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Abstract 

 

In this paper, a linear quadratic regulator (LQR) controller operating according to the genetically tuned inner-outer loop structure 

is proposed for trajectory tracking of a quadrotor. Setting the parameters of a linear controller operating according to the inner-

outer loop structure is a matter that requires profound expertise. Optimization algorithms are used to cope with the solution of 

this problem. First, the dynamic equations of motion of the quadrotor are obtained and modelled in state-space form. The LQR 

controller, which will operate according to the inner-outer loop structure in the MATLAB/Simulink environment, has been 

developed separately for 6 degrees of freedom (DOF) of the quadrotor. Since adjusting these parameters will take a long time, a 

genetic algorithm has been used at this point. The LQR controller with optimized coefficients and a proposed LQR controller-

based study in the literature are evaluated according to their success in following the reference trajectory and their responses to 

specific control inputs. According to the results obtained, it was observed that the genetically adjusted LQR controller produced 

more successful outcomes. 
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1.  INTRODUCTION  

Unmanned aerial vehicles, especially multi-propeller 

vehicles, are widely used in many industries, such as search 

and rescue, reconnaissance and surveillance, mapping, and 

inspection of power lines[1–5]. Multicopters used in these 

applications are generally produced with four propellers. The 

desired position or angle is achieved by applying different 

rotational speeds to the brushless dc motors placed on this 

four-propeller aircraft. However, since the dynamics of the 

quadcopter are nonlinear and inherently unstable, it is a 

problem to control. 

Model-based or model-free linear or nonlinear controllers 

are being developed for quadcopters to follow the references 

given to them. Nonlinear controllers such as feedback 

linearization, adaptive sliding mode control [6] and 

backstepping [7] have been proposed to match the non-linear 

characteristics of quadcopters. However, to develop a 

nonlinear controller, quadcopters must be modelled to be 

suitable for all operating conditions. Since this is not possible 

in practice, adaptive control techniques [8]–[10] are used to 

solve the stated problem. Adaptive controllers incorporate 

approaches that can adapt to changes in the working 

environment. But to do this, they depend on the system 

model to be highly accurate. It has been shown that the 

attitude controller, which is developed with the model 

reference adaptive control technique, successfully performs 

this operation on the hardware [11]. Reinforcement learning 

techniques are also used, which iteratively perform learning 

processes independently of the system model. In fact, there 

are studies to carry out the control process with those that 

remain intact against engine failures that occur in the aircraft 

with these techniques [12]. However, reinforcement learning 

processes cannot guarantee that the system will always 

produce stable responses. Various fuzzy logic controllers are 

also frequently used, regardless of the system model. Interval 

type-2 fuzzy logic controllers are used to develop a controller 

that is resistant to changes in system parameters or 

disturbances in the working environment [13]-[14]. 

Although the controllers developed with model-based or 

model-free techniques have some unique advantages, it is 

expected that they will be able to show the expected 

performance on the hardware. The control algorithm that will 

work on the hardware should be considered in some criteria, 

such as not bringing a high processing load, short response 

times, and short development processes. 

For the reasons stated, proportional-integral-derivative (PID) 

and LQR techniques can be said to be advantageous at this 

point. In addition, in flight control software (PX4, etc.) 

commonly used for drones, the PID controller comes by 

default. The adjustment of the coefficients in the PID 

technique used in the quadcopter's position controller was 
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carried out by different optimization algorithm [15]–[20]. 

However, many of the control techniques developed for 

quadcopters are recommended for a part of the control 

system (usually as a replacement for the position controller). 

This practice is even more common, especially when 

performed experimentally on hardware. It is thought that 

there are areas with improvement potential due to this 

approach for systems with many problems, such as 

quadcopters. 

Open-source autopilot software such as PX4 [21] or 

ArduPilot [22] developed for quadcopters has been 

developed with cascade PID controllers according to the 

inner-outer loop structure. The coefficients in the PID 

control technique are set to a certain degree by default. These 

coefficients should be adjusted by an expert who knows the 

behavior of the quadcopter according to the application in 

which it will operate. Adjusting the specified coefficients is 

both a matter requiring expertise and a serious time-

consuming process. 

