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Abstract: Precision livestock farming (PLF) is a digital management system that continuously measures the production, 

reproduction, health and welfare of animals and environmental impacts of the herd by using information and communication 

technologies (ICT) and controls all stages of the production process. In conventional livestock management, decisions are mostly based 

on the appraisal, judgment, and experience of the farmer, veterinarian, and workers. The increasing demand for production and the 

number of animals makes it difficult for humans to keep track of animals. It is clear that a person  is not able to continuously watch the 

animals 24 hours a day to receive reliable audio-visual data for management. Recent technologies already changed the information 

flow from animal to human, which helps people to collect reliable information and transform it into an operational decision-making 

process (eg reproduction management or calving surveillance). Today, livestock farming must combine requirements for a transparent 

food supply chain, animal welfare, health, and ethics as a traceable-sustainable model by obtaining and processing reliable data using 

novel technologies. This review provides preliminary information on the advances in ICT for livestock management.  

Keywords: Internet of things, livestock data management monitoring tools, precision livestock farming, health, welfare. 

Hassas hayvancılık teknolojileri: Bilgi akışının yeni yönü 

Özet: Hassas hayvancılık (PLF), bilgi ve iletişim teknolojilerini (ICT) kullanarak hayvanların üretimini, üremesini, sağlığını ve 

refahını ve sürünün çevresel etkilerini sürekli olarak ölçen ve üretim sürecinin tüm aşamalarını kontrol eden dijital bir yönetim 

sistemidir. Geleneksel hayvancılık yönetiminde kararlar çoğunlukla çiftçinin, veterinerin ve işçilerin değerlendirmesine, 

muhakemesine ve deneyimine dayanmaktadır. Üretime yönelik artan talep ve hayvan sayısı, insanların hayvanları takip etmesini 

giderek zorlaştırmaktadır. Bir kişinin, yönetim için güvenilir görsel-işitsel veriler almak için günde 24 saat sürekli olarak hayvanları 

izleyemeyeceği ise açıktır. Son teknolojilerle bu bilgi akışı hayvandan insana olarak değişmiş ve bu da toplanılan güvenilir bilgilerin, 

operasyonel ve efektif olarak bir karar alma sürecine dönüştürmesine (örn. Üreme yönetimi veya buzağılama takibi) yardımcı olmuştur. 

Günümüzde hayvancılık, yeni teknolojileri kullanarak güvenilir verileri elde ederek ve işleyerek izlenebilir ve sürdürülebilir bir model 

olarak şeffaf bir gıda tedarik zinciri, hayvan refahı, sağlık ve etik gerekliliklerini birleştirmelidir. Bu yayında, hayvancılık veri 

yönetiminde kullanılan bilgi ve iletişim teknolojileri alanındaki gelişmeler hakkında güncel bilgiler derlenmiştir.  

Anahtar sözcükler: Hassas hayvancılık, hayvancılık veri yönetimi, izleme araçları, nesnelerin interneti. 

 
 

 

Introduction 

“Man goes to nature to learn what nature is, but, in so 

doing, he introduces possibilities of distortion through his 

own presence.” – 

T.C. Schneirla (154) 

Before the industrial revolution 4.0, livestock 

management decisions were mostly based on the 

observation, judgment and experience of a human. The 

last decade has seen a great metamorphosis and brought a 

novel concept named “Precision livestock farming 

(PLF)”, which is a digital management system that 

periodically or continuously measures production, 

reproduction, health and welfare of animals and 

environmental impacts of the herd through a “per animal” 

approach by using monitoring tools, mainly the internet of 

things (IoT), and controls all stages of the production 

process (11, 15). Thus, the use of automated measurement 

methods to monitor animal behavior has become 

increasingly widespread, and a number of models have 

been introduced that can distinguish reasonably accurate 

traits of daily physiological routines.  
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Different behavioral monitoring studies 

implemented on activity (50), eating (30), and milking (6) 

have created the fundamental infrastructure of PRL. The 

pioneering study was conducted by Farris, 1954 (50), for 

the detection of estrus by monitoring the mounting activity 

and counting the number of steps during estrus. For eating, 

the initial methodology was investigated in cattle (30) and 

soon after in sheep (127) by classifying the jaw 

movements to distinguish bites from chews. These pioneer 

studies have led to the idea of recording biting and 

chewing sounds with a wireless microphone attached to 

the forehead of the animals (103) and thus revealed a 

simple approach on intake and time per bite, for 

researchers to focus on classifying jaw movements (biting 

sounds were louder than chewing with differences in 

spectral composition) of the grazing process. However, 

PLF tools are still under adaptation and the evolution of 

digital technologies varies greatly between different 

sensor systems and application areas. Therefore, the 

development of PLF was driven by a number of variables 

in the care of livestock such as the growth of herd size, and 

the resulting inability of farmers to care for individual 

animals, the economic efficiency of farming, and 

increasingly environmental factors such as many other 

developments in the fields of agriculture, computing, and 

engineering. As these variables create more considerable 

complexity in farmers' work, it has become necessary for 

farmers to be able to monitor variables related to basic 

livestock production processes (11). The elementary 

principles for the emergence of PLF tools is to provide 

accurate and relevant information to take decision to a 

farmer (60). These incentives resulted from challenges for 

farmers and provide opportunities for farmers, 

veterinarians and engineers. PLF is possible due to 

technological advances, but challenges for local farmers 

such as animal identification in larger herds, productivity 

demands, and more recently, sustainability and welfare 

have offered unique opportunities for innovative 

technologies to be tested and applied. Therefore, the 

definition of the PLF technology was that the combination 

of computer and ICT use to make the production chain 

more efficient due to the increased control it affords 

resulting in improvement in animal welfare and benefits 

the best in using the resources resulting in decreased 

environmental pollution (13). The introduction of process 

control procedures has resulted in significant 

improvements in other industries (181). 

PLF is a management system, which use sophisticated 

intelligent software’s and systems to combine variety of 

data from different sources of hardware’s for monitoring. 

This data driven system enables improved health, welfare 

and production along with minimized undesirable 

environmental impact through complex monitoring 

mechanisms such as tele-surveillance. 

 

Overview of the Existing Tools 
Overview of tools for precision livestock farming are 

considered at the levels of collection and management of 

data gathered by monitoring using different technologies.  

Monitoring devices: Many researches were 

conducted to discover the potential implementation and 

validation of monitoring systems, while these systems are 

constantly developing. Behavioral and physiological 

monitoring of animal variables can be complicated as the 

method used to collect the data may change and there will 

always be interindividual variabilities. In order to monitor 

animal variables several technologies were adopted 

including image and sound analysis using cameras, 

sensors or other devices including water/feed 

consumption, scales etc. For image analysis, as the devices 

are not required to be placed on the animal no extra stress 

is produced; while in the prediction stage, it is difficult to 

retain good precision as the developed software for target 

tracking and extraction of animal foreground depends on 

various complicated image factors. Image analyses are 

used for weight and body condition score estimation, 

water/feed intake, assessing the gait and lameness along 

with detection of marked animals in estrus behavior 

monitoring. At the current state, mainly electronic 

wearables such as active smart ear tags which receive data 

from individual animals such as temperature and 

activity/ingestion patterns; neck and leg collars for 

rumination and activity loggers and other sensors used for 

prediction of diseases are widely used alone or in 

combination with robotic milkers, automatic feeders and 

inline milk sensors. In some farming, both image and 

sensing monitoring devices are combined to receive 

maximal efficiency and data (121). Selected biosensor 

based monitoring devices according to the system used, 

feed follow-up, monitoring of behaviour, biological 

parameters and applied area are listed in Figure 1. 

