Some Important Properties of Almost Kenmotsu (κ, μ, v)-Space on the Concircular Curvature Tensor

Tuğba Mert ${ }^{1 *}$ and Mehmet Atçeken ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Science, Sivas Cumhuriyet University, Sivas, Türkiye
${ }^{2}$ Department of Mathematics, Faculty of Science and Arts, Aksaray University, Aksaray, Türkiye
*Corresponding author

Article Info
Keywords: Lorentzian Manifold, ParaKenmotsu Manifold, Pseudoparallel Submanifold.
2010 AMS: 53C15, 53C44, 53D10
Received: 19 October 2022
Accepted: 30 January 2023
Available online: 9 February 2023

Abstract

In this article, pseudoparallel submanifolds for almost Kenmotsu (κ, μ, v) -space are investigated. The almost Kenmotsu (κ, μ, v)-space is considered on the concircular curvature tensor. Submanifolds of these manifolds with properties such as concircular pseudoparallel, concircular 2-pseudoparallel, concircular Ricci generalized pseudoparallel, and concircular 2-Ricci generalized pseudoparallel has been characterized. Necessary and sufficient conditions are given for the invariant submanifolds of almost Kenmotsu (κ, μ, v)-space to be total geodesic according to the behavior of the κ, μ, v functions.

1. Introduction

Let $\left(M^{2 n+1}, \phi, \xi, \eta, g\right)$ be a $(2 n+1)$-dimensional contact metric manifold. We know that here R is the curvature tensor, ξ is the characteristic vector field and the condition $R\left(\rho_{1}, \rho_{2}\right) \xi=0$ is satisfied, for any vector field $\rho_{1}, \rho_{2} \in M^{2 n+1}$. The contact metric manifold that satisfies this condition also satisfies the condition

$$
\begin{equation*}
R\left(\rho_{1}, \rho_{2}\right) \xi=\eta\left(\rho_{2}\right)(\kappa I+\mu h) \rho_{1}-\eta\left(\rho_{1}\right)(\kappa I+\mu h) \rho_{2} \tag{1.1}
\end{equation*}
$$

and this condition is called (κ, μ) nullity condition, where κ, μ are constants and h is the self adjoint $(1,1)-$ tensor field. E. Boeckx in [1] and D. E. Blair et al. in [2], ($\kappa, \mu)$ nullity conditions on contact metric manifolds are considered when κ and μ are constant. E. Boeckx proved that non-Sasakian contact metric manifold is completely determined locally by its dimension for the constant values of κ and μ. If vector field ξ relate to the (κ, μ)-nullity distribution, then (1.1) is provided and the manifold $\left(M^{2 n+1}, \phi, \xi, \eta, g\right)$ is described (κ, μ)-contact metric manifold.
In particular, if κ and μ are not constant smooth functions on $M^{2 n+1}$, then the manifold ($M^{2 n+1}, \phi, \xi, \eta, g$) is described generalized (κ, μ)-contact metric manifold [2].
T. Koufogiorgos et al. introduced (κ, μ, v) - contact metric manifold in [3]. Riemann curvature tensor of $(\kappa, \mu, v)-$ contact metric manifoldis in the form

$$
\begin{equation*}
\tilde{R}\left(\rho_{1}, \rho_{2}\right) \xi=\kappa\left[\eta\left(\rho_{2}\right) \rho_{1}-\eta\left(\rho_{1}\right) \rho_{2}\right]+\mu\left[\eta\left(\rho_{2}\right) h \rho_{1}-\eta\left(\rho_{1}\right) h \rho_{2}\right]+v\left[\eta\left(\rho_{2}\right) \phi h \rho_{1}-\eta\left(\rho_{1}\right) \phi h \rho_{2}\right], \tag{1.2}
\end{equation*}
$$

for all $\rho_{1}, \rho_{2} \in \Gamma(T M)$, where κ, μ, ν are smooth functions on $M^{2 n+1}$.
If $d \eta=0$ and $d \Phi=2 \eta \wedge \Phi$, then this manifold is an almost Kenmotsu manifold, where $\Phi\left(\rho_{1}, \rho_{2}\right)=g\left(\rho_{1}, \phi \rho_{2}\right)$ is the fundamental $2-$ form of $M^{2 n+1}$. If an almost Kenmotsu manifold provide a (κ, μ, v)-nullity distribution, it is described an almost Kenmotsu (κ, μ, v) -space [4].

[^0]

Later on, manifolds that do not have a contact metric structure but satisfy condition (1.2) have been studied. The almost cosymplectic (κ, μ, v)-space is defined by P. Dacko and Z. Olszak in [5]. M. Atçeken obtained very important properties of almost Kenmotsu (κ, μ, v) - space in [6]. Pseudoparallel submanifolds of many different structures have been investigated in [7-18].
The concept of submanifold for a manifold is quite interesting. For example, it plays a very important role in fields such as applied mathematics, analysis and physics, contributing to the illumination of these fields.
In this article, pseudoparallel submanifolds for almost Kenmotsu (κ, μ, v)-space are investigated. The almost Kenmotsu (κ, μ, v)-space is considered on the concircular curvature tensor. Submanifolds of these manifolds with properties such as concircular pseudoparallel, concircular $2-$ pseudoparallel, concircular Ricci generalized pseudoparallel, and concircular $2-$ Ricci generalized pseudoparallel has been characterized. Necessary and sufficient conditions are given for the invariant submanifolds of almost Kenmotsu (κ, μ, v)-space to be total geodesic according to the behavior of the κ, μ, v functions.

2. Preliminary

Let \tilde{N} be $(2 n+1)$-dimensional contact metric manifold. This manifold admits an almost contact metric structure (ϕ, ξ, η, g) such that

$$
\begin{gather*}
\phi^{2} \rho_{1}=-\rho_{1}+\eta\left(\rho_{1}\right) \xi, \quad \eta\left(\rho_{1}\right)=g\left(\rho_{1}, \xi\right), \quad \eta(\xi)=1, \eta \circ \phi=0, \tag{2.1}\\
g\left(\phi \rho_{1}, \phi \rho_{2}\right)=g\left(\rho_{1}, \rho_{2}\right)-\eta\left(\rho_{1}\right) \eta\left(\rho_{2}\right) \tag{2.2}
\end{gather*}
$$

for all vector fields $\rho_{1}, \rho_{2} \in \Gamma(T \tilde{N})$, where $\Gamma(T \tilde{N})$ denotes the set of differentiable vector fields on \tilde{N} [3]. \tilde{N} together with the (ϕ, ξ, η, g) is called a contact metric manifold.
The Riemannian curvature tensor \tilde{R} of \tilde{N} is given

$$
\tilde{R}\left(\rho_{1}, \rho_{2}\right)=\tilde{\nabla}_{\rho_{1}} \tilde{\nabla}_{\rho_{2}}-\tilde{\nabla}_{\rho_{2}} \tilde{\nabla}_{\rho_{1}}-\tilde{\nabla}_{\left[\rho_{1}, \rho_{2}\right]},
$$

for all $\rho_{1}, \rho_{2} \in \Gamma(T \tilde{N})$, where $\tilde{\nabla}$ is the Levi-Civita connection of g.
Let h be tensor field $(1,1)$-type and l_{ξ} be the Lie-derivative in the direction of ξ. Thus, we can write

$$
2 h \rho_{1}=\left(l_{\xi} \phi\right) \rho_{1}
$$

for all $\rho_{1} \in \Gamma(T \tilde{N})$. On the other hand h is self-adjoint and satisfies

$$
\begin{equation*}
\phi h+h \phi=0, \operatorname{trh}=\operatorname{tr} \phi h=0, h \xi=0 . \tag{2.3}
\end{equation*}
$$

