: This paper presents a comparison of two popular model reduction techniques on an aircraft model. 

Large scale model of the aircraft is obtained via Ground Vibration Test (GVT). In vibration-based 

applications, natural frequencies are important, designers aim to focus on especially these frequencies. 

Therefore, a reduced-order model should be obtained adequately by approximating the original system at 

interested frequencies. To perform this, two popular model reduction methods; Frequency Weighted Balanced 

Model Reduction (FWBMR) and Rational Krylov based model reduction methods are resorted in this paper.  

The effectiveness of these two methods is discussed, and specifically, the flexibility of Rational Krylov based 

method is demonstrated on Body freedom flutter aircraft model. 
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 Hava Taşıtı Modeli Üzerinde Belirlemiş Frekans Aralığında Model 

İndirgeme Yöntemlerinin Karşılaştırılması 
 

 
Öz: Bu çalışma, bir hava taşıt modeli için iki popüler model indirgeme tekniğinin karşılaştırılması üzerinedir. 

Bu hava taşıt modelinin büyük ölçekli yapı modeli Yer Titreşim Testi ile elde edilmiştir. Titreşim bazlı 

uygulamalarda bilindiği üzere doğal frekanslar önemli bir yer teşkil etmektedir ve tasarımcılar bilhassa bu 

frekanslara odaklanmayı hedeflemektedir. Bundan dolayı kestirilecek düşük dereceden modelin, orijinal 

sisteme bu frekansların etrafında yakınlaşılarak, buna benzer cevap vermesi gerekmektedir. Bu yaklaşımı 

gerçekleştirebilmek için iki popüler model indirgeme yöntemi olan Frekans Ağırlıklı Dengelenmiş Model 

İndirgeme yöntemi  (Frequency Weighted Balanced Model Reduction (FWBMR))  ve Rational Krylov tabanlı 

model indirgeme yöntemlerine başvurulmuştur.  Her iki metodun başarımları ele alınmış ve bilhassa Rasyonel 

Krylov metodunun hava taşıt gövdesinin dalgalanma modeli üzerinde esnekliği gösterilmiştir.  

 

 Anahtar kelimeler: Model İndirgeme Yöntemleri, Büyük Ölçekli Sistemler, Hava Taşıtı Modeli, Sistem 

Tanımlama  
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1. Introduction 

 

In aviation industry, flutter effect is a well-known phenomenon which may occur when a structure 

is exposed by any aerodynamic forces. The damping of the structure at some speed may be 

insufficient to absorb the energy increasing due to the aerodynamic loads, as a result of this causes 

the amplitude of harmonic oscillations grows up rapidly. Loring [1] states that these unwanted 

oscillations may harm and destroy the structure. For aerospace applications, this phenomenon 

endangers flight safety. 

 
Mathematical modeling of an aircraft often results in large scale models. Then, that yields a huge 

computational burden in order to design a controller for the system, also because of their high 

fragility on changes in systems parameters and noises, it is not quite easy to use such these large-

scale systems in applications. In order to deal with high order one, a practical way is to truncate it a 

low order one which discussed at the paper of Antoulas [2]. In model reduction methods, it is 

basically aimed to reduce computational burden by deriving lower-dimensional models that 

represent the original high order system behavior similarly. The critical point is that low order 

model should have the same characteristics as high order one. In addition to this, in some 

applications, accuracy of a model is more important in a predefined frequency range. 

 

In vibration-based applications, response of the system at natural frequencies is a compelling issue 

to investigate. The engineers account for these frequencies. In this context, deriving a low order 

model which encapsulates this frequency band is desired. By approximating at this predefined band, 

the response of reduced-order model should behave accurately as the original system. Therefore, 

designers can design a proper low order controller to make real-time systems behave in a desired 

way depending on predefined performance criteria. 

