Molecular and serological investigation of *Lawsonia intracellularis* in weanling foals in Türkiye

Kemal METİNER¹, Alper METE², Erdal EROL³

¹Department of Microbiology, Faculty of Veterinary Medicine, University of İstanbul Cerrahpaşa, Avcılar, İstanbul, 34320, Türkiye; ²Racehorse Hospital, Istanbul Racetrack, Jockey Club of Türkiye, Bakırköy, İstanbul, 34146, Türkiye; ³Veterinary Diagnostic Laboratory, Department of Veterinary Science, College of Agriculture and Public Health, University of Kentucky, Lexington, KY 40512-4125, USA

ORCID: 0000-0003-4105-5852; ¹ORCID: 0000-0002-4810-5579; ²ORCID: 0000-0002-5130-1108

Introduction

Lawsonia intracellularis (*L. intracellularis*), the causative agent of equine proliferative enteropathy (EPE), is an obligate Gram-negative, intracellular bacterium. EPE has been diagnosed increasingly in horse populations in the world (6, 8, 13). *L. intracellularis* mainly infects pigs and horses but a number of other animal species were also reported to be susceptible including rabbits, rodents, foxes, wild pigs, deer, ferrets, ostriches, racoon dogs, Korean water deer, non human primates and domestic dogs (11). *L. intracellularis* infected fecal materials of wildlife reservoirs and subclinically infected horses are the sources of infection (7, 13, 15, 16).

L. intracellularis typically affects weaning age group under 1 year old of horses (3, 13, 15). The agent is mainly encountered in weanling foals possibly because of declined maternal antibodies and management changes. Seperation of a foal from the dam, transportation, introduction to a new herd, deworming therapies, vaccination schedules and training can cause stress and all of these could be predisposing factors (13). EPE was often diagnosed between August and January as this period is the weaning time for most foals in the northern hemisphere (12, 13).

Clinical cases of *L. intracellularis* infection generally manifests nonspecific signs such as lethargy, high rectal temperature (≥38.5 °C), peripheral edema, weight loss, colic and diarrhea. (1, 10, 15) Recovery period can take weeks to months before they regain the weight lost. the weanling time for most foals in the northern hemisphere (12, 13).

Keywords
- ELISA
- Horse
- *Lawsonia intracellularis*
- Prevalence
- Real-time PCR

How to cite this article: Metiner K, Mete A, Erol E (2023): Molecular and serological investigation of *Lawsonia intracellularis* in weanling foals in Türkiye. Ankara Univ Vet Fak Derg, 70 (4), 395-400. DOI: 10.33988/avufd.1062532.
findings associated with EPE (13, 15). Although the actual values depend on the laboratory analyser used, total protein (TP) and albumin (ALB) concentrations are generally less than 5.0 to 5.2 g/dl and less than 3.0 to 3.1 g/dl, respectively (13).

Presumptive diagnosis of L. intracellularis infection is generally made based on the age of the affected animal, clinical signs, hypoproteinemia/hypoalbuminemia and presence of thickened small intestinal wall mainly in the jejunum and ileum in ultrasonography. Other ante mortem laboratory assays such as serological tests for the presence of antibodies and detection of the agent in feces by molecular assays were developed (8, 14), because L. intracellularis can only be grown in vitro cell culture and requires a specific atmosphere for growth (17).

To our knowledge, there is no report regarding the presence of the fecal shedding and seroprevalence of the disease in weanling foal populations in Eastern Europe and Türkiye. The goal of the present study was to determine the prevalence of L. intracellularis infection in weanling foal populations by means of fecal shedding of the agent and seropositivity in Türkiye for the first time.

