Black Sea Journal of Agriculture

doi: 10.47115/bsagriculture.1422958

Open Access Journal e-ISSN: 2618 – 6578

Research Article

Volume 7 - Issue 3: 224-232 / May 2024

THE EFFECTS OF FERTILIZER AND DIFFERENT SOIL CONDITIONER TO YIELD AND YIELD COMPONENTS IN CHICKPEA CULTIVARS

Zekeriya KARA1*, Cengiz YÜRÜRDURMAZ², Alihan ÇOKKIZGIN³

¹Kahramanmaras Sütçü İmam University, Faculty of Agriculture, Department of Soil Science and Plant Nutrition, 46100, Kahramanmaraş, Türkiye

²Kahramanmaras Sütçü İmam University, Faculty of Agriculture, Department of Field Crops, Kahramanmaras, 46100, Kahramanmaraş, Türkiye

³Gaziantep University, Vocational School of Higher Education in Nurdagi, 27840, Gaziantep, Türkiye

Abstract: This study was carried out in Kahramanmaraş Sütçü İmam University Faculty of Agriculture Research treatment area in 2022. In the study, 14 different fertilizer applications (no fertilizer, chemical fertilizer, olive bagasse 100 kg/da, olive bagasse 200 kg/da, olive bagasse 400 kg/da, olive bagasse 600 kg/da, worm manure 100 kg/da, worm manure 200 kg/da, worm manure 400 kg/da, worm manure 600 kg/da, leonardite manure 100 kg/da, leonardite manure 400 kg/da, leonardite manure 600 kg/da) were made in 2 different chickpea cultivars (Aras, Katran). According to the results obtained from the study, Katran variety had higher grain yield than Aras variety, but 1000 grain weight was found to be lower. On the other hand, the highest grain yield was obtained from olive bagasse 200 kg/da application.

Keywords: Fertilizer, Chickpea cultivars, Yield, Components

*Corresponding author: Kahramanmaras Sütçü İmam University, Faculty of Agriculture, Department of Soil Science and Plant Nutrition, 46100, Kahramanmaraş, Türkiye					
E mail: zekeriyakara0261@gm	nail.com (Z. KARA)				
Zekeriya KARA 🛛 👘	https://orcid.org/0000-0001-7855-4968	Received: January 20, 2024			
Cengiz YÜRÜRDURMAZ 🛅	https://orcid.org/0000-0002-3407-0184	Accepted: March 15, 2024			
Alihan ÇOKKIZGIN 👘	https://orcid.org/0000-0001-5066-0531	Published: May 01, 2024			
Cite as: Kara Z, Yürürdurmaz C, Çokkızgın A. 2024. The effects of fertilizer and different soil conditioner to yield and yield components in chickper					
cultivars. BSJ Agri, 7(3): 224-232.					

1. Introduction

Agriculture has been the foundation of national economies worldwide. It has achieved significant success, thanks to advancements in science, technology, and the intensive use of land. However, it has also brought about certain agro-ecological and environmental challenges. The widespread use of chemical fertilizers and pesticides in agriculture has resulted in land degradation and environmental pollution in various agricultural ecosystems. The continuous application of chemical fertilizers to agricultural lands has deteriorated soil fertility, leading to a reduction in biodiversity, soil organic matter content, and causing irreversible soil erosion (Yasir et al., 2022). In contrast, organic fertilizers enhance soil organic matter content, soil fertility, microbial activity, and moisture retention capacity (Demirkıran et al., 2012; Meagy et al., 2016). They improve soil quality and crop yield by serving multiple functions in agricultural ecosystems (Jones et al., 2007; Ekici et al., 2023). Organic matter enhances soil quality by improving input use efficiency and ensuring optimum sustainability and environmental safety (Kushwah et al., 2016). The application of organic fertilizer increases soil fertility and, consequently, crop yield (Reddy et al. 2005). Many studies state that organic wastes improve soil structure, increase soil organic matter content, reduce evaporation, and are effective against erosion (Laamrani et al., 2017; Liang et al., 2012). The application of organic fertilizer enhances soil quality and health by increasing soil carbon and microorganisms beneficial to plant crops (Gaind and Singh, 2016). The protein content of wheat grown with organic fertilizers is higher than that of wheat grown with chemical fertilizers (Bahrman et al., 2004; Shivay et al., 2010). Foods produced with organic fertilizers are known to be tastier and have a more content balanced vitamin and mineral than conventionally grown foods (Fuertes-Mendizabal et al., 2010). Organic production is an economical, renewable, and environmentally friendly approach that allows the preservation of natural resources for current and future generations, ensuring the sustainability of production.