With the increasing number of available sensing 

tools, a vast amount of generated data is expected to be 

processed and analyzed where the internet of things (IoT) 

is the major system for monitoring and data collection. A 

list of current commercial PLF tools to monitor and 

support cow health and performance, that includes over 

100 tools is accessible by farmers and it is being updated 

regularly (4D4F Technology Warehouse).  

 

The Internet of Things 
Data obtained by the monitoring tools are connected 

through various technologies including Machine-to-

Machine (M2M) communications, Cyber-Physical-

Systems (CPS) Web-of-Things (WoT) and Internet-of-

things (IoT). As a part of IoT, communication between 

machines and devices are mainly attributed as M2M where 

cloud computing infrastructures are available using 

telecommunication services (4G, 4.5 G, 5G, satellite). On 

the other hand, IoT comprises a broader scope of 

interactions between devices/things/people. CPS systems 

under IoT comprise physical sensing devices such as 

biosensors to the digital world. WoT enables the resources 

using mainstream applications such as HTML, Java, PHP 

etc. Therefore, IoT allows connecting the data gathered by 

all the monitoring tools to the internet for improvement of 

valuing of all livestock related operations (4).  
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The use of IoT in PLF meets five possible indications 

classified as surveillance, drug tracking, localization, feed 

follow-up, monitoring of behavior and/or biological 

parameters. 

Surveillance: Animal protein deficit is thought to be 

the cause of global epidemics. This raises great concerns 

about disease transmission from animals to humans, 

making animal health a high priority (41). On the other 

hand, it is predicted that the demand for meat worldwide 

will increase by at least 40% in the next 15 years (123), 

this figure will reach 498 tons in 2050, and the number of 

animals per farm will increase in response to the demand 

(43). Consequently, consumer demands such as animal 

health, welfare and the reduction of antimicrobials use put 

pressure on veterinarians and farmers.  

It is necessary to solve many problems such as 

monitoring animal health and welfare in the livestock 

sector, reducing the environmental impact (15% of global 

CO2 emission, 1/3 of the arable land and 8% of fresh 

water) and ensuring the efficiency of the process (43). 

Today, livestock farming must combine requirements for 

a transparent food supply chain, animal welfare and 

health, and an enhanced, traceable and sustainable model. 

The concept of epidemiologic surveillance system gathers 

high-quality information in animal health and food safety 

to make proper decisions and implement actions regarding 

the prevention of zoonotic disease for public health (world 

health organizations), animal services (public 

veterinarians), and private organizations (54).  

Practice for the surveillance of animals involves 

identification and measuring components connected to the 

animals at least with one tool (For example, ear tags, 

transponders, accelerometers) wirelessly connected to 

measure the individual characteristics for specific groups 

of animals by modern information networks. Analysis for 

animal disease monitoring and surveillance are usually 

conducted by epidemiologists; which is crucially 

important for management of health related issues and risk 

analysis. Health surveillance is regarded as a tool to 

monitor the trends in diseases that are of significant 

economic, trade and security of food importance. Animal 

disease surveillance includes observing a group of animals 

strictly to evaluate and focus on a specific condition or 

disease individually/the whole population with ascertain 

variations in prevalence and define the frequency and 

route of epidemic spread. There are also the use of 

syndromic surveillance systems to detect the vector borne 

diseases like “Blue Tongue” through the use of pregnancy 

length and milk yield (108). The above mentioned 

statement turned into an abbreviation called MOSS 

(monitoring and surveillance systems) that measures 

disease and surveillance of animal population (150). 

The Moss system includes systematic acquisition, 

research, analysis, and up-to-date information on 

health/production / reproductive data for both animal and 

public health. Public and animal health, as well as 

monitoring and identification of pandemic diseases of 

exotic origin such as corona, are among the purposes of 

use of surveillance systems. These programs provide 

guidance in determining effective prevention and control 

strategies. It also serves to monitor the progress and 

completion of response programs and to indicate the non-

infectious and non-hazardous status of animals and 

animal-derived products in the animal health field. 

Ensuring that surveillance plans are on target is ultimately 

superior (48). 

Drug tracking: Improved management with PLF 

allows an increase in the efficacy of drugs used in food-

producing animals; as a medication is only used as an 

adjunct to a good management system bearing 

responsibilities for public health in livestock. Early 

detection of individual changes in the health parameters 

relating to diseases has great importance in early 

diagnostic interventions as well as successful 

chemotherapeutic treatment (101). Global misuse of 

veterinary antimicrobial agents led to an emerging 

increment in bacterial resistance at an alarming level 

leading to both human and animal clinical treatment 

failure. In order to achieve the rational dose regimen of 

antibiotics for prevention and treatment of diseases along 

with minimizing the resistance, risk relies on the 

optimization of pharmacokinetics through assessment and 

characterization of interindividual variability of drug 

intake (106). These novel systems therefore not only allow 

early detection of diseases leading to early drug 

interventions but also allow the evaluation of the amount 

of feed and water intake to calculate the exact amount of 

drug and associate with certain health effects along with 

transparency/traceability, folow-up of recovering and for 

refined phenotypes. The future of pharmacokinetic/ 

pharmacodynamics studies are expected to be guided by 

these smart systems merging the changes in health, 

welfare, and productive status (65).  

Localization systems: Localization has crucial 

importance since the accuracy of the localization affects 

the cost and the limitations of the system; (33, 78). Indoor 

positioning systems (IPS) combines sensing and 

communicating technologies to determine the location of 

objects/animal in indoor environments (20). Various types 

of localization techniques are adopted such as Global 

Navigation Satellite Systems (GNSS), Inertial Navigation 

Systems (INS), wireless localization and environmental 

signals (magnetic, air pressure, light, sound) with database 

matching, dead-reckoning (magnetometer, odometer, 

inertial sensor based motion sensor), vision sensors 

(camera, light detection and ranging-LiDAR). These 

techniques all have advantages and limitations over each 

other and usually it is difficult to evaluate cost effective 

high performance localization system; where farm 

specific solutions are expected to be adopted (102). 

The GPS (Global Positioning System) tools are 

intelligent design to track or find the animals remotely 

with the valuable aid of GPS tracking collars. This tool 

determines the exact satellite position by using the global 

positioning system and updates this information in given 

intervals. Detected positions are updated regularly or 
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could be downloaded remotely. The initial technology 

only allows assessing the obtained data when the 

detachable collar was accessed directly on-site. However, 

nowadays innovative technology allows us the acquisition 

and assessment of reliable data remotely. The collars 

generally use GSM (The Global System for Mobile 

Communications) operator signals to receive and typically 

transmit the specific location. GPS collars use 

“Geostationary Satellites” to promptly send the precise 

positioning along with other valuable information to the 

tracking server or standard PC (35). The above mentioned 

technology led the dairy farmers to monitor/control their 

herds effectively at extensive grazing systems in large 

areas with outdoor positioning systems (8). Tracking 

animals to find sick or missing individual or drive away 

predators is time and labor consuming. This day, 

innovative GPS devices are convenient to track the real-

time location of outdoor cattle (166). Feasibly the most 

significant benefit of GPS trackers obtains the peace of 

mind they offer dairy farmers (10). On the other hand, 

indoor positioning systems created different possibilities 

for the development of tools such as determining the exact 

position of the cow in heat in large cow herds (148), body 

condition score (149) determining hot and cold areas in the 

barn that could adversely affect welfare (131), virtual 

fence (170), dynamic and smart grazing rotary systems 

(62).  

Feed follow-up systems: Monitoring “cattle's feed 

intake is considered an excellent tool to form an opinion 

on their general well-being. Sick cattle will spend time 

eating less food due to loss of appetite. Thus, rumination 

time is becoming a key indicator for health monitoring in 

that animal regurgitates a bolus of food into her mouth and 

masticates thereafter. Hereby, when cattle become ill, it 

eats and ruminates less which allows us to create a 

rumination chart individually for animal health status. 