In addition, contact metric manifolds provide the formula given by

$$
\begin{equation*}
\tilde{\nabla}_{\rho_{1}} \xi=\phi \rho_{1}-\phi h \rho_{1}, \tilde{\nabla}_{\xi} \phi=0 . \tag{2.4}
\end{equation*}
$$

The (κ, μ)-nullity distribution of a contact metric manifold \tilde{N} for the pair $(\kappa, \mu) \in \mathbb{R}^{2}$ is distribution

$$
\tilde{R}\left(\rho_{1}, \rho_{2}\right) \rho_{3}=\kappa\left[g\left(\rho_{2}, \rho_{3}\right) \rho_{1}-g\left(\rho_{1}, \rho_{3}\right) \rho_{2}\right]+\mu\left[g\left(\rho_{2}, \rho_{3}\right) h \rho_{1}-g\left(\rho_{1}, \rho_{3}\right) h \rho_{2}\right]
$$

for all $\rho_{1}, \rho_{2} \in \Gamma(T \tilde{N})$.
Now let's give some equations below which are important for almost Kenmotsu ($\kappa, \mu, v)-$ space. Let $\tilde{N}^{2 n+1}(\phi, \eta, \xi, g)$ be $(2 n+1)$-dimensional almost Kenmotsu (κ, μ, v)-space. Then the following relations are provided.

$$
\begin{gather*}
h^{2}=(\kappa+1) \phi^{2}, \kappa \leq-1 \tag{2.5}\\
\xi(\kappa)=2(\kappa+1)(v-2) \tag{2.6}\\
\left(\tilde{\nabla}_{\rho_{1}} \phi\right) \rho_{2}=g\left(\phi \rho_{1}+h \rho_{1}, \rho_{2}\right) \xi-\eta\left(\rho_{2}\right)\left(\phi \rho_{1}+h \rho_{1}\right), \tag{2.7}\\
\tilde{\nabla} \rho_{1} \xi=-\phi^{2} \rho_{1}-\phi h \rho_{1} \tag{2.8}\\
S\left(\rho_{1}, \xi\right)=2 n \kappa \eta\left(\rho_{1}\right) \tag{2.9}
\end{gather*}
$$

$$
\begin{equation*}
\tilde{R}\left(\xi, \rho_{1}\right) \rho_{2}=\kappa\left[g\left(\rho_{1}, \rho_{2}\right) \xi-\eta\left(\rho_{2}\right) \rho_{1}\right]+\mu\left[g\left(h \rho_{1}, \rho_{2}\right) \xi-\eta\left(\rho_{2}\right) h \rho_{1}\right]+v\left[g\left(\phi h \rho_{1}, \rho_{2}\right) \xi-\eta\left(\rho_{2}\right) \phi h \rho_{1}\right] . \tag{2.10}
\end{equation*}
$$

Let N be the immersed submanifold of an almost Kenmotsu ($\kappa, \mu, v)-$ space $\tilde{N}^{2 n+1}(\phi, \xi, \eta, g)$. Let the tangent and normal subspaces of N in $\tilde{N}^{2 n+1}(\phi, \xi, \eta, g)$ be $\Gamma(T N)$ and $\Gamma\left(T^{\perp} N\right)$, respectively. Gauss and Weingarten formulas for $\Gamma(T M)$ and $\Gamma\left(T^{\perp} M\right)$ are

$$
\begin{gather*}
\tilde{\nabla} \rho_{1} \rho_{2}=\nabla \rho_{1} \rho_{2}+\sigma\left(\rho_{1}, \rho_{2}\right), \tag{2.11}\\
\tilde{\nabla} \rho_{1} \rho_{5}=-A_{\rho_{5}} \rho_{1}+\nabla \stackrel{\rho_{1}}{\perp} \rho_{5} \tag{2.12}
\end{gather*}
$$

respectively, for all $\rho_{1}, \rho_{2} \in \Gamma(T \tilde{M})$ and $\rho_{5} \in \Gamma\left(T^{\perp} \tilde{M}\right)$, where ∇ and ∇^{\perp} are the connections on N and $\Gamma\left(T^{\perp} N\right)$, respectively, σ and A are the second fundamental form and the shape operator of N. There is a relation

$$
\begin{equation*}
g\left(A_{\rho_{5}} \rho_{1}, \rho_{2}\right)=g\left(\sigma\left(\rho_{1}, \rho_{2}\right), \rho_{5}\right) \tag{2.13}
\end{equation*}
$$

between the second basic form and shape operator defined as above. The covariant derivative of the second fundamental form σ is defined as

$$
\begin{equation*}
\left(\tilde{\nabla}_{\rho_{1}} \sigma\right)\left(\rho_{2}, \rho_{3}\right)=\nabla \stackrel{\perp}{\rho_{1}} \sigma\left(\rho_{2}, \rho_{3}\right)-\sigma\left(\nabla \rho_{1} \rho_{2}, \rho_{3}\right)-\sigma\left(\rho_{2}, \nabla \rho_{1} \rho_{3}\right) \tag{2.14}
\end{equation*}
$$

for all $\rho_{1}, \rho_{2}, \rho_{3} \in \Gamma(T N)$. Specifically, if $\tilde{\nabla} \sigma=0, N$ is said to be its second fundamental form is parallel.
Let R be the Riemann curvature tensor of N. In this case, the Gauss equation can be expressed as

$$
\begin{equation*}
\tilde{R}\left(\rho_{1}, \rho_{2}\right) \rho_{3}=R\left(\rho_{1}, \rho_{2}\right) \rho_{3}+A_{\sigma\left(\rho_{1}, \rho_{3}\right)} \rho_{2}-A_{\sigma\left(\rho_{2}, \rho_{3}\right)} \rho_{1}+\left(\tilde{\nabla}_{\rho_{1}} \sigma\right)\left(\rho_{2}, \rho_{3}\right)-\left(\tilde{\nabla}_{\rho_{2}} \sigma\right)\left(\rho_{1}, \rho_{3}\right) \tag{2.15}
\end{equation*}
$$

for all $\rho_{1}, \rho_{2}, \rho_{3} \in \Gamma(T N)$.
$\tilde{R} \cdot \sigma$ is given by

$$
\begin{equation*}
\left(\tilde{R}\left(\rho_{1}, \rho_{2}\right) \cdot \sigma\right)\left(\rho_{4}, \rho_{5}\right)=R^{\perp}\left(\rho_{1}, \rho_{2}\right) \sigma\left(\rho_{4}, \rho_{5}\right)-\sigma\left(R\left(\rho_{1}, \rho_{2}\right) \rho_{4}, \rho_{5}\right)-\sigma\left(\rho_{4}, R\left(\rho_{1}, \rho_{2}\right) \rho_{5}\right) \tag{2.16}
\end{equation*}
$$

where the Riemannian curvature tensor of normal bundle $\Gamma\left(T^{\perp} N\right)$ is given

$$
R^{\perp}\left(\rho_{1}, \rho_{2}\right)=\left[\nabla \stackrel{\rightharpoonup}{\rho}_{1}^{\perp}, \nabla \stackrel{\perp}{\rho_{2}}\right]-\nabla_{\left[\rho_{1}, \rho_{2}\right]}^{\perp}
$$