In this paper, a genetically tuned LQR controller is proposed 

to increase the quadcopter's ability to follow the reference 

trajectory. The controller proposed for the quadcopter is 

designed according to the inner-outer loop structure, and the 

coefficients used in the LQR controller are optimized by a 

genetic algorithm (GA).  

As a contribution to this paper, the integrative action and 

LQR-based controller coefficients working according to the 

inner-outer loop structure were optimized, and gains were 

obtained in the performance criteria determined according to 

the current study in the literature. In addition, the dynamic 

model of the quadcopter with the X configuration is derived 

simply and straightforwardly and linearized according to 

certain approaches, making it suitable for model-based 

controller development. 

The article is organized as follows: In Section 2, the motion 

equations acting on the quadcopter are obtained according to 

the Newton-Euler formulas, the obtained motion equations 

are linearized according to the determined approaches, and 

the motion equations are presented in the state-space form by 

with the quadcopter inner-outer loop structure. In Section 3, 

the design of the LQR-based controller with integrative 

action according to the inner-outer loop structure has been 

carried out. In Section 4, the quadcopter is modelled in a 

MATLAB/Simulink environment according to the 

parameters of Parrot AR. Drone 2.0. The developed 

controller responses were tested according to the specified 

control inputs and following the reference trajectory. 

Additionally, the results of the simulation tests performed are 

shared. In Section 5, the test results are evaluated, and future 

work topics are mentioned. 

2.  MATERIALS AND METHODS 

In this section, the equations of motion of the quadcopter will 

be derived according to Newton-Euler formulas. The 

equations of motion required for quadcopter body-fixed {𝐵} 
and inertial {𝐼} frames are shown in Figure 1. According to 

the inertial frame specified here, the position vector of the 

center of gravity of the quadcopter is expressed as 𝑝 =

[𝑥 𝑦 𝑧]𝑇. The Euler angle vector 𝑛 = [𝜑 𝜃 𝜓]𝑇 in the body-

fixed frame is denoted as the roll, pitch, and yaw angle, 

respectively. The angular velocity component is expressed 

as 𝜔 = [𝑝 𝑞 𝑟]𝑇. The quadcopter's equations of motion are 

expressed as follows [23]: 

𝑚𝑝̈ = −𝑚𝑔𝑎3⃗⃗⃗⃗ + 𝑅𝐵 
𝐼 𝐹          (1) 

𝐼𝜔̇ = −𝜔 .  𝐼𝜔 +  𝜏          (2) 

It is the rotation matrix used in the transformation from the 

𝑅𝐵 
𝐼   body-fixed frame to the inertial frame in Equation 1.  

 
Figure 1. Reference frames are defined for the quadcopter 

model [24]. 

The unit vector in the body-fixed frame is {𝑏⃗ 1, 𝑏⃗ 2, 𝑏⃗ 3} and in 

the inertial frame it is {𝑎 1, 𝑎 2, 𝑎 3}. 𝑚 shows the total mass of 

the quadcopter, 𝑔 shows the gravity acceleration value, 𝐹 

shows the force produced by the motors, 𝐼 show the 3x3 

inertia matrix defined in the body-fixed frame, and 𝜏 shows 

the moments generated from the quadcopter. The rotation 

matrix used in the transformation from the body-fixed frame 

used in Equation 1 to the inertia frame. This rotation matrix 

performs the transformation between the specified axis sets 

[25]: 

𝑅𝐵 
𝐼 = [

𝑐𝜃𝑐𝜓 
𝑐𝜃𝑠𝜓
−𝑠𝜃

 

𝑠𝜑𝑠𝜃𝑐𝜓 − 𝑐𝜑𝑠𝜓  
𝑠𝜑𝑠𝜃𝑠𝜓 − 𝑐𝜑𝑐𝜓

𝑠𝜑𝑐𝜃
 

𝑐𝜑𝑠𝜃𝑐𝜓 + 𝑠𝜑𝑠𝜓 
𝑐𝜑𝑠𝜃𝑠𝜓 − 𝑠𝜑𝑐𝜓

𝑐𝜑𝑐𝜃
]       (3) 

In Equation 3, s and c denote sine and cosine, respectively. 