Also, rumination is an important part of the digestive 

process, and a healthy cow ruminates for 400 to 600 

minutes a day, average daily grazing is around 6–10 h per 

day (179), lactating cows spend around 4.5 h/d eating 

(range: 2.4–8.5 h/d) and 7 h/d ruminating (range: 2.5–10.5 

h/d), with a maximum total chewing time of 16 h/d. The 

ruminant activity also helps to keep the rumen pH at a 

level suitable for microbial activity. In the beginning, 

studies were more focused on pressure sensors mounted 

on the jaw with a halter (Figure 1) to detect the rumination 

pattern (30, 88, 185). Then, Burfeind (22) gathered the 

data and turned it into a monitoring system that can 

evaluate the data to differentiate the eating and rumination 

through a computer acquisition system. Today, with 

rumination activity patterns, the prediction of the feed 

intake, health status, and environmental impacts is 

possible. Thus, the difference between healthy and 

unhealthy conditions like metabolic disorders (ketosis, 

acidosis, dysplasia, etc.) or stress-caused circumstances 

(heat stress, estrus, social interactions, etc.) can be 

monitored. Different types of rumination detections are 

present (129); such as the movement of neck muscles by 

ear tag, bolus sensors (66), and/or as wearable sensors 

(183) for grazing activity, indoor positioning (126), and 

feed intake with video recording (133) Figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. High-Tech Cow (64). 
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Figure 2. Time series representation (left) and corresponding frequency spectrum (right) a) “ruminating” behaviour b) “Eating” 

behaviour (65). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Example showing an increase in activity 

accompanied by a decrease in rumination during oestrus” 

(65). 

 

 

It is necessary to understand the underlying 

mechanism of rumination tools for reliable PLF 

technology. For example, during eating, the cow must 

tear/pick up (eg grass) from the ground, chew it partly, and 

then swallow for rumination. As a result, the muscular 

movements observed in the neck are quite large and can 

be observed with the frequency differences of these 

acceleration measurements (5). This behavior is described 

using just a simple measurement of the acceleration at its 

height. With the difference between these two frequencies, 

the accelerometer processed map of rumination behavior 

is obtained (Figure 2a). 

While the cow eating, the jaw movements of the cow 

indicates much more about rumination.  Because in the 

course of eating, jaw indicates a wider movement pattern 

than the head. The frequency of behavior showing less 

rhythmic activity than rumination during eating can be 

seen in Figure 2b. The high level of variance produced 

during eating with lower frequency movements but lacks 

identifiable frequency peaks compared to the ruminant 

map (Figure 2b). 

Figure 2 shows the regularly updated activity change 

of a cow during ninety minutes . When “estrus” behavior 

occurs in cows, “anxiety” levels increase, thus, this 

diversity can be observed in the behavioral model. The red 

line shown in the figure is considered a measure of how 

much the cow differs from its normal behavior and sends 

a warning message to the breeder for insemination. The 

other two lines strengthen the estimation for the 

insemination time. The green line shows the level of 

rumination decrease of the cow compared to the previous 

week (5). It provides an additional criterion to reinforce 

the diagnosis as it is known that rumination should 

decrease as estrus signs become evident in the cow. It also 

shows that the duration of feed intake during this period 

increased as a "dark blue" trace, compared to the average 

feeding time of the last week. This is actually the failure 

of the classification process to distinguish certain types of 

behavior. In fact, the cows do not eat more, they just spend 

more time rubbing other cows with their heads before the 

heat. Meanwhile, the difference observed is the map of 

secondary estrus behavior pattern (5) (Figure 3).  
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In addition to using eating patterns, there are 3D 

automated camera systems that can automatically measure 

the body condition score which is highly essential for 

maintaining the longevity, productivity, thus the animal 

welfare (67). Another interesting approach is monitoring 

the water volume, drinking frequency and the total water 

intake. These predictions are being used to detect the heat 

stress and the reducing the morbidity rates in dairy cattle 

(26), and growing rates in beef cattle (3). 

With the help of smart animal feeding systems, feed 

consumption can be measured individually and at the same 

time, it can be ensured that the right ration needed by each 

individual is taken regularly. Apart from that, the regular 

weight gain and development of the animal is enabled to 

be more efficient with the use of these smart feeding 

models. While this increases the economic efficiency of 

the enterprise, it also helps to significantly reduce the 

workforce and early diagnosis of the health condition 

(stress, metabolic disease, etc.) and reduce the use of 

antibiotics for treatment (63). 

Monitoring systems of behavior and/or biological 

parameters: The development of behavioral monitoring 

enabled the operational management interventions in 

large-scale dairy farms with a collar (transponder) or 

accelerometer that collects individual activity data from 

animals. Remote or wearable sensors can be uniquely 

combined with smart algorithms to continuously monitor 

a broad range of animal responses intimately linked to 

stress, health status, and welfare. The concept behind this 

technology is to create an accurate measurement that 

ensures reliable basic operational decisions for 

heat/respiratory stress (69), health condition like 

sick/healthy (63) and, welfare status social/conformations 

(167, 176). In order to gather health data for specific 

expectations (such as calving, mastitis, estrus, diseases) 

several methods are be combined or used alone including; 

body temperature (83) (vaginal, udder, ear, rectal and 

reticulo-rumen), indoor positioning for daily routine 

(milking and feeding), surveillance cameras, metabolic 

status (lameness, rumen temperature and pH boluses, 

rumen bolus, pH), external sensors (neck collar or ankle 

ribbon). We are able to read the estrus indicators of a cow 

through monitoring the position inside the barn, 

rumination behavior, stand-up time, lying time and 

inactive time with smart herd tracking systems. Based on 

these parameters, we can predict that the time of delivery 

with the abrupt cessation of rumination and eating 

behavior before calving (Table-1). 

 

 
Table 1. Daily time budget of a dairy cow. 

Lying/resting 12-14 hours 

Ruminating 7-10 hours 

Eating 3-5 hours 9-14 meals a day 

Social interactions 2-3 hours 

Milking 2-3 hours 

Drinking 0,5 hours 

Mastitis, as the main treat in dairy cows, is the focus 

for the development of various types of sensors in dairy 

industry as early warning and management systems would 

provide vast economic profits. Within the development of 

this sensor technology in nineties, various types of sensors 

are developed in advanced laboratories and introduced to 

markets. Nevertheless, routine detection of abnormal milk 

using visual observations during milking and availability 

of cow site tests limited application of these sensors in a 

large scale (72). It was the introduction of automatic 

(robotic) milking systems that boosted the need for 

sensors to detect clinical mastitis and abnormal milk due 

to the reduction in inspection time needed to identify 

mastitic cows. A variety of milk monitoring or sensing 

equipment to detect electrical conductivity, somatic cell 

count, milk colour, lactate dehydrogenase activity, milk 

yield, milk flow rate, incomplete milking have been 

incorporated and algorithms that use and integrate data 

captured during the milking process have been developed 

(79, 117). 

Inline sensors are capable of monitoring and 

recording changes continuously as milk flows through the 

line or in automatically-collected milk samples. Inline 

sensors are adapted to be incorporated in conventional and 

automatic milking systems for mastitis detection (77). 

Inline sensors allow monitoring of subtle changes in milk 

non-invasively with remote accessibility to data for 

multiple diseases, and the ability to store the data. 

Unfortunately, a high number of false alerts makes 

individual changes in a single milk-associated parameter 

inconclusive for mastitis indication. Inadequate sensitivity 

and specificity by single-sensor methods is largely 

explained by the influence of other factors, such as milk 

temperature, milking interval, milk composition variations 

during the milking process (146). 