On the other hand, the concircular curvature tensor for Riemannian manifold $\left(N^{2 n+1}, g\right)$ is given by

$$
\begin{equation*}
C\left(\rho_{1}, \rho_{2}\right) \rho_{3}=\tilde{R}\left(\rho_{1}, \rho_{2}\right) \rho_{3}-\frac{r}{2 n(2 n+1)}\left[g\left(\rho_{2}, \rho_{3}\right) \rho_{1}-g\left(\rho_{1}, \rho_{3}\right) \rho_{2}\right] \tag{2.17}
\end{equation*}
$$

where r denotes the scalar curvature of N.
Similarly, the tensor $C \cdot \sigma$ is defined by

$$
\begin{equation*}
\left(C\left(\rho_{1}, \rho_{2}\right) \cdot \sigma\right)\left(\rho_{4}, \rho_{5}\right)=R^{\perp}\left(\rho_{1}, \rho_{2}\right) \sigma\left(\rho_{4}, \rho_{5}\right)-\sigma\left(C\left(\rho_{1}, \rho_{2}\right) \rho_{4}, \rho_{5}\right)-\sigma\left(\rho_{4}, C\left(\rho_{1}, \rho_{2}\right) \rho_{5}\right) \tag{2.18}
\end{equation*}
$$

for all $\rho_{1}, \rho_{2}, \rho_{4}, \rho_{5} \in \Gamma(T N)$.
Let N be a Riemannian manifold, T is $(0, k)$-type tensor field and A is $(0,2)$-type tensor field. In this case, Tachibana tensor field $Q(A, T)$ is defined as

$$
\begin{equation*}
Q(A, T)\left(X_{1}, \ldots, X_{k} ; \rho_{1}, \rho_{2}\right)=-T\left(\left(\rho_{1} \wedge_{A} \rho_{2}\right) X_{1}, \ldots, X_{k}\right)-\ldots-T\left(X_{1}, \ldots, X_{k-1},\left(\rho_{1} \wedge_{A} \rho_{2}\right) X_{k}\right) \tag{2.19}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(\rho_{1} \wedge_{A} \rho_{2}\right) \rho_{3}=A\left(\rho_{2}, \rho_{3}\right) \rho_{1}-A\left(\rho_{1}, \rho_{3}\right) \rho_{2} \tag{2.20}
\end{equation*}
$$

$k \geq 1, X_{1}, X_{2}, \ldots, X_{k}, \rho_{1}, \rho_{2} \in \Gamma(T N)$.
Definition 2.1 ([8]). A submanifold N of a Riemannian manifold (\tilde{N}, g) is said to be concircular pseudoparallel, concircular 2-pseudoparallel, concircular Ricci-generalized pseudoparallel and concircular 2-Ricci generalized pseudoparallel if

$$
\begin{gathered}
C \cdot \sigma \text { and } Q(g, \sigma) \\
C \cdot \tilde{\nabla} \sigma \text { and } Q(g, \tilde{\nabla} \sigma) \\
C \cdot \sigma \text { and } Q(S, \sigma) \\
C \cdot \tilde{\nabla} \sigma \text { and } Q(S, \tilde{\nabla} \sigma)
\end{gathered}
$$

are linearly dependent, respectively.

3. Invariant Pseudoparalel Submanifolds of an Almost Kenmotsu (κ, μ, v) -Space

Let N be the immersed submanifold of an $(2 n+1)$-dimensional an almost Kenmotsu $(\kappa, \mu, v)-$ space $\tilde{N}^{2 n+1}(\phi, \xi, \eta, g)$. If $\phi\left(T_{\rho_{1}} N\right) \subset T_{\rho_{1}} N$ in every ρ_{1} point, the manifold N is called invariant submanifold. We note that all of properties of an invariant submanifold inherit the ambient manifold. From this section of the article, we will assume that the manifold N is the invariant submanifold of the an almost Kenmotsu $(\kappa, \mu, v)-$ space $\tilde{N}^{2 n+1}(\phi, \xi, \eta, g)$. So, it is clear that the following proposition.

Proposition 3.1. Let N be an invariant submanifold of an almost Kenmotsu $(\kappa, \mu, v)-$ space $\tilde{N}^{2 n+1}(\phi, \xi, \eta, g)$ such that ξ is tangent to N. Then the following equalities hold on N.

$$
\begin{gather*}
R\left(\rho_{1}, \rho_{2}\right) \xi=\kappa\left[\eta\left(\rho_{2}\right) \rho_{1}-\eta\left(\rho_{1}\right) \rho_{2}\right]+\mu\left[\eta\left(\rho_{2}\right) h \rho_{1}-\eta\left(\rho_{1}\right) h \rho_{2}\right]+v\left[\eta\left(\rho_{2}\right) \phi h \rho_{1}-\eta\left(\rho_{1}\right) \phi h \rho_{2}\right] \tag{3.1}\\
R\left(\xi, \rho_{1}\right) \rho_{2}=\kappa\left[g\left(\rho_{1}, \rho_{2}\right) \xi-\eta\left(\rho_{2}\right) \rho_{1}\right]+\mu\left[g\left(h \rho_{1}, \rho_{2}\right) \xi-\eta\left(\rho_{2}\right) h \rho_{1}\right]+v\left[g\left(\phi h \rho_{1}, \rho_{2}\right) \xi-\eta\left(\rho_{2}\right) \phi h \rho_{1}\right] \tag{3.2}\\
\left(\nabla_{\rho_{1}} \phi\right) \rho_{2}=g\left(\phi \rho_{1}+h \rho_{1}, \rho_{2}\right) \xi-\eta\left(\rho_{4}\right)\left(\phi \rho_{1}+h \rho_{1}\right), \tag{3.3}\\
\nabla_{\rho_{1}} \xi=-\phi^{2} \rho_{1}-\phi h \rho_{1}, \tag{3.4}\\
C\left(\rho_{1}, \rho_{2}\right) \xi=\left[\kappa-\frac{r}{2 n(2 n+1)}\right]\left[\eta\left(\rho_{2}\right) \rho_{1}-\eta\left(\rho_{1}\right) \rho_{2}\right]+\mu\left[\eta\left(\rho_{2}\right) h \rho_{1}-\eta\left(\rho_{1}\right) h \rho_{2}\right]+v\left[\eta\left(\rho_{2}\right) \phi h \rho_{1}-\eta\left(\rho_{1}\right) \phi h \rho_{2}\right] \tag{3.5}\\
C\left(\xi, \rho_{1}\right) \rho_{2}=\left[\kappa-\frac{r}{2 n(2 n+1)}\right]\left[g\left(\rho_{1}, \rho_{2}\right) \xi-\eta\left(\rho_{2}\right) \rho_{1}\right]+\mu\left[g\left(h \rho_{1}, \rho_{2}\right) \xi-\eta\left(\rho_{2}\right) h \rho_{1}\right] \tag{3.6}\\
+v\left[g\left(\phi h \rho_{1}, \rho_{2}\right) \xi-\eta\left(\rho_{2}\right) \phi h \rho_{1}\right]
\end{gather*}
$$