 

In order to obtain an adequate model for complex systems like aircraft via structural dynamics 

principles, designers resort to finite element analysis, and that comes up with high order models. In 

order to deal with such these high order systems, there are many methods available in the literature 

and some of the most famous are collected in Gu [3] and Qu [4]. In addition to these structural 

dynamic model reduction methods, there are some other techniques in which the problem is taken 

into account as a control aspect at the paper of Lieu [5], Amsallem and Farhat [6], Kos [7]. Paper of 

Salimbahrami and Lohmann [8] discuss the order reduction with Krylov subspace methods for 

structural dynamics in their paper. In the work of Lieu [5], they are aimed to reduce the order of an 

F-16 aircraft model with proper orthogonal decomposition (POD) method for minimizing 

complexity effect for flutter analysis. In their work Kos [7], they compare Krylov, POD and 

generalized coordinate-based methods on F-16 aircraft method and flutter analysis. In another work 

Amsallem and Farhat [6], a new method is proposed for stabilizing reduced-order models and they 

show its performance on to mechanical vibration and aeroelastic model. Furthermore, most of the 

vibration and aeroelastic models are nonlinear and flexible aircraft control system models can be 

classified in this category. Cook, Goulart and Palacios apply model reduction techniques to 

linearized aeroelastic aircraft model [9]. Ronch and Badcock resort nonlinear model reduction on 

the nonlinear flexible aircraft control model [10]. Moreno studies efficient model reduction 

techniques on aeroservoelastic systems [11].  

 

In the literature there exist abundant methods in order to reduce the order of the system. In the work 

of Antoulas [12], it’s pointed out that these reduction methods are characterized into two main 

categories, Singular-Value Decomposition (SVD) methods and Krylov Subspace methods. One of 

the most preferable SVD methods is the balanced truncation method which is based on truncating 

lower Hankel singular values (HSV) of the system. Due to the simple and practical structure of this 

method, it still preserves its popularity. The fundamental idea of balanced truncation method is to 
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approximate the high order system for all frequency range. Frequency weighted balanced truncation 

is proposed to truncate the system model in the desired frequency band by Enns [13]. Kürschner 

shows that it’s possible to reduce the model order with balanced truncation within the limited time 

intervals [14]. 

 

Rational Krylov which is based on matching the moments of the original high order and generated 

reduced order systems around predefined frequencies is another famous reduction method. These 

moments are obtained via Taylor expansion of transfer function at selected frequencies. The main 

idea behind Krylov methods is that reducing the dimensionality of the model is based on projecting 

the system onto expanding subspaces which is generated by the system matrices. In the work of 

Grimme [15], Krylov Subspace methods are mainly based on the moment choices. The matching of 

moments may be performed at any predefined frequencies. According to these frequencies, 

designers can resort to different approaches. One of the main drawbacks of Krylov based methods is 

that there is no global error bound in the reduced-order model. In addition to this Krylov methods 

can’t guarantee the stability of the obtained system. In order to overcome these issues Heres studies 

on Robustness and efficiency on Krylov Subspace methods [16]. Alternatively, Bretien and Damm 

work on model reduction of bilinear control systems with Krylov subspaces [17]. A global error 

bounds for Krylov based method is developed by Panzer, and application of this method is 

demonstrated on the various models [18]. Ophem and Deckers work on model reduction of MIMO 

systems with Krylov subspace approach for vibration systems [19]. 

 

The natural frequencies of an aircraft can be found by experimentally for practical applications. One 

of the most favored experimental methods is known as GVT. Modal and structural natural 

frequencies can be derived by applying GVT to the aircraft model. In this paper, two popular model 

reduction methods are taken into account. As soon as the system model of the aircraft is derived via 

system identification, it is aimed to demonstrate the applicability of these model reduction methods 

onto this large-scale model. Based on obtained results the advantages and disadvantages of Rational 

Krylov and FWBMR method are compared. 

 

The rest of the paper is organized as follows. Firstly, the aircraft model is derived via system 

identification methods. Section 3 covers the basics of FWBMR and Krylov Subspace methods. In 

Section 4 effectiveness of model order reduction methods on aircraft model are demonstrated, 

results are discussed. 