Mastitis is associated with multiple changes in milk 

and udder of cow’s udder and combining data from 

different sensors is helpful to obtain a much clearer picture 

and greater predictive ability. Hence, utilising multi-

sensor information is the most recent approach to improve 

mastitis detection performance (92). Many multiple 

sensor-based approaches (6, 74, 85, 162) have been 

suggested to improve mastitis detection performance. In 

addition to mastitis detection, sensor systems progress 

toward identification of causative organisms, 

improvement of treatment and other management 

decisions at quarter, cow and herd level (128). The disease 

is multifactorial that affects both animal’s physiological 

and behavioural responses. As sensors such as 

collarmounted accelerometers and heat detectors are 

becoming readily available to monitor behavioural 

changes automatically, such data might be of use for 

further enhancement of automatic detection of mastitis. 

Behavioural changes associated with mastitis include 

alteration in feeding time, lying time, standing time, self-

grooming, rumination, head turning frequency, kicking, 

isolation character, preference for lying on one side, and 

increase of restless behaviour (39, 55, 89, 112, 135). Such 

sensor-derived data can increase the accuracy of mastitis 

detection if combined with milking related data (91).  
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Precise detection of estrus in cows is essential to 

maintain reproductive performance, especially in dairy 

herds using AI. Standing to be mounted is the primary and 

most characteristic external sign for determining when a 

cow is in estrus and considered sexually receptive for 

artificial insemination (137). Signs of estrus are often 

more intense in evening and night hours. Traditionally, 

estrus in cows is detected by visual observation (46). 

However, estrus detection by visual observation is highly 

labor intensive. In addition, increasing farm sizes and 

workloads limit the time available for observation of 

individual animals, resulting in unobserved estrus and 

remarkable economic losses (37). Furthermore, intensive 

genetic selection for high milk production has resulted in 

decreasing durations and weaker signs of estrus (140).  

Precision monitoring technologies that continuously 

monitor and measure behavioral and physiological 

changes in the cow are commonly used to supplement or 

replace visual estrus detection. The development of 

automated estrus detection systems began in the 1980s and 

several types of automated heat detection devices for dairy 

cattle were marketed over the years (118). At present, a 

great number of fully automated technologies including 

pressure sensing systems that monitor mounting activity, 

activity meters, temperature measurements, video 

cameras, impedance or conductivity measurements, and 

hormone analyses are available (147). Parameters with 

potential to be used in automated estrus detection systems 

include but not limited to mounting events, activity level, 

lying time, rumination events, blood or milk progesterone 

levels, feeding time, body temperature (47, 59, 147, 156). 

In general, automated estrus detection technologies 

detect estrus in cows mainly through secondary signs of 

estrus behaviour (59); mainly through multi behaviour 

patterns (82, 137, 152). To date, most technologies for 

identifying cows in estrus are based on automated activity 

measurement (47, 109). Pedometers or accelerometers 

attached to the leg or neck are able to detect estrus, with a 

predictable association with the timing of ovulation (9, 71, 

119, 139). Automated activity monitoring systems are 

profitable for most dairy farms and producer satisfaction 

with their performance is generally high (146). Investment 

in automated activity monitoring technologies contributes 

to farm profitability in many scenarios (2, 114). 

Automated activity monitors use software specific 

algorithms to compare the activity of each animal with that 

of an individual specific previous reference period or with 

the average activity of the herd aggregated over time to 

create an estrus alert when a set threshold is exceeded. 

However, many environmental and metabolic effects as 

the type of housing, the herd management practices, 

animal health problems and heat stress have negative 

effects on the performance of automated activity 

monitoring to identify cows in estrus (2, 130, 148, 156). 

Other systems including video-software, body 

temperature measurements and biosensors integrated with 

in-line milking systems are expected to be combined with 

existing tools for multivariate estrous detection in near 

future (37, 118, 148).  

Prediction of parturition is central to good calving 

management affecting animal health, animal welfare and 

farm economics (113). Supervision during the calving 

period enabling timely calving assistance is likely to 

reduce the risk of dystocia associated with increased calf 

mortality and morbidity, increased health problems in the 

dams, and the economic impacts that arise from increased 

treatment costs, reduced calf performance, and reduced 

reproductive efficiency (155). Historically, a combination 

of breeding records and visual symptoms has been used to 

estimate calving time; however, these efforts are 

hampered by the need for 7/24 monitoring and 

inconsistency between cows in visual behavioral and 

physiological changes related to calving (18). 

Interpretation of behavioral and physiological 

changes related to calving, provide the opportunity to 

develop an automated system for the prediction of 

parturition, while no large-scale systematic research has 

provided insight into possible practically implementable 

solutions (147). Maternal body-temperature monitoring 

has been the first line application of precision technologies 

in calving detection, however, reticulorumen, skin, rectal 

and vaginal temperature monitors are not validated for 

prediction of parturition (23, 36). Recently, potential use 

of a calving prediction model based on continuous 

measurement of ventral tail base skin temperature with 

supervised machine learning (70) along with 

intravaginally inserted temperature and telemetry was 

reported (125, 163). Calving is related to many behavioral 

changes including lying bout, number of step and eating; 

while these parameters can be easily monitored using 

available tools mentioned earlier (124, 144). Meanwhile, 

it is still contradictory to attribute the changes in the 

mentioned behaviors to calving only for accurate 

prediction; as animals might exert other behavioral 

changes in noncommercial environment (151). Tail 

raising is another calving related behaviour. Tail-raising 

events dramatically change prior to calving (81, 115). In a 

recent study, a tail-mounted inclinometer sensor was used 

at 5 different intervals (i.e., 1, 2, 4, 12, and 24 h until 

calving) to calculate sensitivity and specificity. Depending 

on the interval preceding the onset of parturition, 

sensitivity varied from 19 to 75% and specificity from 63 

to 96%. (178). As a distinct predictor, tail raising 

monitoring is considered as the best behavioral change to 

estimate the time for calving using this smart systems; 

while this prediction accuracy can be increased by 

combination of eating and rumination behaviors (116).  

These systems continuously records individual 

animal and measured data are processed with 

sophisticated software, and the data is downloaded 

wirelessly to a computer each time the animal enters the 

receiving area of a base station. Alerts showing the 

animal's status are displayed on a local computer or in the 

cloud. Each leash learns normal behavioral patterns and 

the owner warns only when intervention is necessary and 

allows the farmer to plan a corrective action. Significant 

differences in the variance of the measured raw data allow 

the derivation of various behaviors such as rumination and 

feeding (51, 153). The energy consumed by the animal 

during its daily routine is individually mapped and defined. 
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The most important reason for the immediate 

adoption of animal tracking technologies has been the 

need to optimize offspring yield in dairy cattle. In cattle, it 

caused an increase in fertility, selective breeding practices, 

other welfare factors such as reproductive diseases (eg 

metritis, ovarian cyst, foot diseases), and consequently a 

decrease in fertility (58). Additionally, lack of 

management practices, malnutrition, and inadequate 

estrus detection contribute significantly to low pregnancy 

rates. The cost of bovine infertility arises from the loss of 

income from milk production, artificial insemination, 

labor cost, and late calving (58). This situation causes an 

estimated loss of approximately $ 2,333 per cow (98) and 

according to de Viries (2007), it is $ 555. Although the 

fertility of the herd depends on many factors, estrus 

detection is predicted as the most important factor. 

Detection of estrus in cattle was carried out by a skilled 

observer or farmer looking for visual signs of estrus. 

  

The Economical Aspects of PLF 
In principle, the tools related to precision farming 

serve a purpose in the management of input allocation to 

the farmers to decrease the expense of production and 

increase the outputs by aiming to improve health status, 

management and production efficiency as well as reducing 

the labor (14, 146). However, these technologies are 

available at a considerable price (Table 2).