It should be noted that the 𝑅𝐼 
𝐵  matrix [25] used in the 

controller design is different from the one specified in 

Equation 3. Angular rates of change 𝑛̇ = [𝜑̇ 𝜃̇ 𝜓̇]
𝑇
are 

obtained from the rotation rates occurring in the quadcopter 

body as follows [26]: 

[

𝜑̇

𝜃̇
𝜓̇

] = [
1
0
0
 

𝑠𝜑𝑡𝜃
𝑐𝜑

𝑠𝜑𝑠𝑒𝜃
 

𝑐𝜑𝑡𝜃
−𝑠𝜑

𝑐𝜑𝑠𝑒𝜃
] [

𝑝
𝑞
𝑟
]         (4) 

In Equation 4: s, c, se and t denote sine, cosine, secant, and 

tangent, respectively. After a reference is given to the 

quadcopter, the relationship between the yaw moment and 
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thrust force obtained from the motors when it is in steady 

state can be defined as follows [27]: 

𝑇𝑖 = 𝑐𝑇𝑖
Ω𝑖

2           (5) 

𝜏𝑖 = 𝑐𝜏𝑖
Ω𝑖

2           (6) 

The expression Τ𝑖 in Equation 5 represents the thrust force 

produced by any motor, and 𝑐Τ𝑖
 is used as the coefficient that 

realises the conversion between angular velocity and thrust 

force. The Ω value used in the same equation represents the 

angular velocity of the motors. Similarly, the expression 𝜏𝑖 

in Equation 6 represents the yaw moment produced from any 

motor, 𝑐𝜏𝑖
 is the coefficient that converts between angular 

velocity and yaw moment, and these coefficients can be 

calculated experimentally. In addition, these coefficients 

vary according to the propeller type, number of blades, 

profile, and air density. Equations 5 and 6 in the case of 

analyzing the thrust force and yaw moment on the z-axis 

[27]: 

𝜏𝜓𝑖
=

𝑐𝜏𝑖

𝑐𝑇𝑖

𝑇𝑖 = 𝑐𝑖𝑇𝑖          (7) 

can be written as. The total thrust force (𝑇) obtained from the 

motors on the quadcopter and the moments (𝜏𝑖) equations of 

the x, y and z axes are shown in Equation 8 [24]: 

[

𝑇
𝜏𝜑

𝜏𝜃

𝜏𝜓 

] = [

1 1
𝑙 −𝑙

−𝑙 −𝑙
𝑐1 𝑐2

    

1 1
−𝑙 𝑙
𝑙 𝑙
𝑐3 𝑐4

] [

𝑇1

𝑇2

𝑇3

𝑇4

]         (8) 

In Equation 8, the rows represent the total thrust force 

obtained from the four motors and the other rows represent 

the moments on the x, y, and z axes, respectively. The 𝑙 value 

indicates the distance from the centre of gravity of any motor 

in the quadcopter. 

2.1.  Linearization of the Quadcopter Model 

When the sets of equations specified in Equations (1)-(8) are 

examined, it is seen that they contain nonlinear expressions. 

Since linear control techniques will be used in this study, 

these equation sets should be linearized. The equilibrium 

point for linearization was determined as the quadcopter's 

hover position (𝑝 = [𝑥 𝑦 𝑧]𝑇 , 𝑛 = [0 0 0]𝑇). This is 

preferred for simplicity. With the small angles approach, the 

cosine values are assumed to be 1, and the sine and tangent 

Euler angles are accepted as themselves. 

Within the scope of this study, an LQR-based controller with 

integrative action was developed according to the inner-outer 

loop structure. Therefore, six different controllers need to be 

designed. These controllers are the position in the x, y, and z 

axes designed to follow the angle references on 𝜑, 𝜃 𝑎𝑛𝑑 𝜓 

axes. Therefore, for each controller, its systems are 

expressed with a state-space approach [24]. 𝑇 in Equation 9 

represents the total thrust obtained from all motors. 