 

2. System Description 

 

In our work, the structural model of Body Freedom Flutter (BFF) aircraft is used. This BFF aircraft 

is designed by Lockheed Martin Aeronautics Company for testing new control technologies. BFF 

aircraft has a sweptback wing platform, spanning 3.05m and chord length of 29.7cm as 

described in the work of Chicunque [20]. GVT is applied to this aircraft in order to derive the 

natural frequencies and modal shapes by a research team at University of Minnesota. These 

frequencies provide fundamental information in order to validate the system model. In order to 

excite the aircraft structure with a proper signal, Unholtz-Dickie Model 20 electrodynamic shaker is 

resorted in the work of Gupta [21]. Sinusoidal sweep wave is used as an excitation signal, and the 

frequency of this signal begins from 20 rad/s and increases up to 220 rad/s. The response of the 

aircraft from 34 different locations varying from tip to main body is measured via two PCB 353B16 

miniature accelerometers as described in Moreno [22]. These locations can be seen from Figure 1. 

In our work, all experimental inputs outputs data are borrowed from these works [20]-[22]. 
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After exciting the system with a proper signal, the selection of model structures is another important 

stage in system identification. In our work state-space model is chosen due to its practical and 

flexible structure. A  order state-space model that provides the same favorable behavior with 

experimental results, is obtained by a non-iterative subspace approach with the help of MATLAB 

System Identification Toolbox. The comparison between experimental data and the derived system 

at the  measurement point, which is one of the most swinging locations, are shown in Figure 2. 

Due to the lack of space, comparison of other points are not shown in the paper. 

 

 
Figure 1. Top view of BFF aircraft, 12th point is where the excitation force is applied and other 

points where measurements taken 

 

 
Figure 2. The response of experimental data and obtained system 

 

From Figure 2, it’s possible to determine the natural frequencies in the bode magnitude plot. 

Natural frequencies make picks at the bode magnitude plot. In Figure2 the picks at the magnitude 

plot can be seen at 35.94, 53.03 and 181.2 rad/s. These frequencies are important because systems 

tend to oscillate at these frequencies in the absence of any external input. When the external input is 

applied periodically at one of these frequencies, the system will vibrate at larger amplitude. In 

mechanical systems, resonance is the main unwanted phenomenon in most applications, due to its 

possibility of harming integrity of structure. In order to deal with resonance in vibration control 

applications, it’s crucial to obtain low order model which behaves almost the same at these 

frequencies. 
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3. Model Reduction Methods 

 

The state-space representation of a linear time-invariant system can be expressed as 

 

  

 (1) 

   

where the state vector , input vector , output vector , and where 

system matrices are , , , . When systems are known 

as descriptor systems where I is identity matrix.  The reduced-order system can be obtained by 

projecting the system into a lower dimension. 

 

Theorem 1. The reduced-order approximation of system represented at Equation (1) can be found as 

 

  

 (2) 

 

Where , , ,  are reduced system matrices. Reduced system 

matrices can be calculated as 

  

 

 

 (3) 

 

where  and  projection matrices. 

The final reduced-order model can be found as  

 

 

 

(4) 

 

Proof of Theorem 1 can be found in the work of Antoulas [12]. For reducing the system order via 

projection it’s necessary to find suitable V and W matrices. There are many methods proposed for 

finding this projection matrices. Most popular categories are SVD based methods and Krylov 

Subspace methods. SVD based methods try to generate projection matrices with the help 

observability and controllability gramians while Krylov Subspace methods use subspaces which are 

generated from system matrices. 