$$
\begin{equation*}
C\left(\xi, \rho_{1}\right) \xi=\left[\kappa-\frac{r}{2 n(2 n+1)}\right]\left[\eta\left(\rho_{1}\right) \xi-\rho_{1}\right] \tag{3.7}
\end{equation*}
$$

$$
\begin{equation*}
\sigma\left(\rho_{1}, \xi\right)=0, \quad \sigma\left(\phi \rho_{1}, \rho_{2}\right)=\sigma\left(\rho_{1}, \phi \rho_{2}\right)=\phi \sigma\left(\rho_{1}, \rho_{2}\right) \tag{3.8}
\end{equation*}
$$

for all $\rho_{1}, \rho_{2} \in \Gamma(T N)$, where ∇, σ and R denote the induced Levi-Civita connection on N, the shape operator and Riemannian curvature tensor of N, respectively.

Lemma 3.2 ([6]). Let N be the invariant submanifold of an almost Kenmotsu $(\kappa, \mu, v)-\operatorname{space} \tilde{N}^{2 n+1}(\phi, \xi, \eta, g)$. Then the second fundamental form σ of N is parallel if and only if N is the total geodesic submanifold provided $\kappa \neq 0$.

Let us now consider the invariant submanifolds of the almost Kenmotsu (κ, μ, v)-space $\tilde{N}^{2 n+1}(\phi, \xi, \eta, g)$ on the concircular curvature tensor.
Equivalent to the definition of concircular pseudoparallel given above, it can be said that there is a function \digamma_{1} on the set $M_{1}=\{x \in N \mid \sigma(x) \neq g(x)\}$ such that

$$
C \cdot \sigma=\digamma_{1} Q(g, \sigma) .
$$

If $\digamma_{1}=0$ specifically, N is called a concircular semiparallel submanifold.
Theorem 3.3. Let N be the invariant submanifold of the $(2 n+1)$-dimensional an almost Kenmotsu (κ, μ, v)-space $\tilde{N}^{2 n+1}(\phi, \xi, \eta, g)$. If N is concircular pseudoparallel submanifold, then N is either a total geodesic submanifold or

$$
\digamma_{1}=\left(\kappa-\frac{r}{2 n(2 n+1)}\right) \mp \sqrt{(\kappa+1)\left(v^{2}-\mu^{2}\right)}, \mu \cdot v(\kappa+1)=0 .
$$

Proof. Let's assume that N is a concircular pseudoparallel submanifold. So, we can write

$$
\begin{equation*}
\left(C\left(\rho_{1}, \rho_{2}\right) \cdot \sigma\right)\left(\rho_{4}, \rho_{5}\right)=\digamma_{1} Q(g, \sigma)\left(\rho_{4}, \rho_{5} ; \rho_{1}, \rho_{2}\right) \tag{3.9}
\end{equation*}
$$

for all $\rho_{1}, \rho_{2}, \rho_{4}, \rho_{5} \in \Gamma(T N)$. From (2.18), it is clear that

$$
R^{\perp}\left(\rho_{1}, \rho_{2}\right) \sigma\left(\rho_{4}, \rho_{5}\right)-\sigma\left(C\left(\rho_{1}, \rho_{2}\right) \rho_{4}, \rho_{5}\right)-\sigma\left(\rho_{4}, C\left(\rho_{1}, \rho_{2}\right) \rho_{5}\right)=-\digamma_{1}\left\{\sigma\left(\left(\rho_{1} \wedge_{g} \rho_{2}\right) \rho_{4}, \rho_{5}\right)+\sigma\left(\rho_{4},\left(\rho_{1} \wedge_{g} \rho_{2}\right) \rho_{5}\right)\right\}
$$

Easily from here, we can write

$$
\begin{array}{r}
R^{\perp}\left(\rho_{1}, \rho_{2}\right) \sigma\left(\rho_{4}, \rho_{5}\right)-\sigma\left(C\left(\rho_{1}, \rho_{2}\right) \rho_{4}, \rho_{5}\right)-\sigma\left(\rho_{4}, C\left(\rho_{1}, \rho_{2}\right) \rho_{5}\right)=-\digamma_{1}\left\{g\left(\rho_{2}, \rho_{4}\right) \sigma\left(\rho_{1}, \rho_{5}\right)-g\left(\rho_{1}, \rho_{4}\right) \sigma\left(\rho_{2}, \rho_{5}\right)\right. \tag{3.10}\\
\left.+g\left(\rho_{2}, \rho_{5}\right) \sigma\left(\rho_{4}, \rho_{1}\right)-g\left(\rho_{1}, \rho_{5}\right) \sigma\left(\rho_{4}, \rho_{2}\right)\right\}
\end{array}
$$

If we choose $\rho_{1}=\rho_{4}=\xi$ in (3.10) and make use of (3.7), we get

$$
\begin{equation*}
\sigma\left(C\left(\xi, \rho_{2}\right) \xi, \rho_{5}\right)=-\digamma_{1} \sigma\left(\rho_{2}, \rho_{5}\right) \tag{3.11}
\end{equation*}
$$

If we use (3.7) out of (3.11), we obtain

$$
\begin{equation*}
\left[\digamma_{1}-\left(\kappa-\frac{r}{2 n(2 n+1)}\right)\right] \sigma\left(\rho_{2}, \rho_{5}\right)=\mu \sigma\left(h \rho_{2}, \rho_{5}\right)+v \phi \sigma\left(h \rho_{2}, \rho_{5}\right) \tag{3.12}
\end{equation*}
$$

Substituting $h \rho_{2}$ for ρ_{2} in (3.12) by view of (2.5) and (3.8), we have

$$
\begin{equation*}
\left[\digamma_{1}-\left(\kappa-\frac{r}{2 n(2 n+1)}\right)\right] \sigma\left(h \rho_{2}, \rho_{5}\right)=-(\kappa+1)\left[\mu \sigma\left(\rho_{2}, \rho_{5}\right)+v \phi \sigma\left(\rho_{2}, \rho_{5}\right)\right] \tag{3.13}
\end{equation*}
$$

From (3.12) and (3.13), one can easily see that

$$
\begin{equation*}
\left\{(\kappa+1)\left(\mu^{2}-v^{2}\right)+\left[\digamma_{1}-\left(\kappa-\frac{r}{2 n(2 n+1)}\right)\right]^{2}\right\} \sigma\left(\rho_{2}, \rho_{5}\right)+2(\kappa+1) \mu v \phi \sigma\left(\rho_{2}, \rho_{5}\right)=0 \tag{3.14}
\end{equation*}
$$