Equations of motion to consider when developing the height 

controller in the z axis [26]: 

𝑧̈ ≅  
1

𝑚
(𝑇 − 𝑚𝑔)           (9) 

The state variables and inputs determined for this system are 

as follows: 

𝑥𝑧 = [𝑧 𝑧̇]𝑇 , 𝑢𝑧 = 𝑇 − 𝑚𝑔       (10) 

The state-space representation is as follows: 

𝑥𝑧̇ = [
0 1
0 0

] 𝑥𝑧 + [
0

1/𝑚
] 𝑢𝑧       (11) 

𝑦𝑧 = [1 0]𝑥𝑧          (12) 

Changes in the x and y axes of the quadcopter also have 

effects on the roll and pitch angles in the inertia frame. We 

can express these changes as follows:  

𝜃̈ ≅
𝜏𝜃 

𝐼𝑦
          (13) 

According to the specified motion equation, the state 

variable and inputs are as follows:  

𝑥𝜃 = [𝜃 𝜃̇]
𝑇
, 𝑢𝜃 = 𝜏𝜃        (14) 

The state space representation consists of the following:  

𝑥𝜃̇ = [
0 1
0 0

] 𝑥𝜃 + [
0

1/𝐼𝑦
] 𝑢𝜃       (15) 

𝑦𝜃 = [1 0]𝑥𝜃         (16) 

The acceleration equation of motion occurring in the body-

fixed frame is: 

𝑎 
𝐵 =

𝐹

𝑚
− 𝑅𝐼 

𝐵 𝑔𝑎 3 − 𝜔 . 𝑣 
𝐵        (17) 

In Equation 17, 𝑣 
𝐵 = [𝑢 𝑣 𝑤]𝑇 denotes the velocity value in 

the body-fixed frame, 𝜔 . 𝑣 
𝐵  denotes centripetal 

acceleration. If the x and y directions in the body-fixed frame 

are linearized, and the yaw angle 𝜓 is assumed to be zero: 

𝑎𝑥 
𝐵 ≅ 𝜃𝑔         (18) 

𝑎𝑦 ≅ −𝜑𝑔 
𝐵          (19) 

As per the definition 𝑣 
𝐵  stated in Equation 17:  

𝑢̇ ≅ 𝜃𝑔          (20) 

𝑣̇ ≅ −𝜑𝑔         (21) 

can be edited. According to the obtained equations, the state 

variables to be designed for the x position can be arranged as 

follows:  

𝑥𝑥 = [ 𝑥𝐼 
𝐵  𝑢 ]𝑇 , 𝑢𝑥 = 𝜃        (22) 

State-space representation to be used for reference position 

control on the X-axis:  
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𝑥𝑥̇ = [
0 1
0 0

 ] 𝑥𝑥 + [
0
𝑔
] 𝑢𝑥        (23) 

𝑦𝑥 = [1 0 ]𝑥𝑥         (24) 

After linearizing the equations of motion occurring in the y-

axis under certain assumptions, they can be expressed as 

follows: 

𝜑̈ ≅
𝜏𝜑 

𝐼𝑥
          (25) 

The state variable and inputs, according to the specified 

motion equation are as follows: 

𝑥𝜑 = [𝜑 𝜑̇]𝑇 , 𝑢𝜑 = 𝜏𝜑        (26) 

Its representation in state-space form is: 

𝑥𝜑̇ = [
0 1
0 0

] 𝑥𝜑 + [
0

1/𝐼𝑥
] 𝑢𝜑       (27) 

𝑦𝜑 = [1 0]𝑥𝜑         (28) 

According to Equations (19) and (21), the state variables and 

input for the controller that will perform the position control 

on the y axis can be used as follows: 

𝑥𝑦 = [ 𝑦𝐼 
𝐵  𝑣 ]𝑇 , 𝑢𝑦 = 𝜑        (29) 

State-space representation to be used for reference position 

control in the y axis is: 