 

 
Table 2. Price range of various precision livestock tools. 

Item Location Targeted Measurement Price Notes 

Identification 

Ear tag 

(RFID) 

Ear Identification/ accelerometer 

(X, Y, Z axis), Body 

temperature 

1-5 € 

$1,425.00 for 

reader 

Standard price with little 

variations 

Collar-

Transponder 

Neck Identification/ accelerometer 

(X, Y, Z axis), 

 

 

Varies according to size and 

manufacturer 

Ruminal 

bolus  

Rumen Identification Rumen pH, core 

body temperature 

5–450€ Varies according to size and 

manufacturer 

EID 

Injectable 

Subcutaneous Identification, body 

temperature 

5 € Only available for dogs with 

temperature measurement 

Injectable 

EID reader 

Subcutaneous Laboratory Animals 150-500 € Varies according to 

manufacturer 

Wearable sensors 

Accelerometer  Ear, leg Activity tracker $55   

GPS systems Neck, leg Geo-satellite positioning 

system 

  

Precise Farm Management Tools 

Cow Scale  Stationary Weight 5 500–7 280 € Price difference based on size 

and complexity 

Feeding 

computer 

(Spider) 

Stationary Automatised feeding € 225.75 per unit 

 

Controls up to sixteen feed 

dispensers within a ten-metre 

range. 

PipeFeeder 

 

Stationary In-parlour feeding 950-440 € 

 

Prices are per milking point 

and based on a 2x8 milking 

parlour. Mounting hardware 

included. 

Feed Station 

walk-through 

Stationary Walkthrough forwards 4000-6000 € One/two type of feed  

Walk over 

weight  

Stationary Weight 12 000–15 000 € Product available for cattle 

Automatic 

Dispensing 

Liquids 

Connected to feed 

station, milking robot 

or milking parlour 

Liquid intake Float set (€ 48.08 

per unit) not 

included / 

500-2100 

Mounting hardware included.  

Pasture management tools 

Virtual 

fencing  

Neck, nose Sound and electrical vibration $5000 to set up 

$60-90 each collar 

Ongoing maintenance 
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Milking parlour technology 

Smart milking 

parlour 

Stationary  $40 000–80 000 Variable price according to 

outfitting, 12–24 stations 

Robotic 

milker 

Dynamic/rotational  $150,000-200,000 for 50 to 70 head of cattle 

Software 

DairyLive  On PC  $179.00 Dairy management for up to 

50 animals 

Automated 

health-

monitoring 

system 

On PC  $150-$175 USD 

per animal (collars 

+ data system) 

 

CowView On PC/Smart Phone Standing time, frequency and 

time spent in cubicles, time 

walking, how far and how 

fast, frequency of visits and 

time spent at the feed table. 

£150  

Let’s nurture On PC Male and Female Wire 

Gps device 

Acid sensor 

Lithium battery 

Heart beat sensor 

$8000-9000  

Let’s nurture On PC QR scanning to connect with 

device 

Alert for treatment 

Show all Cattle list 

Medicine dates 

Animal Doctor list 

Hospital list 

Gps tracking 

Report of whole day 

Cost for 

application 

development 

$7,500 – 10,000 

(Include in android 

and IOS 

application) and 

$5000 for web 

application. 

 

Smart phones for cows 

Collar Smart Phone, 

Virtual Glass 

Temperature 

calving time 

Estrus detection 

The GSM radio 

costs £2,500 collar 

£70-£80. 

 

 

 
Table 3. The risk of false positive for health disorders. 

 Maximizing Sp Maximizing Se 

Alert Rumination or activity Rumination or activity 

Sp (%) 97 51 

Se (%) (n=404) 21 77 

False Positive Rate (Detection/d/100 cows) 2 19 

 

 

The economic value of the PLF naturally depends on 

various key factors, including the herd size, characteristics 

of the farm, accuracy of the reliable data, the value of 

obtained information that could prevent expenses, number 

of workers, as well as the social impact. Livestock farms 

have remarkably variety in terms of their size, housing, 

nutritional practices, labor, genetics, keeping the records, 

reproductive management, herd health and welfare, 

overall substitution strategies, and personal goals, so when 

there are PLF systems, the concept of "one size fits all" are 

not valid for all. Even if the critical action could be the 

same, the ROI (Return on Investment) may vary based on 

the application used to enforce the action (27, 142). The 

farm based examples have been illustrated and assessed in 

a limited number of studies although in general, the returns 

to investment are still not clear and in terms of yield and 

economic performance, the output of these precise 

technologies have not been well-demonstrated yet (7, 90). 

In an example, one of the most commonly preferred 

systems, the implementation of an automated heat 

detection into a labor and capital intensive dairy farm 

provided an estimated of € + 7,362 profit while the 
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economic benefit reaches up to € 3,815 in a labor intensive 

capital extensive dairy farms (86).  

Apart from that, welfare monitoring of the animals is 

frequently related with production and profit. For 

example, owing to the use of PLF technologies metabolic 

disorders such as subclinical ketosis can be prevented. A 

quick detection of subclinical signs of ketosis could be 

achieved with an in-line milk test for ketone bodies (160), 

that could prevent the further economic lost due to 

decreased milk yield and veterinary treatment cost as € 

709 per animal for clinical ketosis. Moreover, if the 

welfare is emphisased in the desicion model, significant 

value will remain gained via targeted treatment  due to the 

information provided by these technologies as observed in 

Subacutre ruminal acidosis (141, 142). 

Even though few studies demonstrated the negative 

effects of automated milking systems on economic 

performance, currently it is presumably the most 

widespread PLF technology implemented worldwide due 

to the reduction in extensive labor and maximizing the 

time efficiency (73, 146, 161). Similarly, a great economic 

difference could be encountered between the farms which 

inseminate once owing to the knowledge of estrus timing 

provided by PLF technologies and inseminate two-three 

times a day (99). 

The accuracy of predicted ROI depends on the level 

of monitoring. For example, pig groups ready-slaughter or 

significant disruption in pig growth can be determined 

efficiently with multi-level monitoring body weight (164, 

165),  although, since there are no individual warnings, it 

is impracticable for a farmer to identify and treat a specific 

pig. The economic benefit of early treatment of a pig will 

affect the value of individual identification. Similarly, a 

dynamic monitoring system was developed for litter size 

at the herd to estimate future production (17). This idea 

was adapted to automated milking system data in dairy 

herds as changing the feeding strategies for selected cows 

by the overall response measured in milk production 

(164). In this sense, PLF technologies can provide 

different and useful decisions for farmers, but elaborates 

the determination of ROI since more information could be 

profitable for particular types of farms (141, 174). 

The intermittent use of PLF system aids to the 

detection of the problems a few hours early that could 

provide the time to act on critical decisions in particular 

situations to prevent further economic loss such as tail 

biting on a pen (172). 

The low or even negative profitability of some PLF 

tools (16, 61, 141, 174) may not initially rationalize the 

large investments of purchasing these systems. However, 

the use of the framework to assess economic ROI also 

reveals that most cases of how to use supplementary 

information are related to operational decisions since the 

more precise information can provide strategically 

superior decisions as well as long-term implications. The 

effects of modifying strategic decisions can also be 

tangible, making it difficult to define (86, 96, 161) while 

making them visible will increase the transparency in 

critical evaluation of the ROI. 

As a summary, economic investments (costs) arising 

from the purchase of sensors and vehicles, would 

compensate the profits from avoided production problems, 

along with associated with avoided/reduced losses. 