 

There exist many SVD based model reduction methods. First SVD based method which known as 

balanced truncation, is introduced in the paper of Moore [23]. In the work of Liu and Anderson 

[24], by doing modifications on balanced truncating method, they are able to propose a new method 

called singular perturbation approximation. Optimal Hankel norm approximation which is another 

famous SVD based reduction method is introduced in the work of Glover [25]. These mentioned 

methods are used frequently in the control area. The main reason of their popularity comes from 

two important properties. First of all, they preserve the stability of the obtained reduced-order 

model if the original high order model is stable. Second important property is that they can provide 

a global error bound for obtained reduced-order system. 
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3.1. Frequency Weighted Balanced Truncation 

 

In order to approximate the original system at the desired frequency interval, frequency weighted 

balanced model reduction (FWBMR) is proposed by Enns [13]. Enns provides a development over 

classical balanced truncation method. After modifications are applied to classical methods, the 

obtained method can reduce the high order model into low order one with input weights, output 

weights, or using both of them. The main drawback of this method is that the obtained technique no 

longer guaranteeing stability when both weights are used. In order to deal with this issue, Lin and 

Chiu Lin [26] makes modifications on Enns method and so stability problem is solved. 

 

In order to obtain a reduced model for the system given in 1, let us take  and  input and 

output weights respectively, and 

 
  

 
(5) 

 

be their corresponding minimal realizations. It is needed to construct augmented systems with the 

following equations 

 
 

 

 

(6) 

 

The controllability and observability gramians of above realizations  and  can be 

expressed as 

 
 

  

(7) 

 

where and  satisfy the following Lyapunov equations, 

 
  

 

(8) 

 

If type the above equations explicitly we obtain 

 
  

 

(9) 

 

After diagonalizing the modified gramians which are  and  we get 

 
 

 
(10) 

 

where matrix  is a transformation matrix that diagonalizes both  and  matrices. Where 

 are known as Hankel singular values of the system and they are 
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representing the effect of the corresponding states on the system behavior. In order to get a low 

order system with good approximation, it’s crucial to include states with high HSV in reduced-order 

system. From another point of view, HSV tells us which states should be included in low order 

model for minimum error. One useful feature of this diagonalization is provided HSV are obtained 

in descending order. As a result of this, states with the highest contribution to system behavior will 

be in descending order in this transformation. After obtaining the transformation matrix and 

deciding the order of approximation by analyzing the HSV, it’s possible to reduce the system with 

the following transforms. 

 
 

 

(11) 

 

where  is our reduced-order system in interested frequency interval. Since states are in 

descended order it’s guaranteed that omitted states give lower contribution than selected ones to 

system behavior. The main advantage of FWBMR, the stability of the reduced system is ensured. 

Furthermore, it’s possible to compute the error bounds in terms of discarded Hankel singular values. 

 

3.2. Rational Krylov Method 

 

Another way to obtain suitable projection matrices is deriving the transformation which equalizes 

moments of the original and its reduced order model in predefined frequency points. The transfer 

function of the system given in equation (1) can be expressed as 

 
   (12) 

 

Assuming, system matrix  is non-singular, we can expand the transfer function with Taylor series 

around complex shift , 

 
 

 

(13) 

 

Where  are called as moments of system  around . If we write  explicitly  

 
 

 
(14) 

 

in this case problem of matching moments known as rational interpolation. One way to match 

moments while reducing the system is applying a projection to original system. In order to match 

moments projection matrices should be generated from specific Krylov subspaces. The definition of 

this Krylov subspaces can be given as 

 
 

 (15) 

 

where and . Vector  is called as starting vector. The first independent basic 

vectors can be considered as a basis for the Krylov subspace. The following theorems state the 

suitable Krylov subspaces for model reduction with moment matching. 
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Theorem 2. If the matrix V used in Equation (3), is a basis of Krylov subspace 

with rank  and matrix  is chosen such that the matrix is nonsingular, then 

the first  moments of the original and reduced order systems match. 

 

The subspace  is called input Krylov subspace and order reduction can be done by 

using the basis of this subspace as a projection matrix. This method is classified as one-sided 

Krylov subspace method because only one Krylov subspace is used in the procedure. With this 

approach, only  moments of reduced-order system and the original system will be matched. 

Another projection matrix  is chosen as . In order to match more moments different 

Krylov subspaces are needed. 

 

Theorem 3. If the matrix  and  used in Equation (2), are bases of Krylov subspace 

 and respectively, both with rank , then the first  moments 

of the reduced and original order system will match. 