𝑥𝑦̇ = [
0 1
0 0

 ] 𝑥𝑦 + [
0

−𝑔
] 𝑢𝑦       (30) 

𝑦𝑦 = [1 0]𝑥𝑦         (31) 

The angular acceleration occurring in the yaw axis can be 

linearized as follows: 

𝜓̈ ≅
𝜏𝜓 

𝐼𝑧
          (32) 

State variable and input for the controller on this axis: 

𝑥𝜓 = [𝜓 𝜓̇]
𝑇
, 𝑢𝜓 = 𝜏𝜓        (33) 

It can be expressed as. State-space representation to be used 

in the controller on this axis: 

𝑥𝜓̇ = [
0 1
0 0

] 𝑥𝜓 + [
0

1/𝐼𝑧
] 𝑢𝜓       (34) 

𝑦𝜓 = [1 0]𝑥𝜓         (35) 

It can be used as. Thus, a quadcopter dynamic model is 

derived with six different state space representations. With 

the dynamic model obtained, it has become usable in 

understanding flight dynamics with some fixed inputs in the 

MATLAB/Simulink environment. 

3. LQR CONTROLLER 

The linear quadratic regulator is an optimal linear controller 

technique that performs optimization over system dynamics 

after all states are taken as feedback. If a design is to be made 

with the LQR controller, the system to be controlled should 

be modelled as follows: 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢         (36) 

𝑦 = 𝐶𝑥 + 𝐷𝑢         (37) 

The K matrix determined because of the optimization 

process is as follows: 

𝑢(𝑡) = −𝐾𝑥(𝑡)         (38) 

is implemented. Optimized function in LQR controller: 

𝐽 = ∫ (𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢)𝑑𝑡
∞

0
        (39) 

is defined as. 𝑄 refers to the weight matrix, and 𝑅 refers to 

the control matrix specified in Equation 39. Calculation of 

the optimal coefficient is done as follows: 

𝐾 = 𝑅−1𝐵𝑇𝑃         (40) 

The steady-state of the 𝑃 matrix in Equation 40 is determined 

according to the Riccati equation: 

𝐴𝑇𝑃 + 𝑃𝐴 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄 = 0       (41) 

An integrator is added to the LQR controller structure to 

eliminate perturbations and steady-state error. Thus, a more 

robust and steady-state error is eliminated against 

uncertainties. The 𝑟𝑒𝑓 value in Equation 42 represents the 

reference given to the controller. Integrator entry in LQR 

structure with integrative action: 

𝜉̇ = 𝑟𝑒𝑓 − 𝑦 = 𝑟𝑒𝑓 − 𝐶𝑥        (42) 

is implemented as. The integrator output is expressed as 𝜉. 

By adding the integrator to the LQR controller, the controller 

response is written as: 

𝑢(𝑡) = −𝐾𝑥(𝑡) + 𝑘1𝜉        (43) 

State-space representation after adding the integrator process 

to the LQR controller [24]: 

[
𝑥̇
𝜉̇
] = [

𝐴 0
−𝐶 0

] [
𝑥
𝜉] + [

𝐵
0
] 𝑢 + [

0
1
] 𝑟𝑒𝑓      (44) 

is becoming. According to the representation in the newly 

formed state-space form [24]: 

𝐴̅ = [
𝐴 0

−𝐶 0
] , 𝐵̅ = [

𝐵
0
] 𝑢        (45) 

It is arranged in the form of matrix A and B. The optimal 

gain matrix is as follows [24]: 
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𝐾 = [𝐾     − 𝑘1]         (46) 

is expressed. In case the quadcopter is required to follow the 

position and angle reference given, the LQR controller is 

designed according to the inner-outer loop structure with the 

designed integrative action. The controller designed 

according to the inner-outer loop structure is shown in Figure 

2. 

 
Figure 2. Inner-outer loop structure used for GA-LQR 

controller [24]. 