Leonardite is a low-calorie coal rich in humic acid and organic matter and formed as a result of the oxidation of lignite coal without coalification (Olivella et al., 2002). Leonardite, an organic regulator, improves the structure of the soil, increases water retention capacity and water permeability, maintains soil moisture content and maintains soil pH balance (Kara et al., 2022a). Vermicompost has positive effects on the physical (aggregate stability, water retention), chemical (plant

BSJ Agri / Zekeriya KARA et al.

nutrition elements, soil pH), biological properties (living diversity and biomass) and plant productivity of soils (Dominguez et al., 2003; Ferreras et al., 2006; Azarmi et al., 2008; Saha et al., 2008). Olive bagasse is the solid subproduct remaining after the mechanical processing of olives into oil. When applied to soils as an organic regulator, it improves the physical properties of soils (hydraulic conductivity, aggregate stability, dispersion ratio, field capacity and bulk density) (Kara et al., 2022b). In this study, we investigated the effects of different organic fertilizers (leonardite, worm manure, and olive bagasse) on the yield and quality of chickpea varieties (Aras and Katran).

2. Materials and Methods

This research; in order to determine the yield and yield characteristics of local chickpea genotypes and registered chickpea varieties were conducted in the Kahramanmaras in 2022 year with Aras and Katran chickpea varieties. It was conducted in the Research and Application area of Kahramanmaraş Sutçu Imam University, Faculty of Agriculture (it's coordinate 37S X: 307001, Y: 41630333). Wheat plants have been planted before in the area where the study is located. The area of each parcel was determined as $10m^2$ (5m × 2m). The study was conducted as a randomized completely block design with three replications. In the study, no fertilizer, chemical fertilizer, olive bagasse 100 kg/da, olive bagasse 200 kg/da, olive bagasse 400 kg/da, olive bagasse 600 kg/da, worm manure 100 kg/da, worm manure 200 kg/da, worm manure 400 kg/da, worm manure 600 kg/da, leonardite 100 kg/da, leonardite 200 kg/da, leonardite 400 kg/da, leonardite 600 kg/da fertilizer applications were made.

Harvesting operations were done manually. Weeds were physically combated throughout the growing period. On the other hand, chemical control was carried out against diseases and pests. Some physical and chemical properties of the soil used as a trial area are given in Table 1. In addition, some chemical properties of the organic fertilizers used as materials (Olive Bagasse, Worm manure and Leonardite) are given in Table 2.

Table 1. Some physical and chemical properties of the soil where the experiment was established

Sand	Clay	Silt	pH	ОМ	Lime	Р	К
%	%	%		%	%	µg/g	µg/g
41	30	29	7.62	1.68	3.2	13.8	230

	Leonardite	Olive Bagasse	
Variables	(Kara and Yakupoğlu, 2023)	(Kara et al., 2022b)	Worm Manure
OM (%)	55	84.1	52.4
C (%)	31.9	48.14	30.39
N (%)	0.54	1.02	2.06
P (μg/g)	1781	900	4600
K (μg/g)	4170	12000	
Ca (µg/g)	92100	2800	
Mg (µg/g)	2087	1100	
Fe (µg/g)	2780	305.6	
Zn (μg/g)	28.26	30.1	
Mn (µg/g)	25.88	25.2	
Cu (µg/g)	0.9		

Table 2. Some chemical properties of organic regulators

2.1. The climate characteristic of the study area

The summers in Kahramanmaraş city center are hot and dry, and the winters are warm and rainy. The average temperature and total precipitation values for the year the experiment was conducted are given in Table 3. As reported by other researchers in the study; plant height (cm), first pod height (cm), number of pods per plant (number/plant), 1000 seed weight (g) and seed yield (kg/da) parameters were examined (Colkesen *et al.*, 2014; Girgel *et al.* 2018; Girgel and Cokkizgin, 2019).

2.2. Statistical Analysis

The data obtained from study were analyzed according to one factor randomized complete block design using the SAS package program (SAS, 2004). LSD multiple range test was used to compare the means.

