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Abstract 

In this paper, we present a recursive formula for the two-sided Ballot Theorem using left and 

right shift transformations. We show that the 𝑥th entry of the image of the (d+1)-dimensional unit 

vector under the sum of the left and right shift operators is the number of walks in the lattice 

interval [0, 𝑑] that starts at the origin and ends at the location 𝑥. This approach enables us to 

write a recursive formula for the number of possible 𝑛-walks between two obstacles that stop at 

a predetermined location. 
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Özet 

  Bu makalede, sola ve sağa kaydırma dönüşümlerini kullanarak iki yönlü Oy Pusulası Teoremi 

için bir rekürans formülü vereceğiz. Özellikle (d+1)-boyutlu birim vektörün sola ve sağa 

kaydırma operatörlerinin toplamı altındaki görüntüsünün 𝑥-inci girdisinin, [0, 𝑑] tamsayı latis 

aralığında gerçekleşen ve orijinde başlayıp 𝑥 lokasyonunda biten yürüyüşlerin sayısına eşit 

olduğunu göstereceğiz.  Bu yaklaşım, önceden belirlenmiş yerlerde bulunan iki engel arasındaki 

olası 𝑛-yürüyüşlerinin sayısı için bir rekürans formülü yazmamıza olanak sağlayacaktır. 

 

Anahtar Kelimeler:  Oy Pusulası Teoremi, Rastgele Yürüyüşler, Kendinden Kaçınan Yürüyüşler, 

Yansıma Yöntemi. 
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1. Introduction 

Our goal in this paper is to give a recursive formula for the two-sided Ballot Theorem. The 

classical Ballot Theorem, first introduced by Bertrand [4], presents a formula for the number of 

possible vote castings where one candidate always maintains k times more votes than the other 

candidate. It is stated as follows. 

 

Theorem 1.1. Suppose that in an election, candidate A receives 𝑎 votes and candidate B receives 𝑏 

votes, where 𝑎 ≥ 𝑘𝑏 for some positive integer 𝑘. Then there are 

𝑎 − 𝑘𝑏

𝑎 + 𝑏
(

𝑎 + 𝑏

𝑎
) 

number of ways the ballots can be ordered so that candidate A maintains more than 𝑘 times as many 

votes as B throughout the counting of the ballots. 

 

Barbier [3] proposed a solution to the Ballot Theorem for 𝑘 ≥ 2 without proof. Soon after, André 

[2] gave a combinatorial proof for the case 𝑘 = 1, following the proof by Aeppli [1] when 𝑘 ≥ 1. 

André’s approach was based on counting the number of bad ballot permutations and removing 

them from the number of all possible permutations. Takács [11] detailed an outline of the history 

and its evolution of the Ballot Theorem as well as various proofs together with the original proofs 

by André and Aeppli. Renault [9] outlined four different proofs of the Ballot Theorem and 

discussed how it had influenced other mathematicians and lead the way to amazing discoveries 

such as MacMahon’s [7] “reflection method.” 

The wo-sided Ballot Theorem is a generalization of the classical Ballot Theorem. It restricts 

the difference between the number of vote castings to stay within a specified range. One version 

of the two-sided Ballot Theorem is given in [6] as follows. 

 

Theorem 1.2. Let 𝑝 and 𝑞 be two positive integers. Let 𝑛 and 𝑥 be positive integers, such that −𝑎 <

𝑥 < 𝑏. Then the number of 𝑛−paths from 0 to 𝑥 such that the path never touches or crosses level −𝑎 

or level 𝑏, is given follows: 

𝑘 = (
𝑛

𝑛+𝑥

2
) − (

𝑛
𝑛+𝑥+2𝑎

2
) − (

𝑛
𝑛+𝑥−2𝑏

2
) + (

𝑛
𝑛+𝑥+2𝑎+2𝑏

2
) + (

𝑛
𝑛+𝑥−2𝑎−2𝑏

2
) − (

𝑛
𝑛+𝑥+4𝑎+2𝑏

2
) 