It is necessary to determine the 𝑄 and 𝑅 matrix in the 

optimized function in the LQR controller. Determining this 

weight and control matrix by trial-and-error method takes 

considerable time. There are 18 coefficients in total that need 

to be set in the LQR controller for the x, y and z positions of 

the quadcopter and the roll, pitch, and yaw reference. These 

coefficients can be determined without losing time with 

optimization algorithms such as GA in the simulation 

environment. 

3.1.  Genetic Algorithm 

The coefficients in the LQR controller, which is designed 

according to the inner-outer loop structure with integrative 

action, are adjusted with GA. GA is a search algorithm that 

tries to find the best result based on optimization. It was 

proposed by John Holland in 1975. It consists of natural 

selection, mutation, and crossover operators. GA works to 

find the values that will bring the given objective function to 

the best result. The flow diagram of the GA is shown in 

Figure 3. 

 
Figure 3. Genetic algorithm flow diagram. 

A total of 18 coefficients that determine their success in 

tracking position and angle references have been optimized 

with GA. The gain matrix in Equation 46 is valid for position 

and angle controllers; the matrix 𝐾 in this equation 

represents the state variables, and the matrix 𝑘1 represents 

the integrative action value. For each controller, three 

coefficients must be used with two state variables and an 

integrative action value. Thus, 18 coefficients in total need 

to be determined for position and controllers. This 

optimization process was carried out using the dynamic 

model of the quadcopter in the MATLAB/Simulink 

environment. Root-mean-square error (RMSE) value of 

position errors is used for the fitness function used in GA. 

Function used for this operation: 

𝑓𝑚𝑖𝑛 = 𝑟𝑚𝑠(𝑥) + 𝑟𝑚𝑠(𝑦) + 𝑟𝑚𝑠(𝑧)         (47) 

In the GA working with the determined fitness function, the 

number of generations: 40, the number of populations: 20, 

the crossover ratio: 0.85, and the mutation rate: 0.20. GA was 

run on a computer equipped with AMD Ryzen 7 3700U 

processor and 16 GB RAM. With the specified GA 

parameters and hardware specifications, the run time was 

907.42 seconds. 

4.  SIMULATION RESULTS AND DISCUSSION 

The performance of the genetically tuned LQR controller 

was compared with a controller proposed in the literature 

[26]. The compared controller is designed with an inner-

outer loop structure, LQR controller and integrative action. 

The coefficients of the controller were determined by trial-

and-error method. In this study to evaluate the performance 

of the developed controller, its responses were observed by 

giving some references to the position and angle values. The 

parameters of the Parrot AR. 2.0 aircraft modelled in the 

MATLAB/Simulink environment are shown in Table 1. 

Table 1. Physical parameters of Parrot AR. 2.0 quadcopter. 

𝑚 (𝑘𝑔) 𝐿 (𝑚) 𝐼𝑥  (𝑘𝑔𝑚2) 𝐼𝑦 (𝑘𝑔𝑚2) 𝐼𝑧 (𝑘𝑔𝑚2) 

0.46 0.127 2.24e-4 2.90e-4 5.30e-4 

In the MATLAB/Simulink environment, the response of the 

quadcopter to the applied input to observe the response to the 

control inputs is shown in Figure 4.  

 
Figure 4. Reference response of the GA-LQR controller on 

the x-axis. 
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In this paper, the abbreviation GA-LQR is used for the 

proposed controller. The results obtained are shared in Table 

4. Used in the tables: 𝑡𝑟 represents the rise time (s) and 𝑀𝑝 

represents the overshoot (%). Accordingly, while the GA-

LQR controller exhibited a faster rise performance to the 1-

meter reference given on the x-axis, some overshoot was 

observed. 

Table 4. Evaluation of the reference response in the x-axis.  

Controller 𝑡𝑟 (𝑠) 𝑀𝑝(%) 

[24] 2.9677 0 

GA-LQR 1.3629 2.8549 

The behavior of the quadcopter to reach the reference on the 

y-axis is shown in Figure 5.  

Figure 5. Reference response of the GA-LQR controller on 

the y-axis. 

The developed GA-LQR controller exhibited similar 

behavior in the x and y axes. Obtained results are shown in 

Table 5. 