This tell us that N is either totally geoesic submanifold or

$$
(\kappa+1)\left(\mu^{2}-v^{2}\right)+\left[\digamma_{1}-\left(\kappa-\frac{r}{2 n(2 n+1)}\right)\right]^{2}=(\kappa+1) \mu v=0
$$

This completes the proof.
Corollary 3.4. Let N be an invariant pseudoparallel submanifold of the $(2 n+1)$-dimensional an almost Kenmotsu (κ, μ, v)-space $\tilde{N}^{2 n+1}(\phi, \xi, \eta, g)$. Then N is concircular semiparallel if and only if N is totally geodesic provided

$$
(\kappa+1)\left(\mu^{2}-v^{2}\right)+\left(\kappa-\frac{r}{2 n(2 n+1)}\right)^{2} \neq 0 \text { or }(\kappa+1) \mu v \neq 0
$$

Equivalent to the definition of concircular Ricci generalized pseudoparallel given above, it can be said that there is a function \digamma_{2} on the set
$M_{2}=\{x \in N \mid S(x) \neq \sigma(x)\}$ such that

$$
C \cdot \sigma=\digamma_{2} Q(S, \sigma)
$$

If $\digamma_{2}=0$ specifically, N is called a concircular Ricci generalized semiparallel submanifold.
Theorem 3.5. Let N be the invariant submanifold of the $(2 n+1)$-dimensional an almost Kenmotsu (κ, μ, v)-space $\tilde{N}^{2 n+1}(\phi, \xi, \eta, g)$. If N is concircular Ricci generalized pseudoparallel submanifold, then N is either a total geodesic submanifold or

$$
\digamma_{2}=\frac{2 n(2 n+1) \kappa-r}{4 n^{2} \kappa(2 n+1)} \mp \frac{1}{2 n \kappa} \sqrt{(\kappa+1)\left(v^{2}-\mu^{2}\right)}, \mu \cdot v(\kappa+1)=0 .
$$

Proof. Let's assume that N is a concircular Ricci generalized pseudoparallel submanifold. So, we can write

$$
\begin{equation*}
\left(C\left(\rho_{1}, \rho_{2}\right) \cdot \sigma\right)\left(\rho_{4}, \rho_{5}\right)=\digamma_{2} Q(S, \sigma)\left(\rho_{4}, \rho_{5} ; \rho_{1}, \rho_{2}\right) \tag{3.15}
\end{equation*}
$$

for all $\rho_{1}, \rho_{2}, \rho_{4}, \rho_{5} \in \Gamma(T N)$. From (2.18), it is clear that

$$
R^{\perp}\left(\rho_{1}, \rho_{2}\right) \sigma\left(\rho_{4}, \rho_{5}\right)-\sigma\left(C\left(\rho_{1}, \rho_{2}\right) \rho_{4}, \rho_{5}\right)-\sigma\left(\rho_{4}, C\left(\rho_{1}, \rho_{2}\right) \rho_{5}\right)=-\digamma_{2}\left\{\sigma\left(\left(\rho_{1} \wedge_{S} \rho_{2}\right) \rho_{4}, \rho_{5}\right)+\sigma\left(\rho_{4},\left(\rho_{1} \wedge_{S} \rho_{2}\right) \rho_{5}\right)\right\}
$$

Easily from here, we can write

$$
\begin{align*}
R^{\perp}\left(\rho_{1}, \rho_{2}\right) \sigma\left(\rho_{4}, \rho_{5}\right)-\sigma\left(C\left(\rho_{1}, \rho_{2}\right) \rho_{4}, \rho_{5}\right)-\sigma\left(\rho_{4}, C\left(\rho_{1}, \rho_{2}\right) \rho_{5}\right)=- & \digamma_{2}\left\{S\left(\rho_{2}, \rho_{4}\right) \sigma\left(\rho_{1}, \rho_{5}\right)-S\left(\rho_{1}, \rho_{4}\right) \sigma\left(\rho_{2}, \rho_{5}\right)\right. \\
& \left.+S\left(\rho_{2}, \rho_{5}\right) \sigma\left(\rho_{4}, \rho_{1}\right)-S\left(\rho_{1}, \rho_{5}\right) \sigma\left(\rho_{4}, \rho_{2}\right)\right\} \tag{3.16}
\end{align*}
$$

If we choose $\rho_{1}=\rho_{5}=\xi$ in (3.16) and make use of (3.7), we get

$$
\begin{equation*}
\sigma\left(\rho_{4}, C\left(\xi, \rho_{2}\right) \xi\right)=-\digamma_{2} S(\xi, \xi) \sigma\left(\rho_{4}, \rho_{2}\right) \tag{3.17}
\end{equation*}
$$

If we use (2.9) and (3.7) in (3.17), we obtain

$$
\begin{equation*}
\left[\left(\kappa-\frac{r}{2 n(2 n+1)}\right)-2 n \kappa \digamma_{2}\right] \sigma\left(\rho_{4}, \rho_{2}\right)=\mu \sigma\left(\rho_{4}, h \rho_{2}\right)+v \phi \sigma\left(\rho_{4}, h \rho_{2}\right) \tag{3.18}
\end{equation*}
$$

Substituting $h \rho_{2}$ for ρ_{2} in (3.18) by view of (2.5) and (3.8), we have

$$
\begin{equation*}
\left[\left(\kappa-\frac{r}{2 n(2 n+1)}\right)-2 n \kappa \digamma_{2}\right] \sigma\left(h \rho_{2}, \rho_{4}\right)=-(\kappa+1)\left[\mu \sigma\left(\rho_{2}, \rho_{4}\right)+v \phi \sigma\left(\rho_{2}, \rho_{4}\right)\right] \tag{3.19}
\end{equation*}
$$

From (3.18) and (3.19), one can easily see that

$$
\begin{equation*}
\left\{\left[\left(\kappa-\frac{r}{2 n(2 n+1)}\right)-2 n \kappa \digamma_{2}\right]^{2}+(\kappa+1)\left(\mu^{2}-v^{2}\right)\right\} \sigma\left(\rho_{4}, \rho_{2}\right)+2(\kappa+1) \mu v \phi \sigma\left(\rho_{4}, \rho_{2}\right)=0 . \tag{3.20}
\end{equation*}
$$

This tell us that N is either totally geoesic submanifold or

$$
\left[\left(\kappa-\frac{r}{2 n(2 n+1)}\right)-2 n \kappa \digamma_{2}\right]^{2}+(\kappa+1)\left(\mu^{2}-v^{2}\right)=(\kappa+1) \mu v=0
$$

This completes the proof.
Corollary 3.6. Let N be an invariant pseudoparallel submanifold of the $(2 n+1)$-dimensional an almost Kenmotsu (κ, μ, v)-space $\tilde{N}^{2 n+1}(\phi, \xi, \eta, g)$. Then N is concircular Ricci generalized semiparallel if and only if N is totally geodesic provided

$$
(\kappa+1)\left(\mu^{2}-v^{2}\right)+\left(\kappa-\frac{r}{2 n(2 n+1)}\right)^{2} \neq 0 \text { or }(\kappa+1) \mu v \neq 0 .
$$