Materials and Methods

Animals and sample collection: A cross sectional study was designed to detect the serological and molecular prevalence of L. intracellularis from weanling foals with or without showing any clinical signs by random sampling as some of the infected foals may not show any clinical signs. The present study was approved by the Ethics Committee of University of Istanbul-Cerrahpasa (Report no. 2019/51). Feces and blood samples were collected randomly from 97 weanling foals from İzmit province (n=17), Bursa province (n=59) and Thrace (Silivri) region (n=21) (Figure 1) between September and January. During sampling, clinical signs including high rectal temperature (≤38.5 °C), diarrhea, peripheral edema, weight loss and lethargy were also recorded. Fecal samples were collected directly from the rectum and put into sterile plastic containers for detection of L. intracellularis DNA. Blood samples were collected by jugular venipuncture using 10 ml sterile vacutainer serum tubes for serological determination of specific anti-L. intracellularis antibodies. After separation of serum samples, TP and ALB levels were measured using automated biochemistry analyser. A cut off value of <5.0 g/dl for hipoproteinemia and <3.0 g/dl for hipoalbuminemia were used described as in the previous article (13). Fecal samples were frozen (-20 °C) until used for real time PCR analysis.

Serology (ELISA): Serum samples for antibodies against L. intracellularis were examined by using a commercially available blocking ELISA (bELISA) kit (Svanovir® L. intracellularis/ileitis-Ab, Art No: SV122275, Sweden) according to the manufacturer’s instructions. In summary, serum samples were diluted 10-fold and incubated in microplate wells, precoated with whole cell L. intracellularis antigen, for 1 hr at 37 °C. The microplate wells were then washed three times with 300 µl washing buffer, and 100 µl diluted conjugate (Svanovir®, Sweden)
(1/100) was added in each well. The wells were washed again three times with 300 µl wash buffer. 100 µl of substrate solution (Tetramethylbenzidine in substrate buffer containing H₂O₂) that included in the kit was added to each microplate well. Microplate wells were incubated for 10 min in dark at 22 °C. Following incubation period, the reaction was stopped by adding 50 µl stop solution to each well and gently mixing the microplate wells. The reactions were read in an ELISA reader (AllSheng AMR-100 Microplate ELISA Reader, Republic of China) at 450 nm wavelength. Negative control and positive control serum were also included as reference provided by the manufacturer. Percent of inhibition (PI) was calculated according to the formula as in the manufacturer instructions. Samples with a PI <20 % were concluded as negative, samples between 20 %-30 % inconclusive and samples >30 % positive.

Real-time PCR detection of L. intracellularis from fecal samples: Nucleic acid isolation and real time PCR detection assays were carried out according to the previous study with minor modifications (16). Briefly, 2 ml of sterile isotonic saline solution were added to 1 g of fecal material in a sterile centrifuge tube. Afterwards, the mixture was vortexed for 5 minutes and then centrifuged at 12500 rpm for 1 min. 150 µl of supernatant fluid was used to purify DNA by using a commercial spin column DNA isolation kit according to the manufacturer’s instructions (Patho Gene-spin™ DNA/RNA Extraction Kit, Intron Biotechnology, Korea).

To increase the sensitivity of the assay, the DNA samples underwent first a DNA precipitation and PCR preamplification step according to the previous study (16). Briefly, 50 µl of sample was precipitated using 3 µl of 5 M NaCl, 5 µl of (5 mg/ml) glycogen and 150 µl absolute ethanol. The mixture was inverted several times and stored at -20°C overnight. The sample was then centrifuged at 12500 rpm for 15 min. The supernatant was removed and 100 µl of 70 % ethanol was added to the sediment and resuspended. The last step was repeated and followed by drying the sediment for 10 min. The sediment was then resuspended in 20 µl of sterile DNase, RNase free water and stored at -20 °C until analysis. The pre-amplification step was carried out using L. intracellularis aspartate ammonia lyse (AAL) gene specific primer pairs (Table 1). The 20 µl PCR setup consisted of 10 µl Platinum™ II Hot-Start PCR Master Mix (2X), 0.4 µl forward primer (10 µM), 0.4 µl reverse primer (10 µM), 4.2 µl sterile nuclease free water and 5 µl of template DNA. Cycling conditions were initial denaturation for 2 min at 94 °C and 35 cycles of denaturation step for 5 sec at 98°C and combined annealing/extension step for 15 sec at 60 °C.