	Monthly Total	Monthly Total	Monthly Average	Monthly Average
	Precipitation (mm)	Precipitation (mm)	Temperature (°C)	Temperature (°C)
Months	2022	1930-2018	2022	1930-2018
January	311.2	4.9	4.47	4.9
February	170.4	6.5	8.7	6.5
March	157.8	10.7	7.1	10.7
April	12.7	15.5	18.2	15.5
May	40.4	20.3	20.4	20.3
June	3.7	25.2	26.1	25.2
July	0.5	28.4	29.6	28.4
August	0	28.5	29.4	28.5
September	10.7	25.2	26.1	25.2
October	12.3	19.1	20.6	19.1
November	72.4	11.7	13.4	11.7
December	32.5	6.7	9.6	6.7
Total	824.6	725.8		
Mean			17.8	16.9

Black Sea Journal of Agriculture

 Table 3. Climate data obtained from Kahramanmaraş meteorological station (Anonymous, 2022)

3. Results and Discussion

3.1. Plant Height (cm)

Variance analysis table for plant height are given in Table 4. According to the results obtained from the research, different fertilizer applications and different fertilizer X chickpea interaction were found to be insignificant. The statistical difference between chickpea varieties was found to be significant.

In terms of plant height, Aras variety produced taller plants than Katran variety (Table 6).On the other hand, when the situation is evaluated in terms of chemical applications, the highest plant height value was obtained from leonardite fertilizer 600 kg/da application (Table 6). Generally similar results were obtained when looking at other organic fertilizer application doses (CF, OB 100kg/da, OB 200kg/da, OB 400kg/da, OB 600kg/da, WM 100kg/da, WM 200kg/da, WM 400kg/da; WM 600kg/da, L 100kg/da, L 200kg/da, L 400kg/da). The results obtained from the study are in agreement with other studies (Bakoğlu, 2005; Ekici et al., 2023). Ekici et al. (2023) determined plant height of chickpea between 48 cm and 54 cm with using leonardite and stated that increases in plant height were insignificant.

When the varieties (Aras and Katran) are evaluated within themselves; differences between fertilizer applications were statistically insignificant. Similar opinions reported by Colkesen et al. (2014), Girgel et al. (2018), Girgel and Cokkizgin (2019).

Table 4. Variance analysis table for plant heig

Variation Source	DF	SS	MS	F	Prob.
Different Fertilizer Application	13	121.6234155	9.3556473	1.09	0.3833
Chickpea Cultivars	1	62.7644298	62.7644298	7.34	0.0089
Different Fertilizer X Chickpea Interaction	13	42.5274536	3.2713426	0.38	0.9701
Error	56	479.0024000	8.5536143		
Total	83	705.9176988			

DF= degrees of freedom , SS= sum of squares , MS= mean sum of squares , F= F-statistic, Prob= probability

Table 5. Plant height values of cultivars and statistical groups

Aras	48.4660ª
Katran	46.7371 ^b

^{a,b} Means with different letters in the same column are significantly different at P<0.05.

DFA	Aras	Katran	Mean
Control	50.043 ND	46.587 ND	48.315 ND
CF	48.587 ND	45.127 ND	46.857 ND
OB 100 kg/da	49.000 ND	45.083 ND	47.042 ND
OB 200 kg/da	47.460 ND	45.377 ND	46.418 ND
OB 400 kg/da	46.670 ND	45.210 ND	45.940 ND
OB 600 kg/da	45.917 ND	47.293 ND	46.605 ND
WM 100 kg/da	47.127 ND	46.170 ND	46.648 ND
WM 200 kg/da	48.503 ND	48.917 ND	48.710 ND
WM 400 kg/da	47.583 ND	46.253 ND	46.918 ND
WM 600 kg/da	49.127 ND	46.627 ND	47.877 ND
L 100 kg/da	48.417 ND	47.627 ND	48.022 ND
L 200 kg/da	49.337 ND	46.833 ND	48.085 ND
L 400 kg/da	49.253 ND	47.087 ND	48.170 ND
L 600 kg/da	51.500 ND	50.130 ND	50.815 ND

ND= non differences, DFA= different fertilizer application, CF= chemical fertilizer, OB= olive bagasse, WM= worm manure, L= leonardite

3.2. First Pod Height (cm)

Variance analyses for first pod height are given in Table 7. In terms of first pod height, different fertilizer applications and different fertilizer X chickpea interaction were found to be insignificant. But chickpea cultivars variation source was found to be significant.

Worm manure (200 kg/da) application had highest the first pod height value in chickpea plant. Additionally, in all other applications, the initial pod height was similar (Table 8). When the varieties (Aras and Katran) are evaluated within themselves; differences between fertilizer applications were statistically insignificant. The results obtained from the study are in agreement with other studies (Bakoğlu, 2005). The results obtained from the study are in agreement with other studies (Kahraman, 2017). The average first pod height of Aras and Katran varieties is given in Table 9. Accordingly, the average first pod height of the varieties (Aras and Katran) was statistically significant.