 

Concerns related to PLF systems 
Accuracy of the tools: Although the PLF-tools 

provide objective measurements, several factors can affect 

the sensitivity and specificity of the collected 

data/information and its interpretation. For example, in a 

broiler farm, the average weight of the flock is assessed by 

manual measurements or automatically by random 

sampling a certain number of birds to reveal the growth 

trend of the flock. Nowadays, “step-on scales” are 

developed to automatically collect the average weight of 

the birds in the flock. However, factors determinant of the 

accuracy of automated weighing relies on the ability of the 

birds to visit the scale, and in such conditions that impair 

the mobility of the birds as aging, having excess weight, 

sickness and lameness, the system may fail to represent 

the growth trend of the whole flock. In order to encounter 

these limitations, various methods have been introduced. 

The bodyweight of broilers on average with a relative 

error of about 11% from image surface area by introducing 

a computer-assisted image analysis was estimated (42). 

Since PLF systems are being improved and updated 

continuously, more reliable technologies replace the old 

ones as in this situation, due to the discovery of a 

relationship between weight and vocalization frequency, 

it was proven that a reasonably accurate growth trend 

could be obtained at the farm level (56). In another 

research, an automated method has been implemented to 

report the malfunctioning in a broiler farm by using 

cameras and image analysis software and resulted in a 

95.24% accuracy of events (20 out of 21) in real-time. The 

PLF system used an algorithm that compared the 

measured distribution of animals with a predicted value to 

give an alarm to farmers when a 25% more difference was 

found in the measured distribution from the predicted 

value (87). When compared with a different algorithm 

utilizing water use of the birds (132), true positive cases 

were found 33.3% more while false positives were 

reduced from 28.6% to 0% with the distribution modeling. 

Another camera-based technology equipped with 

automated image processing and transfer function 

modeling has been utilized to estimate the water use of 

pigs and resulted in 92% accuracy in the estimation of 

half-hourly water use (52). 

Based on the findings of (71) and (84) the sensitivity 

of the activity meter to detect the cows which were about 

the ovulate was 80% while the specificity was 95%.  

In a recent attempt to validate the tracking ability of 

a PLF system, two rounds of video recording were 

analyzed and resulted in an overall accuracy of over 90% 

due to the performed optimizations in system 

configuration after the first recording. Further research has 

been conducted to determine the variation of the measured 

values in different tools. Although the lying duration of 

the dairy cows was significantly correlated between two 

systems (r=0.94; P<0.001) the correlation for the number 
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of steps was found lower (r=0.74; P<0.001) presumably 

due to the difference in the measuring steps between the 

two systems (53). In addition, a study on the detection of 

different health disorders with cumulative summary of 

rumination and activity data, 40% of the health disorders 

detected by farm staff with the sensitivity around 28% for 

mild lameness to 85% for severe mastitis. Roundly, half 

of the health disorders were detected one day earlier than 

the farm personnel.  

User Friendly Interfaces: The use of information 

systems does not always lead to increased business 

efficiency. As the information environment becomes 

increasingly saturated, users may start finding the data 

search process confusing (40). In addition, the order of 

information within a system can be complex, overmuch 

data appears on the screen, leading to information 

overload for the user (184) When information overload 

occurs, the users’ decision-making performance decreases 

(34). 

In addition, systems currently used without 

considering user friendliness (111) but expected to 

improve decision-making performance (169). A well-

designed user interface can positively affect the decision-

making performance of users (182). A study was 

conducted to overcome this issue and developed a 

decision-making performance and cognitive load for 

potential users interested in livestock, animal 

biotechnology and veterinary science and farming.  

The importance of friendly user interfaces increase 

due to the integration of these technologies into the daily 

life routine (25). However, when the different potential 

users have considered the user interface becoming a key 

element for the system (31, 68). Nowadays systems are 

can be classified into basic 3 categories as software, 

computer, other devices that operate codes and utilize a 

visual graphics can be viewed remotely. Thus, technology 

can communicate with human beings through graphical 

elements, messages and early warning alerts. Furthermore, 

the system could learn the system elements with machine 

learning in time and carry on working without the need for 

human touch (52) and information can be understood 

differently by users depending on their cognitive styles 

(117). 

Information and communication technologies 

revolutionized the traditional farming system and became 

popular these days. The most triggering factors are the 

educational level between farmers and difficulty to 

implement new technologies (29), limited information and 

communication infrastructure in rural areas (157) low 

interest of understanding and use (186). 

Another issue is the human factor which needs to be 

improved by designing the friendly user interfaces (168). 

Most of the previous work on agricultural information 

systems focused on system elements other than interfaces 

to improve system utilization. However, poor user 

interfaces are frequently cited as a problem in agricultural 

information systems (44, 110). 

The user interface serves as a complex programming 

language and a communication tool between users thus the 

interface is a key essential. Therefore improving the 

interface design makes it easier to understand the log of 

farm data and make correct decisions (158). There are 

several examples of the commercialization of PLF 

techniques in livestock production. The models that are 

being used for commercial adaptations are; the use of 

robotics, egg counting, bird weighing, environmental 

control, precise feeding systems, climate control, 

automatic disease detection, and growth measurement 

(64). Overall, there was limited evidence of commercial 

PLF products used on farms. As expected, farmers in 

techno-friendly countries are more likely to embrace 

technology to reduce their dependence on hard-to-find 

(and expensive) workers and to make their lives a little 

more comfortable (87). 

PLF technologies are mostly developed by 

researchers from the beginning and that have received 

support from the private sector only in the last decade. 

This researcher-private sector collaboration is a critically 

essential step in the development of friendly user 

interfaces for the use of the ministry officials and breeders 

(88). Artificial intelligence systems provide suggestions 

by the breeder about which animal is sick, which is in heat, 

and which will be deliver. That’s why, many PLF systems 

set normal range of parameters for the infrastructure of the 

enterprise and the routine behavior of the animal and alert 

the breeder when any deviation from the normal range 

take place. This provides the basis of reliable information 

and correct decision-making in the routine learning 

process of artificial intelligence that requires mastery  

(134).  

Security Issues: Precision livestock technologies are 

gaining more attention due to the future possibility to 

comply with consumer demands and the global food 

supply chain. There are numerous precision farming use 

cases (12, 32, 38, 105) that indicate the impact of this new 

farming practice paradigm globally. In India, farm data 

have been used to predict and prevent crop diseases that 

reduce the risk associated with crop production failure 

(171). Smart agriculture employs not only at the 

production stage where health related issues are on great 

focus, but also the entire food supply chain. This enables 

a whole new revolutionary model, where big data from the 

entire agriculture business structure is processed to 

provide critical insight for on-time operational decision 

making (5). Intelligent agriculture increases traditional 

agriculture practices by offering precision tools in the 

field. That tools and sensors work synergistically to 

deliver improved crop yields as well as productive farming 

experiences. In spite of the fact that advantageous for 

industry efficiency, the utilize of diverse, IOT tools has 

uncovered potential cyberattacks and vulnerabilities 

within the agriculture industry. These assaults offer the 

capacity to remotely oversee and utilize sensors and 

independent vehicles (drones, smart tools and etc.) within 

the field. Potential agricultural attacks can provide a risky 

and inefficient farming environment. Different examples 

of a cyberattack have been generated, and some of these 

examples are overwhelming. Such gigantic facilitated 

assaults moreover alluded to as agro-terrorism (94), in 

expansion, illustrate the potential of disturbing the 
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economy of an agriculture-dependent country. There are 

such report exists on the potential risk of cyber-attack 

scenarios in smart farming practices and highlights the 

critical control points for researchers (122). A 

sophisticated farm-terrorism could impair the millions of 

consumers' health globally. Along with that fact, such a 

threat on farming systems can decrease the reliability of 

consumers' preferences and may impair the 

trustworthiness of the exporter countries. In a report 

published by the United States, it was emphasized that 

cybersecurity is extremely important in the agriculture and 

livestock sector and is one of the critical control points for 

national security. While 11 cyber-attacks were reported in 

2016, he emphasized that the threat of cyber-attacks 

targeting the IoT infrastructures used by farm systems may 

increase. Compared to other sectors (banking, finance 

defense industry, etc.), the awareness about agriculture 

and animal industry is still weak." This offers an enormous 

gap between using smart farm technology and ensuring it 

is accurate and permanent. If not constantly monitored, 

cyber-attacks against smart farming technologies can have 

profound effects on various stakeholders in the ecosystem. 