After the preamplification step, real time TaqMan® PCR in real time PCR system (Applied Biosystems 7300 Real Time PCR, U.S.A) was performed in extracted DNAs for the presence of the AAL gene of L. intracellularis (16). The 20 µl master mix included 10 µl of 2X AmpliGene™ qPCR Probe Mix Hi-Rox, 0.8 µl of forward primer (10 µM), 0.8 µl of reverse primer (10 µM), 0.4 µl of probe (10 µM), 3 µl of sterile nuclease free water and 5 µl of template DNA. The cycling conditions were 1 cycle for 2 min at 95 °C and 40 cycles for 5 sec at 95 °C, 30 sec at 65 °C. All amplification reactions were performed duplicate with positive DNA extracted from cell culture infected with L. intracellularis (kindly provided from Professor Erdal Erol, University of Kentucky, U.S.A) and negative control.

Statistical Analysis: Kappa analysis was used to determine a significant relationship between bELISA positivity and presence of clinical signs related to L. intracellularis infection. Chi-square test was used to determine the significance of differences in the prevalence among regions and to determine if any significant relationship was yielded in TP/ALB value and bELISA positivity. P values of <0.05 were considered to be significant using SPSS (IBM Corp. Released 2013. IBM SPSS Statistics for Windows, Version 22.0).

Table 1. Oligonucleotide sequences of PCR primers and probe used in the study (16).

<table>
<thead>
<tr>
<th>Target Gene: L. intracellularis aspartate ammonia lyse gene</th>
<th>Assay: Real-time PCR</th>
<th>Primer/Probe:</th>
<th>Oligonucleotide Sequences:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preamplification/PCR: Preamplification</td>
<td>Forward primer</td>
<td>5’-AATTTGTTTGTGGATTTCTCAAGGA-3’</td>
<td></td>
</tr>
<tr>
<td>Reverse primer</td>
<td>5’-CTTTCTCATGTCCTCAAGCTCAA-3’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Real Time PCR: TaqMan® MGB™ Probe</td>
<td>Same primer pairs given above.</td>
<td>5’-6-FAM-CAGGGCAAGTACAAATATGAGCTAAATGAGCGAA-MGB-3’</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Province residing, breed, age, clinical signs (h.r.t.: high rectal temperature, d.: diarrhea, w.l.: weight loss, leth.: lethargy, Tb: Thoroughbred.), serum TP-ALB value and bELISA - Percent of Inhibition (PI) value of seropositive foals. The data of serum TP, albumin and ELISA % inhibition values in foals with no clinical signs were shown in range (with minimum and maximum values).

<table>
<thead>
<tr>
<th>Clinical status</th>
<th>ELISA seropositivity</th>
<th>Sample no.</th>
<th>Province</th>
<th>Breed</th>
<th>Clinical signs</th>
<th>Serum TP value</th>
<th>Serum ALB value</th>
<th>ELISA PI (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinically ill</td>
<td>ELISA-Positives</td>
<td>7</td>
<td>Silivri</td>
<td>Tb.</td>
<td>w.l.</td>
<td>5.1</td>
<td>3.2</td>
<td>40.73</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39</td>
<td>Karacabey</td>
<td>Tb.</td>
<td>w.l.; d.</td>
<td>5.9</td>
<td>3.2</td>
<td>51.71</td>
</tr>
<tr>
<td></td>
<td>ELISA-Inconclusives or -Negatives</td>
<td>1</td>
<td>Silivri</td>
<td>Tb.</td>
<td>h.r.t.</td>
<td>5.9</td>
<td>3.8</td>
<td>14.56</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Silivri</td>
<td>Arab</td>
<td>w.l.</td>
<td>5.6</td>
<td>3.7</td>
<td>20.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Silivri</td>
<td>Arab</td>
<td>w.l.</td>
<td>5.3</td>
<td>3.5</td>
<td>19.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33</td>
<td>Karacabey</td>
<td>Tb.</td>
<td>d.</td>
<td>6.8</td>
<td>3.52</td>
<td>24.48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34</td>
<td>Karacabey</td>
<td>Tb.</td>
<td>w.l.; d.</td>
<td>6.0</td>
<td>3.4</td>
<td>6.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>56</td>
<td>Izmit</td>
<td>Tb.</td>
<td>w.l.; leth.</td>
<td>6.2</td>
<td>3.3</td>
<td>16.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>62</td>
<td>Izmit</td>
<td>Tb.</td>
<td>d.</td>
<td>6.0</td>
<td>3.0</td>
<td>23.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>97</td>
<td>Izmit</td>
<td>Tb.</td>
<td>w.l.; d.</td>
<td>6.3</td>
<td>2.4</td>
<td>6.58</td>
</tr>
<tr>
<td>No clinical sign</td>
<td>ELISA-Positives</td>
<td>23 samples</td>
<td>Karacabey</td>
<td>All Tb.</td>
<td></td>
<td>5.7-7.8</td>
<td>1.7-3.8</td>
<td>30.82-66.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>64 samples</td>
<td>All three provinces</td>
<td>Both breeds</td>
<td></td>
<td>5.3-7.7</td>
<td>2.7-4.0</td>
<td>2.38-29.97</td>
</tr>
<tr>
<td></td>
<td>ELISA-Inconclusives or -Negatives</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results