Table 7. Variance analysis table for first pod he	ight
---	------

Variation Source	DF	SS	MS	F	Prob.
Different Fertilizer Application	13	138.7596905	10.6738223	0.89	0.5667
Chickpea Cultivars	1	60.2149333	60.2149333	5.03	0.0289
Different Fertilizer X Chickpea Interaction	13	174.0771000	13.3905462	1.12	0.3640
Error	56	670.695800	11.976711		
Total	83	1043.747524			

DF= degrees of freedom, SS= sum of squares, MS= mean sum of squares, F= F-statistic, Prob= probability

Table 8. First pod height (cn	n) values of chemical	applications and	statistical groups
- abie of the peak noight (on		approactorio arro	bud hourour groupo

DFA	Aras	Katran	Mean
Control	21.710 ND	25.170 ND	23.440 ND
CF	21.710 ND	25.003 ND	23.357 ND
0B 100 kg/da	22.043 ND	23.920 ND	22.982 ND
OB 200 kg/da	21.420 ND	24.960 ND	23.190 ND
0B 400 kg/da	21.003 ND	23.167 ND	22.085 ND
0B 600 kg/da	21.380 ND	24.587 ND	22.983 ND
WM 100 kg/da	21.380 ND	24.297 ND	22.838 ND
WM 200 kg/da	31.710 ND	23.543 ND	27.627 ND
WM 400 kg/da	21.960 ND	23.17 ND	22.565 ND
WM 600 kg/da	21.460 ND	24.587 ND	23.023 ND
L 100 kg/da	23.127 ND	24.500 ND	23.813 ND
L 200 kg/da	22.003 ND	22.960 ND	22.482 ND
L 400 kg/da	22.503 ND	23.920 ND	23.212 ND
L 600 kg/da	20.670 ND	24.003 ND	22.337 ND
ND- non differences DE	A – different fertilizer application ('E- chemical fertilizer OB	– olive bagasse WM– worm manure I-

ND= non differences, DFA= different fertilizer application, CF= chemical fertilizer, OB= olive bagasse, WM= worm manure, L= leonardite.

Table 9. First pod height values of cultivars and statistical groups

Cultivars	Means
Aras	22.4343 ^b
Katran	24.1276ª

^{a,b} Means with different letters in the same column are significantly different at P<0.05.

3.3. Pod Number Per Plant (number/plant)

Variance analysis table for pod number per plant are given in Table 10. According to the results obtained from the research, different fertilizer applications and different fertilizer X chickpea interaction were found to be insignificant. The statistical difference between chickpea varieties was found to be significant in terms of pod number per plant.

Worm manure (400 kg/da) application is the fertilizer application that creates the most pods in the research (Table 11). On the other hand, the Katran variety has higher pods than the Aras variety, and this is statistically significant (Table 12). The results obtained from the study are in agreement with other studies (Soysal et al., 2020). On the other hand when the varieties (Aras and Katran) are evaluated within themselves; differences between fertilizer applications were statistically insignificant in terms of pod number. Similar opinions reported by Colkesen et al. (2014), Girgel and Cokkizgin (2019). Similarly, Ekici et al. (2023) determined pod number of chickpea with using leonardite as 37-54 number/plant and stated that increases in pod number were not significant.

Table 10. Variance analysis table for pod number per plant

Variation Source	DF	SS	MS	F	Prob.
Different Fertilizer	12	2250 40725	172 72264	1 1 7	0 2252
Application	15	2230.40733	175.72504	1.17	0.3232
Chickpea Cultivars	1	11945.98801	11945.98801	80.43	<.0001
Different Fertilizer X	12	2 <i>47</i> 1 EE <i>424</i>	100 11056	1 20	0.2524
Chickpea Interaction	15	2471.33434	190.11930	1.20	0.2324
Error	56	8317.46660	148.52619		
Total	83	24993.41630			

DF= degrees of freedom , SS= sum of squares , MS= mean sum of squares , F= F-statistic, Prob= probability