These groups include farmers, end consumers, food 

processing industries, agricultural cooperatives, animal 

husbandry, government agencies, and countries that are 

critically dependent on agriculture (104). 

Confidentiality of the data collected via PLF tools 

has great importance both for farmers and technology 

companies. Due to misuse or loss of the data, farmers may 

face financial or emotional impacts whereas companies 

may face a reputational loss. Possible scenarios might 

include the leakage or theft of the data, use of confidential 

information either to gain profit or to damage a company 

and/or foreign access to unmanned aerial systems. 

Similarly, the integrity of the data could be compromised 

by tampering with the data to interfere with the livestock 

sector, introducing rogue data into the network of a sensor 

to damage a herd as well as the inadequately vetted 

machine learning. Apart from that, specific threats to 

equipment availability may have an origin of either natural 

disasters or cyber-related issues such as disruptions to 

space or ground-based positioning navigation and timing 

systems as well as to the communication networks (127). 

Animal-Farmer Relationships: The daily activity of 

the farmer is started to change by the adaptation with smart 

farming technologies directly or indirectly by the need for 

less contact comparing to the traditional farming 

managements. This new adaptation to the PLF concept 

may lead to the extent of the distance between human-

animal relationships (57). 

Meanwhile, precision livestock farming can damage 

an animal-farmer relationship. The time that a farmer 

employs to spend with the animals will decrease in time. 

The habit that farmers will gain through the automatized 

system might reduce the beneficial opportunities and 

recognition abilities in between. In the traditional animal 

farming system, there are many common practices that 

require direct human-animal interactions like; dehorning, 

injections, milking, treatments, etc. The less time that 

farmers spend with modern technologies, the more animal 

will become tempered. The ratio of positive and negative 

interactions can be altered equally. Regular opportunities 

for beneficial interaction, such as feeding times, may 

decrease with the bonds they create (175). 

Again, the beneficial effect of PLF on the farmers 

daily routine could be denoted such as the decrease at the 

workloads like moving the animals to the dispenser pen or 

the milking push. Current milking technology under the 

smart robot control made it possible to milk the animal 

when they need or that are cow are not self-milking. 

Another advantageous condition is that when an animal 

received a stressful practice the rumination behavior is 

altered so consequently the production capacity and 

welfare. This condition might turn into something that, 

farmers never to have to spend time to bond with the 

animal (76, 95). 

The complicated task needs to require some technical 

knowledge for farmers to sort the big data, visualize the 

data as graphics and finally take a decision with the right 

judgment. This might create another risk about the losing 

computational skills by the owner. On the other hand, the 

PLF provides the understanding of individual animal 

identity and can totally change the perspective of point in 

animal husbandry (17).  

The adaptation of animals to new systems are 

relatively quick compared to humans. A study showed that 

the robotics milking system gives more freedom to the 

animal and interestingly when it is given free of choice as 

well (49), given that the animal has to do first, it is still a 

restricted system on which movement circuits are 

imposed. If he wants to rest or feed, go over the robot. The 

PLF technologies not only providing freedom to the 

animal but also created more time to spend by the farmer 

and take the focus on animal welfare and positive 

interactive habits (175).  

The most recent technology may decrease the 

distance between humans and animals by collecting more 

reliable data with PLF, thus more individual information 

at the herd level. Nevertheless, the real scenario behind 

this is hidden underneath that "numbers farming" with 

providing more-in-depth information about their needs. 

There are opposing views about the discussion on factory 

based agriculture system. Some animal rights advocates 

claim that the technology actually triggers the growth of a 

factory-based agricultural industry. This claim must take 

into account seriously and the truth behind it must be 

understood and use as an encouragement for better animal 

care and welfare. This gives farmers the power to make 

better choices based not on profit alone, but rather on the 

actual needs of the animals and their care at all times. 

Another important point is the intensification of animal 

production systems with PLF technologies. There is a risk 

of abuse the animal via production climax thus altering 

animal welfare. Apart from that, the reliance to these 

technologies may lead to a point where it is possible for 

the owner to fail to notice the signs of important diseases 

due to the decreased time of animal-farmer contact (76). 

In addition, new developments in the animal 

behavior field and updated biological parameters could 

change how farmers perceive animals and how animals 
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perceive humans. On the other hand, with the help of 

artificial intelligence and computers, it can affect the 

development of decision-making mechanisms and new 

job descriptions, how the new generation farmers 

experience today's profession and dreams, and their job 

satisfaction or dissatisfaction. Finally, existing 

technologies may not always create a significant distance 

between livestock and farmers. Technologies today may 

perhaps enable the development of new relationships with 

the animals of millennials. (75). 

A study conducted on the human-animal relationship 

as a survey; where farmers were asked what they believe 

about the human-animal relationship. Most of them tried 

the avoid the question for two reasons. The first is the 

definition of the new term and the other reason was the 

personal emotional distance. For this reason, four farmers 

thought it was unrelated to their profession. It was more 

straightforward for farmers to discuss their views on an 

exact human-animal relationship. Frequently they spoke 

of the welfare of the animal, and some spoke of the 

animal's lack of fear of humans, even of a mutual trust 

between the farmer and the animals. For some farmers, 

good production levels reflected a satisfying human-

animal relationship. For the majority, a good human-

animal relationship makes it easier to work with animals, 

regardless of the breed. They also talk about the well-

being of the farmers and good livestock farming with 

equipment. Interestingly, a certain number of farmers that 

they surveyed are reported in some studies claiming the 

human-animal relationship going worse (94). On the other 

hand, we all agree that PLF technologies must be 

reinforced to build up a better relationship with the 

animals and humans not to worsen them, but to improve 

and transfer to the next generations. 

The ownership of the data: There is an increasing 

debate on the ethical issues related to precision livestock 

farming. One controversial discussion is related to the 

collection of data from animals, as if they are an 

instrument to improve business process control. While, 

animal welfare improvement relies on accurate data and 

real-time knowledge to be collected from these devices, 

strict considerations to minimize the stress for capturing 

and handling to fit the collar or any tracking device should 

be considered; as no animal “likes” to be tagged. This 

should be in accordance with animal rights, as animals are 

sentient beings that have moral status and preference 

autonomy that they have vital interests humans must not 

override” (1).  

Another issue is related to the possibility of 

mechanization of the breeding systems as it is expected to 

disturb human-animal relationships, turning animals to 

objects of data. Objectification perspectives within 

“treating animals as objects' ' and “turning animals into as 

objects” and instrumentalization perspective on the frame 

of PLC, requires novel intuitions of the ethics of care (19).  

As the PLF systems become more widespread tools 

in livestock industries, a considerable amount of data is 

being collected in the meantime, arising discussions on 

data distribution and ownership (28, 143). Apart from a 

number of exceptions, the data produced is not yet 

distributed fully among the food chain actors and there is 

a lack of compatibility between data sets that may favor 

the quality assurance of the supply chains (103). It is still 

in a debate who has the potential ownership of the 

collected data, between the two parties, the farmer, as the 

owner of the animals and the software manufacturer as the 

data processors.  