         − (
𝑛

𝑛+𝑥−2𝑎−4𝑏

2
) + (

𝑛
𝑛+𝑥+4𝑎+4𝑏

2
) + (

𝑛
𝑛+𝑥−4𝑎−4𝑏

2
) − (

𝑛
𝑛+𝑥+8𝑎+4𝑏

2
) − (

𝑛
𝑛+𝑥−4𝑎−8𝑏

2
) + ⋯ 
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2. Shift Transformations 

       Let ℤ be the integer lattice. For two integers 𝑎 and 𝑏 with 𝑎 ≤ 𝑏, let [𝑎, 𝑏] be an interval in the 

lattice, i.e.,  

[𝑎, 𝑏] =  {𝑎, 𝑎 + 1, 𝑎 + 2, … , 𝑏 − 2, 𝑏 − 1, 𝑏}. 

For 𝑛, 𝑑 ∈ ℕ, let 𝑥 ∈ [0, 𝑑] and define 𝜔𝑛(𝑥, 𝑑) = 𝜔𝑛(𝑥) as the number of walks starting from 0, 

traveling between 0 and 𝑑, and stopping at some 𝑥 ∈ {0,1, … , 𝑑} with 𝑛 many steps. For example, 

𝜔8(2,5) = 28, 

𝜔8(4,9) = 20, 

𝜔12(4,9) = 275. 

       Let 𝑒𝑖 ∈ ℤ𝑑+1 be the 𝑖th unit vector. Define the operators 𝐿 and 𝑅 as left shift and right shift 

operators on (d+1)-dimensional integer lattice, respectively. If 𝑣 = (𝑣1, 𝑣2, … , 𝑣𝑑+1) ∈ ℤ𝑑+1, then 

the operators 𝐿: ℤ𝑑+1 → ℤ𝑑+1 and 𝑅: ℤ𝑑+1 → ℤ𝑑+1 are given by 

𝐿(𝑣) = (𝑣2, 𝑣3, … , 𝑣𝑑+1, 0), 

and   

𝑅(𝑣) = (0, 𝑣1, 𝑣2, … , 𝑣𝑑). 

     In the following, we will count the number of walks starting at 0, traveling between the integers 

0 and 𝑑, and ending at an integer 𝑥. To this purpose, we introduce the sum 𝑆 = 𝐿 + 𝑅 of left and 

right shift transformations. When 𝑆 is applied to the unit vector 𝑒1, we obtain the 𝑛-step walks 

within the integer block [0, 𝑑] starting at the site 0 and ending at the site 𝑥 ∈ {0,1, … , 𝑑}. For 

example, 𝑆𝑒1 = 𝐿𝑒1 + 𝑅𝑒1 = (0,1,0, … ,0) indicates that there is one single 1-step walk that starts 

at the location 0 and ends at the location 1. Likewise, 𝑆2𝑒1 = 𝐿2𝑒1 + 𝐿𝑅𝑒1 + 𝑅𝐿𝑒1 + 𝑅2𝑒1 =

(1,0,1,0, … ,0) indicates that there is one 2-step walk that starts at the location 0 and ends at the 

location 0; there is one 2-step walk that starts at the location 0 and ends at the location 2. These 

are the only 2-step walks starting from the location 0. 

 

Example 2.1 Let us use a table to calculate 𝜔12(4,9). In the following, the first column lists the 

number of steps, and the rest of the columns lists the locations in the interval. 