DFA	Aras	Katran	Mean
Control	44.377 ND	72.670 ND	58.522 ND
CF	40.583 ND	67.960 ND	54.272 ND
OB 100 kg/da	39.920 ND	69.170 ND	54.545 ND
OB 200 kg/da	37.797 ND	57.630 ND	47.712 ND
OB 400 kg/da	37.127 ND	62.710 ND	49.918 ND
OB 600 kg/da	38.920 ND	55.000 ND	46.962 ND
WM 100 kg/da	41.213 ND	63.000 ND	52.108 ND
WM 200 kg/da	38.837 ND	67.750 ND	53.295 ND
WM 400 kg/da	41.417 ND	95.290 ND	68.355 ND
WM 600 kg/da	44.293 ND	54.340 ND	49.315 ND
L 100 kg/da	38.543 ND	68.960 ND	53.752 ND
L 200 kg/da	42.463 ND	55.920 ND	49.192 ND
L 400 kg/da	41.793 ND	61.710 ND	51.752 ND
L 600 kg/da	49.630 ND	58.710 ND	54.170 ND

Table 11. Pod number per plant values (number/plant) of different fertilizer applications and statistical groups

ND= non differences, DFA= different fertilizer application, CF= chemical fertilizer, OB= olive bagasse, WM= worm manure, L= leonardite.

Table 12. Pod number	per plant valu	es of cultivars and	statistical groups
----------------------	----------------	---------------------	--------------------

Cultivars	Means
Aras	41.208 ^b
Katran	65.059ª

^{a,b} Means with different letters in the same column are significantly different at P<0.05.

3.4. 1000 seed weight (g)

Variance analysis table for 1000 seed weight are given in Table 13. In terms of 1000 seed weight, different fertilizer applications and cultivars were found to be significant but different fertilizer X chickpea interaction variation source was found to be insignificant.

Decare 200 kg olive bagasse application had a maximum weight of 1000 grains, among fertilizers. This was followed by the application of 200 kg of leonardite fertilizer per decare (Table 14). The Aras variety has higher 1000 seed weight than the Katran variety and this is statistically significant (Table 15). This situation is

associated with the fact that the grain sizes of the Katran chickpea variety are smaller than the Aras variety. The results obtained from the study are in agreement with other studies (Kahraman, 2017). When the varieties are evaluated within themselves; Differences between fertilizer applications in Aras cultivar were statistically insignificant. However, the response of the Katran cultivar to fertilizer applications was found to be statistically significant. Olive Bagasse 200 kg/da application had the highest 1000 grain weight value for the Katran variety (282.83 g).

Table 13. Variance analysis table for 1000 seed weight

Variation Source	DF	SS	MS	F	Prob.
Different Fertilizer	12	12414 6770	954 9752	2 52	0.0083
Application	15	12414.0770	934.9732	2.35	0.0005
Chickpea Cultivars	1	839292.1492	839292.1492	2223.30	<.0001
Different Fertilizer X	12	2071 0620	207 0424	0.70	0 6 6 0 2
Chickpea Interaction	15	30/1.9030	297.0434	0.79	0.0005
Error	56	21139.8905	377.4980		
Total	83	876718.6805			

DF= degrees of freedom, SS= sum of squares, MS= mean sum of squares, F= F-statistic, Prob= probability

Table	14 , 1000	seed weight w	alues (g)	of	chemical	anr	lications	and	statistical	grour	าร
lable	14.1000	seeu weight v	aiues (g)	01	chemicai	app	meations	anu	statistical	group	55

DFA	Aras	Katran	Mean
Control	435.29 ND	225.12 в	330.20 BC
CF	416.55 ND	226.68 в	321.61 ^{BC}
0B 100 kg/da	428.01 ND	227.34 в	327.67 ^{BC}
OB 200 kg/da	454.26 ND	282.83 ^A	368.55 ^A
0B 400 kg/da	425.33 ND	234.07 в	329.70 BC
OB 600 kg/da	436.88 ND	219.96 в	328.42 BC
WM 100 kg/da	438.19 ND	224.29 в	331.24 ^{BC}
WM 200 kg/da	430.92 ND	225.64 в	328.28 ^{BC}
WM 400 kg/da	441.89 ND	222.75 в	332.32 ^{BC}
WM 600 kg/da	429.14 ND	222.19 в	325.67 ^{BC}
L 100 kg/da	409.7 ND	227.37 в	318.54 ^{BC}
L 200 kg/da	434.63 ND	246.99 в	340.81 в
L 400 kg/da	412.53 ND	217.65 в	315.09 ^c
L 600 kg/da	431.44 ND	223.06 в	327.25 ^{BC}

A.B.C Means with different letters in the same column are significantly different at P<0.05. ND= non differences, DFA= different fertilizer application, CF= chemical fertilizer, OB= olive bagasse, WM= worm manure, L= leonardite.