The mean age (± standart deviation) of the foals was 6.8 (±1.4) months ranging from 5 to 10 months old. Five (5.1 %) out of 97 foals were arabian and 92 (94.8 %) were Thoroughbred foals (Table 2). While a total of ten (10.3%) horses had one clinical sign (such as diarrhea, weight loss, lethargy or high rectal temperature), the remaining 87 foals did not show any clinical signs at the time of sampling (Table 2). None of the foals had peripheral edema. Mean TP and ALB values of the studied foals were 6.1 g/dl (± 0.5) and 3.4 g/dl (± 0.4), respectively.

ELISA results yielded that 25 foals were positive for *L. intracellularis* specific antibodies with a seroprevalence of 25.8 % (Table 2). Forty five (46.4%) and 27 (27.8%) of the foals’ ELISAs resulted as inconclusive and negative, respectively. In the group of clinically ill foals, 2 of the foals were ELISA-positive while the remaining 8 foals were either ELISA-inconclusive or -negative (Table 2). In the group of foals with no clinical sign, 23 foals were ELISA positive; the remaining 64 foals were either ELISA inconclusive or negative (Table 2). Mean TP and ALB values in foals with a positive serology were 6.2 g/dl (± 0.5) and 3.3 g/dl (±0.5) respectively.

The distribution of the seropositivity according to the provinces were 6.2%, 1.0% and 18.5% in Silivri, Izmit and Karacabey region, respectively (Table 2). No significant difference was found between provinces for ELISA positivity (P= 0.117). No significant association was found between TP (P= 0.760) / ALB (P= 0.097) value and ELISA positivity. Statistical analysis yielded no significant relationship between presence of one or more than one clinical sign and ELISA positivity (x²= 0.108).

None of the fecal samples yielded positive results by real-time PCR (Figure 1).

Discussion and Conclusions

To the authors’ knowledge, this is the first study that investigated the seropositivity and the status of fecal shedding of *L. intracellularis* by PCR in weanling foals in Eastern Europe and Türkiye. In this study, we targeted a weanling foal population (between 5 and 10 months old) as the most of the infections occur in animals under 1 year old (3, 4, 13, 15).

Different seropositivity rates were found in several previous studies. In the Netherlands, the seroprevalence was around 15 % in pre-weanling foals and seroprevalence increased significantly (to 23 %) in weanling (8). In the same study seropositivity was 89 % and 99 % in yearlings and older than 2 years old horses respectively. In Korea, seroprevalence of *L. intracellularis* was determined to be 94%, (92 % in <2 years, 96 % in 2-5 years, 94 % 6-10 years and 93 % in >10 years) by bELISA while *L. intracellularis* DNA was found to be 18% in fecal samples. Contrary to serology, the younger age was associated with the PCR positivity; 3 % in <2 years, 25 % in 2-5 years, 13 % in 6-10 years and 8 % in >10 years (11). A recent study in Belgium also demonstrated 98.8% seropositivity by bELISA and
confirmed high seropositivity rates in adult horses (mean age 12.1 years) (9). It is evident that exposure of horses to *L. intracellularis* increases by age (11). In Brazil, 9.42 % of adult mares and weanling foals were found to be positive by immunoperoxidase technique (4). In the same study, fecal shedding was found to be 3.14 % by PCR. A recent study in Brazil demonstrated similar seropositivity (5.55 %) and fecal shedding (4.32 %) (2). A recent study conducted in Israel found close results to the present study with 30.5 % and 0.7 % horses positive by ELISA and PCR, respectively (18). The differences between the present study and others could be related to differences in geograpy, sample size and disease status of the horses.