𝑛 0 1 2 3 4 5 6 7 8 9 
1 0 1 0 0 0 0 0 0 0 0 
2 1 0 1 0 0 0 0 0 0 0 
3 0 2 0 1 0 0 0 0 0 0 
4 2 0 3 0 1 0 0 0 0 0 
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5 0 5 0 4 0 1 0 0 0 0 
6 5 0 9 0 5 0 1 0 0 0 
7 0 14 0 14 0 6 0 1 0 0 
8 14 0 28 0 20 0 7 0 1 0 
9 0 42 0 48 0 27 0 8 0 1 

10 42 0 90 0 75 0 35 0 9 0 
11 0 132 0 165 0 110 0 44 0 9 
12 132 0 297 0 275 0 154 0 53 0 

 

The last row is 𝑆12𝑒1 = (132, 0, 297, 0, 275, 0, 154, 0, 53, 0), and 𝑆12𝑒1[5] = 𝜔12(4,9) = 275. 

     Now we are ready to state our main result. 

 

Theorem 2.2. Let 𝜔𝑛(𝑥) be defined as above. Then we have 

𝜔𝑛(𝑥) = (
𝑛

𝑛−𝑥

2
) − ∑ [𝜔𝑗−1(0) (

𝑛 − 𝑗
𝑛−𝑥

2
 − 

𝑗+1

2

) + 𝜔𝑗−1(𝑑) (
𝑛 − 𝑗

𝑛−𝑥

2
 − 

𝑗−𝑑−1

2

) ]

𝑛

𝑗=1

 

where  (𝑝
𝑞

) = 0 if 𝑝, 𝑞 ∉ ℕ or if 𝑞 > 𝑝. Moreover, the combinations equal zero if the quotients and 

differences are not nonnegative integers. 

  

Proof. Let 𝑆 = 𝑅 + 𝐿, the sum of the left shift and right shift operators. It can be seen that 

𝑆𝑛𝑒1[𝑥 + 1] = 𝜔𝑛(𝑥). 

Now consider the sum 𝑆𝑛 = (𝑅 + 𝐿)𝑛 . Note that the operators 𝑅 and 𝐿 are not commutative, i.e., 

𝑅𝐿 ≠  𝐿𝑅. Therefore, the Binomial formula cannot be applied. However, it can be used to count 

the number of certain terms. With an abuse of notation, let us denote by 𝐿𝑘𝑅𝑛−𝑘 the set of all 

words of length 𝑛 obtained from the alphabet {𝑅, 𝐿} that contains 𝑘 left shifts, and 𝑛 − 𝑘 right 

shifts. For example, 

𝐿2𝑅 = {𝐿𝐿𝑅, 𝐿𝑅𝐿, 𝑅𝐿𝐿}. 

Then it can be seen by the Binomial formula that  

|𝐿𝑘𝑅𝑛−𝑘| = (
𝑛

𝑘
). 

Let us denote by (𝑛
𝑘

)𝐿𝑘𝑅𝑛−𝑘  the sum of all words in the set 𝐿𝑘𝑅𝑛−𝑘. For example, 

(
3

2
) 𝐿2𝑅 = 𝐿𝐿𝑅 + 𝐿𝑅𝐿 + 𝑅𝐿𝐿. 
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Since 𝐿𝑠𝑒1 = 0 and 𝑅𝑞𝑒1 = 0 whenever 𝑠 ≥ 1 and 𝑞 ≥ 𝑑 + 1, some operators in 𝐿𝑘𝑅𝑛−𝑘 evaluated 

at 𝑒1 are 0. However, the rest are nonzero vectors. Indeed, if 𝑇 ∈ 𝐿𝑘𝑅𝑛−𝑘 and 𝑇𝑒1 is nonzero, then 

𝑇𝑒1 = 𝑒𝑛−2𝑘. 

If we would like to find the (𝑥+1)th entry of 𝑆𝑛𝑒1 ∈ ℤ𝑑+1 for 𝑥 ∈ {0,1, … , 𝑑}, it is not very difficult 

to see that the words with 𝑥 more 𝑅s than 𝐿s have some contributions, and the rest will play no 

role at all. We know that 𝑛 and 𝑥 must have the same parity and that 𝑛 ≥ 𝑑, in general. To land on 

the site 𝑥, the equation (𝑛 − 𝑘) − 𝑘 = 𝑥 must hold. Solving it for 𝑘, we get 𝑘 = (𝑛 − 𝑥)/2. In other 

words, we need transformations only from the set 𝐿(𝑛−𝑥)/2𝑅(𝑛+𝑥)/2. Not that this condition is 

necessary but not enough for a contribution. When these words are applied to 𝑒1, we either get 

𝑒𝑥+1 or the zero vector. The sum of 𝑒𝑥+1’s will then be the (𝑥+1)th entry of 𝑆𝑛𝑒1. We now will use 

some exclusion argument to find this value. 