Equivalent to the definition of concircular 2-pseudoparallel given above, it can be said that there is a function \digamma_{3} on the set $M_{3}=\{x \in N \mid g(x) \neq \tilde{\nabla} \sigma(x)\}$ such that

$$
C \cdot \tilde{\nabla} \sigma=\digamma_{3} Q(g, \tilde{\nabla} \sigma)
$$

If $\digamma_{3}=0$ specifically, N is called a concircular 2-semiparallel submanifold.
Theorem 3.7. Let N be the invariant submanifold of the $(2 n+1)$-dimensional an almost Kenmotsu (κ, μ, v)-space $\tilde{N}^{2 n+1}(\phi, \xi, \eta, g)$. If N is concircular $2-p s e u d o p a r a l l e l ~ s u b m a n i f o l d$, then N is either a total geodesic submanifold or

$$
\digamma_{3}=\left[\kappa-\frac{r}{2 n(2 n+1)}\right] \mp \sqrt{(\kappa+1)\left(v^{2}-\mu^{2}\right)}, \mu \cdot v(\kappa+1)=0 .
$$

Proof. Let's assume that \tilde{M} is a concircular 2-pseudoparallel submanifold. So, we can write

$$
\begin{equation*}
\left(C\left(\rho_{1}, \rho_{2}\right) \cdot \tilde{\nabla} \sigma\right)\left(\rho_{4}, \rho_{5}, \rho_{3}\right)=\digamma_{3} Q(S, \tilde{\nabla} \sigma)\left(\rho_{4}, \rho_{5}, \rho_{3} ; \rho_{1}, \rho_{2}\right) \tag{3.21}
\end{equation*}
$$

for all $\rho_{1}, \rho_{2}, \rho_{4}, \rho_{5}, \rho_{3} \in \Gamma(T M)$. If we choose $\rho_{1}=\rho_{5}=\xi$ in (3.21), we can write

$$
\begin{align*}
& R^{\perp}\left(\xi, \rho_{2}\right)\left(\tilde{\nabla}_{\rho_{4}} \sigma\right)\left(\xi, \rho_{3}\right)-\left(\tilde{\nabla}_{C\left(\xi, \rho_{2}\right) \rho_{4}} \sigma\right)\left(\xi, \rho_{3}\right)-\left(\tilde{\nabla}_{\rho_{4}} \sigma\right)\left(C\left(\xi, \rho_{2}\right) \xi, \rho_{3}\right)-\left(\tilde{\nabla}_{\rho_{4}} \sigma\right)\left(\xi, C\left(\xi, \rho_{2}\right) \rho_{3}\right) \\
& =-\digamma_{3}\left\{\left(\tilde{\nabla}_{\left(\xi \wedge_{g} \rho_{2}\right) \rho_{4}} \sigma\right)\left(\xi, \rho_{3}\right)+\left(\tilde{\nabla}_{\rho_{4}} \sigma\right)\left(\left(\xi \wedge_{g} \rho_{2}\right) \xi, \rho_{3}\right)+\left(\tilde{\nabla}_{\rho_{4}} \sigma\right)\left(\xi,\left(\xi \wedge_{g} \rho_{2}\right) \rho_{3}\right)\right\} \tag{3.22}
\end{align*}
$$

Let's calculate all the expressions in (3.22). In view of (2.14), (2.19), (3.4), and (3.8), we can derive

$$
\begin{align*}
R^{\perp}\left(\xi, \rho_{2}\right)\left(\tilde{\nabla}_{\rho_{4}} \sigma\right)\left(\xi, \rho_{3}\right) & =R^{\perp}\left(\xi, \rho_{2}\right)\left\{\nabla \rho_{4}^{\perp} \sigma\left(\xi, \rho_{3}\right)-\sigma\left(\nabla \rho_{4} \xi, \rho_{3}\right)-\sigma\left(\xi, \nabla \rho_{4} \rho_{3}\right)\right\} \\
& =-R^{\perp}\left(\xi, \rho_{2}\right) \sigma\left(\nabla \rho_{4} \xi, \rho_{3}\right) \tag{3.23}\\
& =R^{\perp}\left(\xi, \rho_{2}\right)\left\{\sigma\left(\phi h \rho_{4}, \rho_{3}\right)-\sigma\left(\rho_{4}, \rho_{3}\right)\right\}
\end{align*}
$$

$$
\begin{align*}
\left(\tilde{\nabla}_{C\left(\xi, \rho_{2}\right) \rho_{4}} \sigma\right)\left(\xi, \rho_{3}\right)= & \nabla \frac{1}{C}\left(\xi, \rho_{2}\right) \rho_{4} \\
= & \sigma\left(\xi, \rho_{3} C\left(\xi, \rho_{2}\right) \rho_{4}+\phi h C\left(\xi\left(\xi, \rho_{2}\right) \rho_{4}, \rho_{3}\right)\right. \\
= & \eta\left(\rho_{4}\right)\left\{\left[\kappa-\frac{r}{2 n(2 n+1)}\right] \sigma\left(\rho_{2}, \rho_{3}\right)+\mu \sigma\left(h \rho_{2}, \rho_{3}\right)\right. \tag{3.24}\\
& +v \sigma\left(\phi h \rho_{2}, \rho_{3}\right)-\left[\kappa-\frac{r}{2 n(2 n+1)}\right] \phi \sigma\left(h \rho_{2}, \rho_{3}\right) \\
& \left.+(\kappa+1) \mu \phi \sigma\left(\rho_{2}, \rho_{3}\right)-(\kappa+1) v \sigma\left(\rho_{2}, \rho_{3}\right)\right\}
\end{align*}
$$

$$
\begin{align*}
\left(\tilde{\nabla}_{\rho_{4}} \sigma\right)\left(\xi,\left(\xi \wedge_{g} \rho_{2}\right) \rho_{3}\right) & =-\sigma\left(\nabla_{\rho_{4}} \xi,\left(\xi \wedge_{g} \rho_{2}\right) \rho_{3}\right) \\
& =\sigma\left(\phi^{2} \rho_{4}+\phi h \rho_{4}, g\left(\rho_{2}, \rho_{3}\right) \xi-g\left(\xi, \rho_{3}\right) \rho_{2}\right) \tag{3.29}\\
& =\eta\left(\rho_{3}\right)\left\{\sigma\left(\rho_{4}, \rho_{2}\right)-\sigma\left(\phi h \rho_{4}, \rho_{2}\right)\right\}
\end{align*}
$$