Table 5. Evaluation of the reference response in the y-axis. 

Controller 𝑡𝑟 (𝑠) 𝑀𝑝(%) 

[24] 2.9677 0 

GA-LQR 1.3714 4.1294 

As in the x-axis, the y-axis also reached the reference in a 

shorter time. In addition, some overshoot occurred.  When 

evaluated in terms of rise times, it was observed that there 

was a two-fold difference.  

Another evaluation signal for position control was applied 

for the z-axis.  The responses obtained after giving the 

quadcopter a 1-meter elevation reference are shown in 

Figure 6. The GA-LQR controller reached the reference in 

the z-axis in a shorter time than the other position references. 

Similarly, it can be said to be advantageous in terms of 

settling time. 

Figure 6. Reference response of the GA-LQR controller on 

the z-axis. 

The results obtained on the z-axis are presented in Table 6.  

Table 6. Evaluation of the reference response in the z-axis. 

Controller 𝑡𝑟 (𝑠) 𝑀𝑝(%) 

[24] 2.3437 0.0628 

GA-LQR 1.3532 6.9580 

The GA-LQR controller showed faster responses in terms of 

rise time in the x and y axes.  However, it was found that a 

certain amount of overshoot occurred.  After comparing the 

responses to position references, roll, pitch, and yaw angle 

reference responses were also analyzed. A roll angle 

reference of 0.2 radians was applied to the quadcopter, and 

the controller response is shown in Figure 7. 

Figure 7. Reference response of GA-LQR controller for roll 

angle. 

While the GA-LQR controller reached the roll reference 

angle later, no overshoot occurred this time.   The results of 

the responses to the roll angle reference are presented in 

Table 7.  

Table 7. Evaluation of the reference response in the roll axis. 

Controller 𝑡𝑟 (𝑠) 𝑀𝑝(%) 

[24] 0.3529 0.8185 

GA-LQR 1.7875 0.1639 
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Similarly, the controller response to a pitch angle reference 

of 0.2 radians is shown in Figure 8.  

Figure 8. Reference response of GA-LQR controller for 

pitch angle. 

It is observed that the response produced against the roll 

angle reference is produced in the same way for the pitch 

angle reference. The reactions occurring on the pitch axis are 

shared in Table 8. 

Table 8. Evaluation of the reference response in the pitch 

axis. 

Controller 𝑡𝑟 (𝑠) 𝑀𝑝(%) 

[24] 0.3706 1.0163 

GA-LQR 0.7955 0 

When the responses at the pitch angle reference are analyzed 

according to Table 8, it is observed that no overshoot 

occurred in the GA-LQR controller. The responses of the 

controllers to the yaw angle reference are shown in Figure 9. 

Figure 9. Reference response of the GA-LQR controller for 

yaw angle. 

When the data obtained at the yaw angle were analyzed, it 

was determined that an overshoot did not occur in both 

controllers. The data obtained are shown in Table 9. 

Table 9. Evaluation of the reference response in the yaw 

axis. 

Controller 𝑡𝑟 (𝑠) 𝑀𝑝(%) 

[24] 1.6421 0 

GA-LQR 1.2079 0 

4.1.  Stability Analysis 

The developed controller is expected to achieve success in 

certain performance criteria. However, stability analyses of 

the controller should also be performed. The stability of a 

system expressed in state-space representation can be 

analyzed by looking at the eigenvalues of the A matrix. 

Quadcopter controllers are arranged in a close-loop fashion 

with the coefficients determined by GA-LQR. The 

eigenvalues of the obtained through MATLAB system are 

shown in Table 10. 

Table 10. Closed-loop eigenvalue analysis with optimized 

coefficients. 

Axis 

Controller 
Close-loop eigenvalues 

x {-1.3106 ±1.1906i, -4.8039} 

y {-1.1924 ±1.3667i, -2.4882} 

z {-1.3393 ±1.2512i, -2.0662} 

roll {-1.3840 ±0.7178i, -55.7223} 

pitch {-2.9947, -8.6620, -29.2386} 

yaw {-1.8593, -11.2946, -100.9108} 

As seen in Table 10, all eigenvalues have negative values. It 

has been determined that the control system is stable because 

the real parts of the closed loop poles are negative. 

