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ABSTRACT. First, some improvements of Young’s inequality are given in this article. Then, using these improve-
ments, stronger results are obtained from the Huygens inequality.
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1. INTRODUCTION

The Huygen inequality is given as

2ﬂ+”ﬂ>3,xe(o,f). (1.1)
X by 2
Information about the history of this inequality is found in reference [1,3]. Then, many mathematicians worked on
the generalization and improvement of this inequality, and proved the analogues of this inequality for other special
functions [4—6,9-11].These inequalities allow us to compare trigonometric functions with linear functions over a given
range.

Now we give some facts essential to prove our results.

Mitrinovic and Adamovic gave the following inequality in [8]:
j 2
(cosx)% < I 2T cosx cosx’x € (0, z). (1.2)
X 3 2

Lazarevic gave an analogue of the inequality (1.2) for hyperbolic functions in [7]:

sinhx 2+ coshx
3 7
Neuman and Sandor gave an analogue of the inequality (1.1) for hyperbolic functions in [11] as

(coshx)’ < £ 0. (1.3)

sinhx  tanhx
+ >3,x#0.
X

Also, Neuman and Sandor gave the following refinement of Huygens inequality in [11]:

sinx  tanx X X T
22— + — >2,—+—>3,x€(0,—),
X X sinx  tanx 2
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2smhx N tanhx X > 3x 20,

> +
by X sinhx  tanhx
In this article, we will prove some improvements of Huygens inequality by means of some modifications of Young’s

inequality.
2. PRELIMINARIES
Lemma 2.1 ( [2] Young’s inequality). Ifx,y > 0, and u € [0, 1], then
ux + (1 =y > xy! =+,
Lemma 2.2 (Cauchy-Schwarz inequality). If x;,y; > 0, then

n

n 2 n
(z y] <Y @Y

i=1 =1 =1
Lemma 2.3. Ifx;,y; >0,i=1,2,...,n, then

[an(xﬁyi)] 24(2 @]{Zn“ xiz;y?]_
i=1 1

i= i=1

Proof. We know that, 4xy < (x + y)%,Vx,y > 0

And by using Lemma 2.2, we get

2 2 2
n x,? +y12 ~ n
D vE+ A E =12 i+
i=1 2 i=1

The Lemma is proved. O

n 2 4+ y2
e

i=1

3. REesuLrs
Theorem 3.1. Ifx,y>0,x>yand u € [%, 11, then the below inequality is satisfied
o+ (1= oy 2 2! 4+ Qu = D = y) > 2y
Proof. We obtain the first part of the inequality directly from Lemma 2.1
px+ (1 =y =QCu—-Dx-y)+ (1 —px+uy
> x4 Qu- D(x —y).
Now, we show that
XY Qu— 1)(x — y) > xy R
For this, let’s define a function f : [1, o) — R such that
fO =17+ Qu-1 -1 -1,
SO =0 - +Qu-1)—ut,

1 1
@ = (1= @ = (= D = p(u - 1) [

W—ﬂ—_ﬂ}ZO,VlZI.
Then, we obtain
Yex>1,f'() > /(1) = 0.
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Thus, f(#) is an increasing and positive function for all # > 1. If we take r = T and multiply both sides of the inequality
Yy

by y, then we obtain
u

l-p
(’—‘) Y+ Qu-Dx—y) = (f) y
y y

or

XY Q= D(x—y) 2 2y
The Theorem is proved. O
Theorem 3.2. If x,y>0,x>yand u € [%, %], then the following inequality is satisfied

px+ (1= )y > ¥ 2y2 4 4 x;y > xiyl

Proof. By using Lemma 2.1, we obtain

1 3 X - 13, X-—
et (L= )y = (u= e+ G =y + == = 0 hyd g 222,

Now, we show

=
|

Syiwe Y s eyl 3.1)

By using Lemma 2.1, we acquire

Also, we know for all 1 € [%, %]

or

is true. Then, we acquire

1=

) - =T

It is clear that the inequality (3.1) is equivalent to the following inequality:

Y > oy VR - V).