 

Proof of these theorems can be found in the work presented by Lohmann and Salimbahrami [27]. 

These theorems show that the presented approach is able to solve model order reduction problems 

in a flexible way, meaning that it’s possible to tackle different order reduction problems with the 

most appropriate subspace. On the other hand, the main drawback of this result is that there are not 

any formulations for error bounds. Consequently, the approximation quality can be determined only 

around local points in moment matching methods, and it is not possible to make a foresight about 

error bounds apart from these predefined local points. 
 

Calculation of basis vectors of Krylov subspace is a very compelling issue for application. In the 

work Bai [28] it’s showed that generally these basic vectors tend to linearly dependent even for 

moderate values of . As a result of the multiplication , Krylov subspace is quickly converging 

to the dominant eigenvector of . In the literature there exist two popular algorithms, 

Arnoldi and Lanczos, in order to derive the projection matrices  and . 

 

Lanchzos algorithm introduced as a model reduction technique by Grimme, Van Dooren and 

Gallivan [29]. Lanchzos algorithms are based on finding two bases for input and output Krylov 

subspaces that are orthogonal to each other. The numerical accuracy of this algorithm is not good as 

Arnoldi algorithm. In Arnoldi algorithm, the orthogonal basis for Krylov subspace is constructed as 

a first step. In this algorithm generally, projection matrices are chosen as . After taking 

these matrices the same, this equality yields one sided method, so it is able to match only q 

moments. On another hand, two-sided model reduction method can be obtain by small 

modifications. Two-sided model reduction can be applied twice to the system using Arnoldi 

algorithm. In this work one and two sided Arnoldi algorithm is used because of its numerical 

robustness and quickness. 
 

4. Model Order Reduction of BFF Aircraft Model 
 

In model order reduction process, the order of truncation is strongly related with computational 

burden and there exists a trade-off between this order and performance specifications. In the 

literature, there is not a systematic way to decide the order of reduction.  
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Figure 3. Hankel Singular Values of 34th order original system 

 

A conventional way is trial and error approach. On the other hand, detecting the contribution of 

states to output provides reasonable information about reduction order. The contribution of these 

states to output is relative to the energy of each state. This energy can be measured as the square 

roots of the eigenvalues of the product of controllability and observability gramian which are 

known as Hankel Singular Values (HSV). It is possible to determine where to stop the reduction 

process using HSV. HSV of BFF aircraft model can be seen from Figure 3. Another valuable 

information included in HSV is that the stability of the system can be seen from it. States with 

infinite HSV correspond to unstable states. As can be seen from Figure 3 there are 8 unstable states. 

 

In this section, two popular reduction methods are used to reduce the dimension of 34th order BFF 

aircraft around natural frequencies. As mentioned before identified BFF aircraft model has 8 

unstable states. Therefore, the lowest possible order for FWBMR is 8, because balanced truncation-

based methods are unable to make manipulation on unstable states. In brief, it aimed to focus on 

two natural frequencies, 35.4 rad/s and 181.2 rad/s, and the orders of truncation are selected as 8 

and 10 by observing HSV. 
  

 
Figure 4. Performances of approximated 8th order models focusing at frequency 35.4 rad/s 

 



ECJSE 2020 (2) 882-894 A Comparative Study of Model Reduction Techniques for …   

  

891 

 

Primarily, we focus on two natural frequencies, models with 8th orders are derived using Rational 

Krylov and FWBMR. As can be seen from the Figure4 and Figure 5 FWBMR is not successful to 

approximate the system because this method is unable to deal with unstable states as mentioned 

before and directly takes all these unstable states into reduced-order model.  

 

Figure 5. Performances of approximated 8th order models focusing at frequency 181.2 rad/s 

This means that it’s not possible to get a reduced model without unstable states by using FWBMR. 

In order to get an adequate model with FWBMR, it is essential to increase the order of the truncated 

model. 