After observing the success of the developed GA-LQR 

controller in tracking only one reference, it was also tested 

to track multiple references simultaneously. The GA-LQR 

controller is designed to track x, y and z position references, 

roll, pitch, and yaw angle references as stated in section 3. In 

this context, the ability to follow the trajectory given as a 

reference for x, y and z position controllers is shown in 

Figure 10. The trajectory tracking capability of the GA-LQR 

controller at x, y and z positions is demonstrated by the tests 

performed. 

Figure 10. Control response of GA-LQR controller for 

trajectory tracking 

The responses in the x-axis following the reference trajectory 

shown in Figure 11 are presented in Figure 12. 
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Figure 11. Control response of the GA-LQR controller in the 

x-axis for trajectory tracking 

According to the data shown in Figure 11, it is observed that 

the GA-LQR controller provides superiority in terms of rise 

time in position references. However, some overshoots were 

also observed. The controller responses on the y-axis during 

the tracking of the reference trajectory are shown in Figure 

12.

Figure 12. Control response of the GA-LQR controller in the 

y-axis for trajectory tracking. 

It is again shown that the GA-LQR controller is successful 

in terms of rise time in the y-axis as well as in the x-axis. The 

responses in the z-axis during the tracking of the reference 

trajectory are shown in Figure 13.  

 
Figure 13. Control response of the GA-LQR controller in the 

z-axis for trajectory tracking. 

When the responses occurring in the z-axis are analyzed, it 

is determined that the GA-LQR controller is more 

advantageous in terms of response time while overshoot 

occurs.  The results of the evaluation according to the root-

mean-square error (RMSE) criterion in the trajectory 

tracking scenario shown in Figure 10 in the Simulink 

environment are shown in Table 11.  

According to the results shared in Table 11, the LQR 

controller with integrative action and genetic tuning follows 

the reference better than the inner-outer loop structure 

proposed in this study according to the root-mean-square 

error value. 

Table 11. Results were obtained according to the root-mean-

square error criterion 

Controller 𝑥 (𝑚) 𝑦 (𝑚) 𝑧 (𝑚) Total 

[24] 0.0865 0.0714 0.0556 0.2135 

GA-LQR 0.0756 0.0143 0.0926 0.1825 

As a result of the experiments carried out in 

MATLAB/Simulink environment for both tracking the 

reference in one axis and tracking multiple references, the 

reference tracking capability of the GA-LQR controller has 

been increased. It has been shown that not only more 

successful but also significant advantages, such as automatic 

detection of the controller coefficients, have been achieved. 

According to the experimental results obtained from 

optimizing the LQR controller with GA, it was more 

successful. At this point, if the rise time, settling time or 

overshoot is essential for the area of use, the performance 

requirements will be met by adjusting the objective function 

of the GA according to this situation. Since such a situation 

was unimportant in the experiments, organizing the objective 

function according to the RMSE criterion.  

In addition, the files of the quadrotor modelled in 

MATLAB/Simulink environment are shared at 

https://github.com/atahirkarasahin/GA-LQR.git. 

5.  CONCLUSION 

In this paper, a genetically tuned LQR controller with 

integrative action operating according to the inner-outer loop 

structure is proposed. First, an integrator is added to the LQR 

controller and the system model in state-space form is 

adapted accordingly. With the addition of the integrator, 

perturbations and steady-state errors occurring in the LQR 

controller are eliminated. The developed GA-LQR controller 

is compared with a study in the literature in 

MATLAB/Simulink environment. With the proposed GA-

LQR controller, an improvement in trajectory tracking is 

achieved with respect to the RMSE value. The genetically 

tuned LQR controller has achieved successful results both in 

terms of controller design time and according to the specified 

performance criteria. As a result of the tests performed, if the 

overshoot amount is an important criterion for the designer, 

different configurations can be realized by adjusting the 
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parameters in the GA to increase its success in this 

performance criterion. 
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