If we substitute (3.22), (3.23), (3.24), (3.25), (3.26), (3.27), (3.28) in (3.21), we obtain

$$
\begin{align*}
& R^{\perp}\left(\xi, \rho_{2}\right)\left\{\sigma\left(\phi h \rho_{4}, \rho_{3}\right)-\sigma\left(\rho_{4}, \rho_{3}\right)\right\}-\eta\left(\rho_{4}\right)\left\{\left[\kappa-\frac{r}{2 n(2 n+1)}\right] \sigma\left(\rho_{2}, \rho_{3}\right)+\mu \sigma\left(h \rho_{2}, \rho_{3}\right)\right. \\
& \left.+v \sigma\left(\phi h \rho_{2}, \rho_{3}\right)-\left[\kappa-\frac{r}{2 n(2 n+1)}\right] \phi \sigma\left(h \rho_{2}, \rho_{3}\right)+(\kappa+1) \mu \phi \sigma\left(\rho_{2}, \rho_{3}\right)-(\kappa+1) v \sigma\left(\rho_{2}, \rho_{3}\right)\right\} \\
& -\left(\tilde{\nabla}_{\rho_{4}} \sigma\right)\left(\left[\kappa-\frac{r}{2 n(2 n+1)}\right]\left[\eta\left(\rho_{2}\right) \xi-\rho_{2}\right]-\mu h \rho_{2}-v \phi h \rho_{2}, \rho_{3}\right) \\
& -\eta\left(\rho_{3}\right)\left\{\begin{array}{l}
{\left[\kappa-\frac{r}{2 n(2 n+1)}\right] \sigma\left(\rho_{4}, \rho_{2}\right)+\mu \sigma\left(\rho_{4}, h \rho_{2}\right)+v \phi \sigma\left(\rho_{4}, h \rho_{2}\right)-\left[\kappa-\frac{r}{2 n(2 n+1)}\right] \sigma\left(\phi h \rho_{4}, \rho_{2}\right)} \\
+\mu(\kappa+1) \phi \sigma\left(\rho_{4}, \rho_{2}\right)-v(\kappa+1) \sigma\left(\rho_{4}, \rho_{2}\right)
\end{array}\right\} \tag{3.30}\\
& =-\digamma_{3}\left\{\eta\left(\rho_{4}\right)\left\{\sigma\left(\rho_{2}, \rho_{3}\right)-\phi \sigma\left(h \rho_{2}, \rho_{3}\right)\right\}+\eta\left(\rho_{2}\right)\left\{\sigma\left(\phi h \rho_{4}, \rho_{3}\right)-\sigma\left(\rho_{4}, \rho_{3}\right)\right\}-\left(\tilde{\nabla}_{\rho_{4}} \sigma\right)\left(\rho_{2}, \rho_{3}\right)\right. \\
& \left.+\eta\left(\rho_{3}\right)\left\{\sigma\left(\rho_{4}, \rho_{2}\right)-\sigma\left(\phi h \rho_{4}, \rho_{2}\right)\right\}\right\}
\end{align*}
$$

If we choose $\rho_{3}=\xi$ in (3.30), we get

$$
\begin{align*}
& -\left(\tilde{\nabla}_{\rho_{4}} \sigma\right)\left(\left[\kappa-\frac{r}{2 n(2 n+1)}\right]\left[\eta\left(\rho_{2}\right) \xi-\rho_{2}\right]-\mu h \rho_{2}-v \phi h \rho_{2}, \xi\right)-\left[\kappa-\frac{r}{2 n(2 n+1)}\right] \sigma\left(\rho_{4}, \rho_{2}\right)-\mu \sigma\left(\rho_{4}, h \rho_{2}\right) \\
& -v \phi \sigma\left(\rho_{4}, h \rho_{2}\right)+\left[\kappa-\frac{r}{2 n(2 n+1)}\right] \sigma\left(\phi h \rho_{4}, \rho_{2}\right)-\mu(\kappa+1) \phi \sigma\left(\rho_{4}, \rho_{2}\right)+v(\kappa+1) \sigma\left(\rho_{4}, \rho_{2}\right) \tag{3.31}\\
& =-\digamma_{3}\left\{-\left(\tilde{\nabla}_{\rho_{4}} \sigma\right)\left(\rho_{2}, \xi\right)+\sigma\left(\rho_{4}, \rho_{2}\right)-\sigma\left(\phi h \rho_{4}, \rho_{2}\right)\right\}
\end{align*}
$$

By direct calculations, one can easily see that

$$
\begin{aligned}
& \left(\tilde{\nabla}_{\rho_{4}} \sigma\right)\left(\left[\kappa-\frac{r}{2 n(2 n+1)}\right]\left[\eta\left(\rho_{2}\right) \xi-\rho_{2}\right]-\mu h \rho_{2}-v \phi h \rho_{2}, \xi\right) \\
& =\left[\kappa-\frac{r}{2 n(2 n+1)}\right] \sigma\left(\rho_{2}, \rho_{4}\right)+\mu \sigma\left(h \rho_{2}, \rho_{4}\right)+v \phi \sigma\left(\rho_{4}, h \rho_{2}\right)-\left[\kappa-\frac{r}{2 n(2 n+1)}\right] \phi \sigma\left(\rho_{2}, h \rho_{4}\right) \\
& \quad+\mu(\kappa+1) \phi \sigma\left(\rho_{4}, \rho_{2}\right)-v(\kappa+1) \sigma\left(\rho_{4}, \rho_{2}\right)
\end{aligned}
$$

and

$$
\begin{equation*}
\left(\tilde{\nabla}_{\rho_{4}} \sigma\right)\left(\rho_{2}, \xi\right)=\phi \sigma\left(h \rho_{4}, \rho_{2}\right)-\sigma\left(\rho_{4}, \rho_{2}\right) . \tag{3.33}
\end{equation*}
$$

If (3.32) and (3.33) are out in (3.31), we obtain

$$
\begin{equation*}
\left[\digamma_{3}-\left(\kappa-\frac{r}{2 n(2 n+1)}\right)+(v-\mu \phi)(\kappa+1)\right] \sigma\left(\rho_{4}, \rho_{2}\right)-\left[\left(\digamma_{3}-\left(\kappa-\frac{r}{2 n(2 n+1)}\right)\right) \phi+(\mu+\phi v)\right] \sigma\left(\rho_{4}, h \rho_{2}\right)=0 \tag{3.34}
\end{equation*}
$$

Substituting $h \rho_{2}$ instead of ρ_{2} in (3.34), we can easily see that

$$
\begin{align*}
& {\left[\digamma_{3}-\left(\kappa-\frac{r}{2 n(2 n+1)}\right)+(v-\mu \phi)(\kappa+1)\right] \sigma\left(\rho_{4}, h \rho_{2}\right)} \tag{3.35}\\
& -\left[\left(\digamma_{3}-\left(\kappa-\frac{r}{2 n(2 n+1)}\right)\right) \phi+(\mu+\phi v)\right](\kappa+1) \sigma\left(\rho_{4}, \rho_{2}\right)=0 .
\end{align*}
$$

From common solutions of (3.34) and (3.35), we can infer

$$
\begin{align*}
& \left\{\left[\digamma_{3}-\left(\kappa-\frac{r}{2 n(2 n+1)}\right)+(v-\mu \phi)(\kappa+1)\right]^{2}\right. \tag{3.36}\\
& \left.+\left[\left(\digamma_{3}-\left(\kappa-\frac{r}{2 n(2 n+1)}\right)\right) \phi+(\mu+\phi v)\right]^{2}(\kappa+1)\right\} \sigma\left(\rho_{4}, \rho_{2}\right)=0
\end{align*}
$$

This implies that N is either totally geodesic or

$$
\digamma_{3}=\left[\kappa-\frac{r}{2 n(2 n+1)}\right] \mp \sqrt{(\kappa+1)\left(v^{2}-\mu^{2}\right)}, \mu \cdot v(\kappa+1)=0
$$

This completes of the proof.