X —
2
If x =y, the inequality is trivial. So, let’s assume x > y and divide both side of the inequality by /y(vx — 4/y), we get

)67

this inequality is true according to the inequality (3.2).
The Theorem is proved. O

Theorem 3.3. If x # O, then the below inequality holds

X

2 sinh(x) N 1 tanh(x) . (sinh(x))é (tanh()c))g . sinh(x) — tanh(x) o1
x

3 x 3 x 2x
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Proof. 1t is sufficient to prove the theorem for x > 0 according to the properties of hyperbolic functions by using
Theorem 3.1 we get

2 sinh(x) N 1 tanh(x) . (sinh(x))é (tanh(x))2 N sinh(x) — tanh(x)

3 x 3 x X X 2x

. ( sinh(x) )§ ( tanh(x) );
x x '

sinh(x) S tanh(x)

2
Because 3 IS [%, %] and ,Yx # 0. Also, we acquire from inequality (1.3)

(sinh(x))g (mnh(x))i _sinh(x) 1

. > 1.
X X X ~cosh(x)
The Theorem is proved. o

20

05
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X

2x

tanh(x))Z N sinh(x) — tanh(x)
. )

1
O\ 6
Ficure 1. A refinement of Huygens inequality with (sm (x)) (
X

Theorem 3.4. If x # O, then then below inequality is satisfied

2 sinh(x) N 1 tanh(x) . (sinh(x))é (tcmh(x))§ . sinh(x) — tanh(x) o1

3 x 3 x X X 3x

Proof. 1t is sufficent to prove the theorem for x > 0 according to the properties of hyperbolic functions by using
Theorem 3.1 we acquire,

2 sinh(x) 1 tanh(x) _ (sinh(x) 5 ( tanh(x) %+ sinh(x) — tanh(x)
3 x 3 X 3x

X X

X X

. ( sinh(x) )§ ( tanh(x) ); .

,¥x # 0. Also, we obtain from (1.3)

2 inh tanh
Because 3 € [%, 1] and sinh(x) > anh(x)
X

(sinh(x))3 (tanh(x))3 _ sinh(x) 1 o1

X X x  <eosh(x)

The Theorem is proved. o
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05

0.0

x

tanh(x))§ . sinh(x) — tanh(x)

1

(o3
FiGure 2. A refinement of Huygens inequality with (szn (x)) ( 3
X X

X

Theorem 3.5. If x € (0, §), then the following inequality holds

Wit

2 x 1 x X \3( x x{ 1 1
2 Lx gyl L)
3 sinx 3 tanx sinx tanx 3 \sinx tanx

Proof. By using Theorem 3.1 we obtain

2 x 1 x ( X )% ( X )% x( 1 1
3 sinx 3tanx sinx tanx 3 \sinx tanx

Also, by using (1.2), we acquire
2 1 .
(i)3 (iy = i Vcosx > %.\/3 cosx > 1.
sinx/) \tanx sinx X

The Theorem is proved. o
Theorem 3.6. If x € (0, 3), then the below inequality holds

2 x 1 x x \ef x Yo x[ 1 1

SESNUIE T -

3 sinx 3 tanx sinx tanx 2 \sinx tanx

Proof. by using Theorem 3.2 we get

2 x 1 x ( X )% ( X )% x( 1 1
3 sinx 3tanx sinx tanx 3 \sinx tanx

1

2 1
X \i{ x \3
> ( ] ) ( ) ’
sinx) \tanx

1 .
X \3 X sinx
(—) = —— Ncosx > — .Ncosx > 1.
X

tanx sinx

Also by using (1.2) we obtain

2
( : )§
sinx

The Theorem is proved. O

Now, we will give a new inequality.
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Theorem 3.7. If x € (0, %), then the following inequality holds

sin x X 1
+ <1
X tanx | 1 + cosx

Proof. To prove the above inequality, we need to prove this inequality.

sinx - tanx + x> < x - tanx(1 + cosx).
Above inequality equivalent to below inequality
(x = sinx)(tanx — x) > 0.

This inequality holds.
The Theorem is proved. O

20
—1

PR J. SO Y
x tanx fTecosX
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i 1
Ficure 3. The upper bounds of (sm T2 )

X tanx| 1 + cosx’

Corollary 3.8. If x # O, then the following inequality is satisfied

sinh(x) tanh(x)  sinh(x) o1 + cosh?(x) sinh(x) 2
2 P + P > < [1+2,f ScosiE () ]> < (1+ m)>3.

Proof. From Lemma 2.3, we acquire

2sinh(x) N tanh(x) _ sinh(x) N sinh(x) N tanh(x)

X X X x X
. 2
S sinh(x) 1428 1 + cosh”(x) .
x 2cosh3(x)

1 + cosh*(x) > 2cosh(x)

By using Lemma 2.1, we get

and
> 0.

(1 + 2 ) > 3 ,Vx
Vecosh(x) vcosh(x)

These inequalities show that

sinh(x) o1+ cosh?(x) sinh(x) ( 2 ) 3sinh(x) 1
1+2 1 .
X [ * V 2cosh3(x) ]> X " vcosh(x) 7T Vcosh(x) 73
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Ficure 4. A refinement of Huygens inequality.
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