In the present study, although serologically positive horses were detected, none of the fecal samples contained *L. intracellularis* DNA. This strongly suggests prior exposure of *L. intracellularis* in the horse populations in Türkiye. Low sample size (and only 10 of them with clinical signs) and possible intermittent shedding are likely the major factors for not detecting *L. intracellularis* DNA in fecal samples. Even though the analytical sensitivity of the PCR method used in our study was relatively high (as low as one *L. intracellularis* organism after DNA precipitation and PCR preamplification step) (16), detection of *L. intracellularis* could be limited due to the PCR inhibitors presented in fecal samples (13). As our assay did not contain internal control, PCR inhibition was not be able to be measured. This is in concordance with the the previous studies that determined high seropositivity and low fecal shedding of the bacteria (4, 11, 18). Seroconversion in horses has been documented to occur approximately 14 days after experimental challenges (17) and remain seropositive for more than 6 months (19) but fecal shedding of the microorganism starts between 12-18 days postinoculation and lasted for 11 to 21 days (17).

The same bELISA kit was also used in foals and adult horses in earlier studies (8, 9, 11). In a previous study, the authors compared the bELISA with immunoperoxidase monolayer assay (IPMA), as a reference test, for the detection of antibodies against *L. intracellularis* in horses. A total of 100 serum samples were tested and found 90 % sensitivity with 94 % specificity, 88 % sensitivity with 96 % specificity and 85 % sensitivity with 98 % specificity at 1/125, 1/150 and 1/175 dilutions, respectively, and concluded as an useful alternative for diagnosis of EPE (5).

In conclusion, the present study resulted in a 25.8 % seroprevalence against *L. intracellularis* in the weaning foals with or without clinical signs for the first time in Eastern Europe and Türkiye. However, no fecal shedders were found in fecal samples of the weaning foals by real-time PCR. The results of the study strongly suggest that the weaning foal population in Türkiye is exposed to *L. intracellularis* and therefore clinicians should be aware of this pathogen in differential diagnosis of enteric diseases. Further studies are needed for determination of fecal shedding in foals, adult horses and wildlife animals in order to better understand the status and epidemiology of *L. intracellularis* in Türkiye.

Acknowledgement

The authors are grateful to Jockey Club of Türkiye for giving permission to collect samples in breeding farms and also use of real time PCR system in Jockey Club of Türkiye Veliefendi Racetrack Equine Hospital Laboratory.

Financial Support

This research was supported by Department of Scientific Research Projects, University of Istanbul-Cerrahpasa (Project No. TSA-2020-34537).

Conflict of Interest

The authors declared that there is no conflict of interest.

Author Contributions

KM, AM and EE conceived and planned the experiments. KM and AM carried out the experiments. KM, AM and EE contributed to sample preparation. KM, AM and EE contributed to the interpretation of the results. AM took the lead in writing the manuscript. All authors provided critical feedback and helped shape the research, analysis and manuscript.

Data Availability Statement

The data supporting this study’s findings are available from the corresponding author upon reasonable request.

Ethical Statement

The present study was approved by the Ethics Committee of University of Istanbul-Cerrahpasa (Report No. 2019/51).

Animal Welfare

The authors confirm that they have adhered to ARRIVE Guidelines to protect animals used for scientific purposes.

References

Publisher’s Note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

DOI: 10.33988/auvfd.1062532