Corollary 3.8. Let N be an invariant pseudoparallel submanifold of the ($2 n+1$-dimensional an almost Kenmotsu (κ, μ, v)-space $\tilde{N}^{2 n+1}(\phi, \xi, \eta, g)$. Then N is concircular $2-$ semiparallel if and only if N is totally geodesic provided

$$
\left[\kappa-\frac{r}{2 n(2 n+1)}\right]^{2}-(\kappa+1)\left(v^{2}-\mu^{2}\right) \neq 0 \text { or }(\kappa+1) \mu v \neq 0
$$

Equivalent to the definition of concircular 2-Ricci generalized pseudoparallel given above, it can be said that there is a function \digamma_{4} on the set
$M_{4}=\{x \in N \mid S(x) \neq \tilde{\nabla} \sigma(x)\}$ such that

$$
C \cdot \tilde{\nabla} \sigma=\digamma_{4} Q(S, \tilde{\nabla} \sigma)
$$

If $\digamma_{4}=0$ specifically, N is called a concircular 2-Ricci generalized semiparallel submanifold.
Theorem 3.9. Let N be the invariant submanifold of the $(2 n+1)$-dimensional an almost Kenmotsu (κ, μ, v)-space $\tilde{N}^{2 n+1}(\phi, \xi, \eta, g)$. If N is concircular 2-Ricci generalized pseudoparallel submanifold, then N is either a total geodesic submanifold or

$$
\digamma_{4}=\frac{1}{2 n}\left(1 \mp \frac{2 n(2 n+1)}{2 n(2 n+1) \kappa-r} \sqrt{(\kappa+1)\left(v^{2}-\mu^{2}\right)}\right), \mu \cdot v(\kappa+1)=0 .
$$

Proof. The proof of the theorem can be easily done similar to the proof of the previous theorem.

4. Conclusion

In this article, pseudoparallel submanifolds for almost Kenmotsu (κ, μ, v)-space are investigated. The almost Kenmotsu (κ, μ, v)-space is considered on the concircular curvature tensor. Submanifolds of these manifolds with properties such as concircular pseudoparallel, concircular $2-$ pseudoparallel, concircular Ricci generalized pseudoparallel, and concircular $2-$ Ricci generalized pseudoparallel has been characterized. Necessary and sufficient conditions are given for the invariant submanifolds of almost Kenmotsu (κ, μ, v)-space to be total geodesic according to the behavior of the κ, μ, v functions.

Article Information

Acknowledgements: The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

Author's contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Conflict of Interest Disclosure: No potential conflict of interest was declared by the author.
Copyright Statement: Authors own the copyright of their work published in the journal and their work is published under the CC BY-NC 4.0 license.

Supporting/Supporting Organizations: No grants were received from any public, private or non-profit organizations for this research.

Ethical Approval and Participant Consent: It is declared that during the preparation process of this study, scientific and ethical principles were followed and all the studies benefited from are stated in the bibliography.

Plagiarism Statement: This article was scanned by the plagiarism program. No plagiarism detected.
Availability of data and materials: Not applicable.

References

[1] E. Boeckx, A full classification of contact metric (κ, μ) -spaces, Illinois J. Math., 44(1) (2000), 212-219.
[2] D. E. Blair, T. Koufogiorgos, B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math., 91 (1995), $189-214$.
[3] T. Koufogiorgos, M. Markellos, V. J. Papantoniou, The harmonicity of thr Reeb vector fields on contact 3-manifolds, Pasific J. Math., 234(2) (2008), 325-344.
[4] A. Carriazo, V. Martin-Molina, Almost cosymplectic and almost Kenmotsu (κ, μ, v) - Spaces, Mediterr. J. Math., 10 (2013), 1551-1571.
[5] P. Dacko, Z. Olszak, On almost cosymplectic (κ, μ, v) -spaces, Banch Center Publ., 69(1) (2005), 211-220.
[6] M. Atçeken, Certain results on invariant submanifolds of an almost Kenmotsu (κ, μ, v) - space, Arab. J. Math., 10 (2021), 543-554.
[7] A. Bejancu, N. Papaghuic, Semi-invariant submanifolds of a Sasakian manifold, Annal Alexandru Ioan Cuza Univ. Iaşi Math., 27 (1981), 163-170.
[8] M. Atçeken, P. Uygun, Characterizations for totally geodesic submanifolds of (κ, μ) -paracontact metric manifolds, Korean J. Math., 28(3) (2021), 555-571.
[9] A. De, A note on the paper on invariant submanifolds of LP-Sasakian manifolds, Extracta Math., 28(1) (2013), 33-36
[10] M. Atçeken, T. Mert, Characterizations for totally geodesic submanifolds of a K-paracontact manifold, AIMS Math., 6(7) (2021),7320-7332.
[11] D. Chinea, P.S. Prestelo, Invariant submanifolds of a trans-Sasakian manifold, Publ. Math. Debrecen, 38(1-2) (1991), 103-109.
[12] M. Atçeken, Some results on invariant submanifolds of Lorentzian para-Kenmotsu manifolds, Korean J. Math., 30(1) (2022), 175-185.
[13] S.K. Hui, V.N. Mishra, T. Pal, Vandana, Some classes of invariant submanifolds of (LCS $)_{n}$-Manifolds, Italian J.P. Appl. Math., 39 (2018), 359-372
[14] V. Venkatesha, S. Basavarajappa, Invariant submanifolds of LP-Saakian manifolds, Khayyam J. Math., 6(1) (2020), 16-26.
[15] S. Sular, C. Özgür, C. Murathan, Pseudoparallel anti-invariant submanifolds of Kenmotsu manifolds, Hacet. J. Math. Stat., 39(4) (2010), 535-543.
[16] P. Uygun, S. Dirik, M. Atceken, T. Mert, Some Characterizations Invariant Submanifolds of A (k, μ)-Para Contact Space, J. Eng. R. App. Sci., 11(1) (2022), 1967-1972.
[17] M. Atçeken, G. Yüca, Some results on invariant submanifolds of an almost Kenmotsu (κ, μ, v) -space, Honam Math. J., 43(4) (2021), 655-665.
[18] R. Prasad, PAnkaj, On (k, μ)-Manifolds with Quasi-conformal Curvature Tensor, Int. J. Contemp. Math. Sciences, 34(5) 2010, 1663 - 1676.

[^0]: Email addresses and ORCID numbers: tmert@cumhuriyet.edu.tr, 0000-0001-8258-8298 (T. Mert), mehmet.atceken382@gmail.com, 0000-0002-1242-4359 (M. Atçeken)
 Cite as: T. Mert, M. Atçeken, Some Important Properties of Almost Kenmotsu (κ, μ, v) -Space on the Concircular Curvature Tensor, Fundam. J.
 Math. Appl., 6(1) (2023), 51-60.