 

     Note that 𝑇𝑒1 = 0  for any operator 𝑇 ∈ 𝐿(𝑛−𝑥)/2𝑅(𝑛+𝑥)/2  starting with 𝐿. Hence, it does not 

contribute to 𝑆𝑛𝑒1[𝑥 + 1]. This is the case when the walker is kicked out at the first step. There 

are (𝑛−1
𝑘−1

) operators of this kind in 𝐿(𝑛−𝑥)/2𝑅(𝑛+𝑥)/2. As a result, 

(
𝑛

𝑘
) − (

𝑛 − 1

𝑘 − 1
) 

of the operators start with 𝑅 where 𝑘 = (𝑛 − 𝑥)/2.  Likewise, for any operator 𝑇 that starts with 

𝑅𝑑+1, we get 𝑇𝑒1 = 0. There are (𝑛−𝑑−1
𝑘

) many operators of this kind. This corresponds to the case 

when the walker is kicked out from right the first time. By excluding these operators, we obtain 

𝜔𝑛(𝑥) ≤ (
𝑛

𝑛−𝑥
2

) − (
𝑛 − 1
𝑛−𝑥

2  − 1
) − (

𝑛 − 𝑑 − 1
𝑛−𝑥

2  
). 

 
However, these are not the only ones that lead to no contribution. Pathological cases arise when 

the walker is kicked out from the left or right. Suppose that the walker is kicked out from left at 

the 𝑗𝑡ℎ  step where 𝑗 ∈ {1,2, … , 𝑛}. This means that it managed to survive the first (𝑗 − 1)-steps. 

There are 𝜔𝑗−1(0) many (𝑗 − 1)-walks. If 𝑖 is the number of 𝐿s in these first 𝑗 steps, then we must 

have 𝑗 − 𝑖 many 𝑅s, and  𝑖 − (𝑗 − 𝑖) = 1, i.e., 𝑖 = (𝑗 + 1)/2.  Note that there are 𝑛 − 𝑗  steps left and 

𝑛−𝑥

2
−

𝑗+1

2
 of them are left moves. Hence, there are 

𝜔𝑗−1(0) (
𝑛 − 𝑗

𝑛−𝑥

2
 − 

𝑗+1

2

) 
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many combinations that lead to no contributions. Similarly, suppose that the walker is kicked out 

from right at the 𝑗𝑡ℎ  step. There 𝜔𝑗−1(𝑑) many (𝑗 − 1)-walks where the walker is at the right end 

point. If 𝑖 is the number of left moves in these 𝑗 steps, then we must have (𝑗 − 𝑖) − 𝑖 = 𝑑 + 1, i.e., 

𝑖 =
𝑗−𝑑−1

2
. As a result, there are 

𝜔𝑗−1(𝑑) (
𝑛 − 𝑗

𝑛−𝑥

2
 − 

𝑗−𝑑−1

2

) 

many combinations that lead to no contribution. The last assertion leads us to the formula. 

 
3. Conclusions 

In this paper, we provided a different proof of the two-sided Ballot Theorem. Our approach used 

the left and right shift transformations to count the number of walks in the lattice interval [0, 𝑑] 

that starts from 0, traveling between 0 and 𝑑 and landing in the location 𝑥 =  0,1, . . . , 𝑑. This 

approach can be generalized to the case when the starting point is any location other than 0 in the 

interval [0, 𝑑]. However, the formulae should be adjusted accordingly. 
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