 

In Rational Krylov methods reduction is based on substituting real number into  or substituting 

imaginary value into  where the  value is the interested frequency to approximate. In addition to 

this, it is possible to approximate the system with one-sided or two-sided method due to its flexible 

structure. Combination of these choices generates 4 possible approaches to our system. As can be 

seen in Figure 4-5 approximating with Krylov methods yields reasonably good results, especially 

when the moments calculated with imaginary number. Two sided methods approximate better 

because they are matching 2 times more moments than one sided method. Krylov methods are 

approximating better than FWBMR method for this case because they are matching moments. They 

don’t have to include the unstable mods. This difference in their working principle makes a great 

advantage for Krylov subspace-based methods when reducing unstable systems since order of the 

reduced model can be chosen lower than unstable mod number. As a result of that there are no 

restrictions on the degree of the reduced system while reducing with Krylov methods. 

 

Figure 6. Performances of approximated 10th order models focusing at frequency 181.2 rad/s 
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As we increase truncation order, FWBMR is able to match response at the interested frequency as 

shown in Figure 6. According to HSV, it is observable that, first two stable modes have an 

important impact on the system. Therefore, the truncated model should include these modes in order 

to behave adequately as the original system. In Krylov methods, it is expectable that, increasing 

order of the system improves the accuracy of response near the interested frequency. 

 

If we have an interest in more than one frequency, we can still approximate the system with the 

mentioned methods. The frequency responses of 10th order obtained model when interested 

frequencies are chosen as 35.4 rad/s and 181.1 rad/s given in Figure 7. In this figure only Krylov 

methods with imaginary expansion points are able to match the response of reduced-order system 

with the original system with good accuracy at interested frequencies. FWBMR method is able to 

match the system response at 35.4 rad/s but can’t approximate the response at 181.1 rad/s. The 

reduced-order models obtained with real expansion points provide a worse approximation to the 

original system at interested frequencies but they are able to match the response better in all 

frequency range than others. 

 

In some applications, it is desired to focus on more than one frequency points. In Figure 7 the 

successes of Krylov and FWBMR is showed. Although the truncated model with FWBMR 

encapsulates first natural frequency, it behaves unlikely as the original system at other natural 

frequencies. On the other hand, the model which is approximated with Krylov method provides 

almost the same characteristic as the original system at both natural frequencies. 

 

 

Figure 7. Performances of approximated 10th order models focusing at natural frequencies 35.4 and 

181.2 rad/s 

 

In addition to this, due to the flexible structure of Krylov based model reduction method, it is 

possible to distribute moments onto different frequency points. If the response of the system is more 

important at some frequency points, we can focus that interval while reducing the system at other 

frequency points. Therefore, designers can supervise the trade-off between different frequency 

points according to the importance of them with choosing appropriate moment weights. In Figure 7, 

the distribution of moments weight is chosen as, 4 moments are matched at  and 6 moments 

are matched at . Changing these weights basically provides to approximate the original 

system better at the important frequencies. It can be observable from Figure 8, moment weights of 

these two natural frequencies are changed, chosen as 8 moments for  2 moments for 

, so the approximated model can now represent the original system behavior much more 

adequately at 35.1 rad/s. 
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Figure 8. Performances of approximated 10th order models with different moment weights focusing 

at frequencies 35.4 and 181.2 rad/s 

 

 

5. Conclusion 

 

The response of an aircraft at natural frequencies is an important issue to investigate in vibration-

based applications. In this work, 34th order state-space model of BFF aircraft is derived using 

experimental data with the help of system identification tools. FWBMR and Rational Krylov 

methods are used for reducing the system order to deal with computation complexity. In this 

context, reduced-order models are constructed in the predefined frequency band. The effectiveness 

of these two reduction methods is compared. Obtained results show that Rational Krylov methods 

have a great advantage over FWBMR. It’s possible to arrange the number of matched moments at 

interested frequencies with Krylov methods. Krylov method provides different reduced models with 

the same order while focusing on different frequency points. This advantage may be useful for 

practical applications. For example, if the system is affected by noise at some frequencies it’s 

possible to match less moment at these frequencies and reduce the effect of noise in reduced-order 

system model. 
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