Rapid improvements on the current PLF 

technologies rely mostly on continuous monitoring of the 

animals as well as deducing the relevant information by 

analyzing the raw data. In fact, the information as 

actionable insights transferred from the monitoring, in the 

form of charts and reports are more valuable to the farmer 

than the raw data. However, the companies that develop 

PLF technologies can benefit from this data, more 

particularly when it is combined with the data from other 

companies to form big data. Furthermore, companies can 

produce income directly by selling it as reference data. 

Besides, a great potential of value lays in for other 

stakeholders as third parties in the circulation, such as 

veterinarians, feed, breeding pharma and technology 

companies, slaughterhouses, retailers, the consumer, 

processors, certifiers, citizens, governments and 

researchers (93). Therefore, it might not be fair for the 

farmers to be the only one that pays for the technology 

while other stakeholders depend on the data generated by 

the farmer to both to and contribute to the PLF platform. 

The determination of the data ownership must be properly 

regulated with legal frameworks in order to establish 

collaborations and to build a future market for agricultural 

data (21). 

 

Ethical questions related to the IoT  
- IoT used for medical purposes on animals would 

have the status of medical devices if used in humans. For 

humans, medical devices have specific regulations to 

ensure the health and safety of the user. As surprising as it 

may seem, there is no regulatory framework in France 

concerning connected objects in terms of both expected 

efficacy and safety. The implementation of a harmonized 

methodology for evaluating these tools and a material 

vigilance system would undoubtedly be necessary. 

- These tools that continuously produce data (and 

sometimes alerts in case of deviation of observed data 

from expected data) can be stressful for their users, 

especially when the tools lack specificity (alerts generated 

on non-diseased animals). Faced with this incessant flow 

of data and alerts, the risk is that the owner loses 

confidence in the tool (and stops looking at the data at the 

risk of missing sick animals) or, on the contrary, that he 

decides to do something at the first alert without 

discernment. The owner's better knowledge of the animals 

via these IoT and the optimization of the care provided 

thus relies largely on the performance of the tools and their 

operating conditions. 

- The absence of a specific regulatory framework for 

IoT on animals often means that the only choice to equip 

the animal is often made by the owner. While it is obvious 
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that there can be no question of obtaining the direct 

consent of the animal, it is legitimate to question the 

circumstances in which one can freely decide whether or 

not to equip it and whether one can simply freely decide 

without control to equip animals, particularly when the 

objects may be invasive (number of tools, nature of the 

tools). The question of an opinion, in the absence of 

validation, by a specialist in animal health or behavior 

arises in particular to validate the interest of the equipment 

and, if necessary, the choice of technical solution. It is also 

essential that users be properly trained in all the 

potentialities of the tool. 

- Finally, connected objects require the use of natural 

resources (metal, electronic circuits and rare materials that 

are sometimes difficult to recycle) and also energy for 

their proper functioning and the storage of associated data. 

Some connected objects can offset these environmental 

impacts if they make a greater positive contribution, for 

example by reducing the quantities of inputs or water 

consumption in crops. In any case, their overall impact 

(interest for the animal, the farmer and the environment) 

should be considered. 

 

- The issue of the digital divide and white zones can 

also lead to a lack of equity between farmers and between 

zones. 

 

Ethical questions related to the impact of 

connected objects on the human-animal 

relationship 
- The diversity of the available IoTs makes it possible 

to access very fine data at the animal level that can modify 

or influence the perception that the breeder or owner has 

of his animal. Thus a farmer can now go beyond the 

knowledge of his animals by their simple performance (as 

allowed by the first tools developed) and have access to 

their movement, their behavior (feeding, sleeping) and 

their location. This can allow a better understanding of the 

animal and allows a more personalized approach to be 

envisaged. 

- Nevertheless, while this use of technology can 

provide real working comfort in a context of a constantly 

decreasing workforce and increasingly large herds, there 

is a risk of a form of distancing between the farmer and his 

animals. As an example, a study carried out among cattle 

breeders with heat detection devices underlined the 

positive impact perceived in terms of working comfort 

(including safety at work due to less handling) but 

highlighted a fear of the farmer of loss of animal 

competence. It is important to consider these tools not as 

substitutes for the farmer's eye, but as a complement; 

- The massive and continuous collection of data of 

interest (milk production, growth rate, behaviors, disease 

resistance for example) opens the way to what is known 

as high-throughput phenotyping, i.e. the characterization 

of all the apparent characteristics of an individual, 

continuously and almost in real time using connected 

sensors and tools. This fine phenotyping is the key to then 

carry out genomic studies allowing the selection of 

animals carrying the characteristics deemed to be of 

interest (such as disease resistance, a phenotype that is 

very difficult to characterize classically). To do this, the 

construction of the tools is fundamental in order to 

associate different people from different backgrounds 

from the outset to develop the tools, while not forgetting 

to associate the end user in particular. Connected tools 

could make it possible to bring out the individual in the 

group and thus give visibility for the breeder to isolated 

individuals, especially in large numbers. However, one 

could fear the opposite effect, i.e. an extreme 

standardization/standardization of the animals leading to 

genetic impoverishment or loss of the individual by 

eliminating individuals that go beyond the hoped or 

expected standards. 

 

Ethical questions related to the status and use of 

data from connected objects 
- Potentially, the data collected through the different 

IoT can serve several purposes and several people. Also, a 

provider is transparent if all purposes are exposed to the 

user. In addition, as a data collector, it must demonstrate 

data governance that ensures that there is no data leakage 

to a third party. Similarly, the question of data valuation 

beyond the farm arises. Indeed, for example, the high 

throughput phenotyping type data allowed by these tools 

must be able to benefit the "breeder" without the breeder 

paying twice for it (by first equipping himself and then 

paying more for the data of interest that he has helped to 

produce). 

- Continuous and possibly remote access by the 

veterinarian to the data generated by the IoT embedded in 

the animals opens up interesting perspectives in terms of 

teleconsultation or tele-expertise capable of optimizing 

the health and well-being of the animals, particularly in 

areas of medical deserts that are also used on a daily basis 

in non-deserted areas. However, the help that these IoT 

could bring cannot hide the need to address the issue of 

land use planning and permanent health monitoring. 

- The mass of data generated may make it possible to 

rethink the client-veterinary relationship, opening up the 

field of telemonitoring and an "increased" clinical 

examination for the veterinarian, who would thus have 

access to measures not otherwise available or 

continuously, whereas they are currently only accessible 

to him at the animal's bedside. Conversely, the breeder 

should not be overwhelmed with information and contact 

the veterinarian as soon as the first data is received or 

contact him only in a dematerialized and frenetic way. It 

is indeed the complementarity of the approaches that 

should benefit the animal. The challenge is then to explain 

to customers what attitude to adopt when faced with these 

tools, which cannot entirely replace bedside care. The use 

of these new technologies will also require veterinarians 

and owners (breeders, pet owners) to be adequately trained 

in the use of these tools and the data and alerts they 

generate.  

Thus, beyond the undeniable technical advances 

made possible by the connected tools, the fact remains that 
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they raise ethical questions that, if not resolved, deserve to 

be debated. 

 

Conclusion 
The advance of novel technologies and informatics 

has increased the worldwide demand for integration of 

PLF systems to local farms. While monitoring tools for 

physiological, behavioral and environmental parameters 

and analyzing software are evolving around the Internet of 

Things; PLF provides cost-effective production with 

prudent/less drug use and is relatively more 

environmentally friendly. As IoT technologies for PLF are 

still in the development stage and information is more 

valuable in this era of the big data world, legislations and 

regulations, unfortunately, follow behind, in terms of 

safety and ownership of the data. Deanimalization and 

commodification are the main ethical issues discussed 

around the PLF topic. The increase of the efficiency and 

sustainability of farming and livestock production is 

inevitable by properly applied PLF; where the welfare of 

the animals would reflect the animal health. This would 

enable the traceability of the food chain and food safety. 
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