Table 15. 1000 seed weight values	s of cultivars and statistical groups
-----------------------------------	---------------------------------------

Cultivars	Means
Aras	430.340s
Katran	230.424 ^b

^{a,b} Means with different letters in the same column are significantly different at P<0.05.

3.5. Seed Yield (kg/da)

Variance analysis table for seed yield are given in Table 16. According to the results in terms of seed yield, different fertilizer applications and different fertilizer X chickpea interaction were found to be insignificant. The statistical difference between chickpea varieties was found to be significant.

value in terms of grain yield. The second highest yield result (230.22 kg/da) was obtained in the parcels where 100 kg of leonardite fertilizer was applied per decare (Table 17). The positive effect of fertilizers on productivity is known (Uçar, 2019).

On the other hand, the Katran variety has higher seed yield (235.48 kg/da) than the Aras variety (198.63 kg/da), and this is statistically significant (Table 18).

Decare 200kg olive bagasse application had the highest BSJ Agri / Zekeriya KARA et al. When the varieties (Aras and Katran) are evaluated within themselves; differences between fertilizer applications were statistically insignificant. The results obtained from the study are in agreement with other studies (Bakoğlu, 2005). Our findings are in agreement with similar studies (Arora et al., 2003; Lopez-Bellido et al., 2004; Bakoğlu, 2005; Kamithi et al., 2009; Kahraman, 2017; Soysal et al., 2020; Ekici et al., 2023) (Table 18).

Table 16. Variance analysis table for seed yield

Variation Source	DF SS		MS	F	Prob.
Different Fertilizer Application	13	8012.55668	616.35051	0.25	0.9958
Chickpea Cultivars	1	28524.11152	28524.11152	11.53	0.0013
Different Fertilizer X Chickpea Interaction	13	16586.51296	1275.88561	0.52	0.9055
Error	56	138572.1791	2474.5032		
Total	83	191695.3603			
	c		E E D D	1 111	

DF= degrees of freedom , SS= sum of squares , MS= mean sum of squares , F= F-statistic, Prob= probability

DFA	Aras	Katran	Mean
Control	220.22 ND	237.54 ND	228.88 ND
CF	190.15 ND	231.16 ND	210.65 ND
OB100 kg/da	212.56 ND	216.82 ND	214.69 ND
0B 200 kg/da	202.97 ND	265.72 ND	234.34 ND
0B 400 kg/da	180.97 ND	225.5 ND	203.24 ND
0B 600 kg/da	207.57 ND	214.92 ND	211.24 ND
WM 100 kg/da	210.7 ND	218.26 ND	214.48 ND
WM 200 kg/da	177.51 ND	250.85 ND	214.18 ND
WM 400 kg/da	222.31 ND	208.34 ND	215.33 ND
WM 600 kg/da	199.79 ND	220.12 ND	209.96 ND
L 100 kg/da	200.37 ND	260.06 ND	230.22 ND
L 200 kg/da	202.37 ND	257.57 ND	229.97 ND
L 400 kg/da	164.51 ND	240.42 ND	202.47 ND
L 600 kg/da	188.76 ND	249.45 ND	219.11 ND

ND= non differences, DFA= different fertilizer application, CF= chemical fertilizer, OB= olive bagasse, WM= worm manure, L= leonardite.

Table 18. Seed yield values of cultivars and statistical groups

Cultivars	Means
Aras	198.63 ^в
Katran	235.48 ^A

4. Conclusion

Considering the findings, organic regulators (worm manure, olive bagasse, leonardite) and application doses (100 kg/da, 200 kg/da, 400 kg/da and 600 kg/da) didn't show positive changes on plant yield quality. This situation may be due to the heterogeneous characteristics of the study area. On the other hand, when we compared chickpea varieties among themselves, the katran chickpea variety gave higher yield than the Aras

variety. According to this result, Katran variety can be recommended to Kahramanmaraş region farmers.

In addition, the highest grain yield was obtained from 200 kg/da olive bagasse application. However, it is important to repeat the study in a homogeneous area in order to be able to talk more clearly about organic fertilizers (olive bagasse, leonardite and worm manure) and application doses.

Author Contributions

The percentage of the author(s) contributions is present below. All authors reviewed and approved final version of the manuscript.

	Z.K	C.Y.	A.C
С	40	30	30
D	40	30	30
S	40	30	30
DCP	30	40	30
DAI	40	30	30
L	50	20	30
W	80		20
CR	30	30	40
SR	80	10	10
РМ	40	30	30
FA	40	30	30

C=Concept, D= design, S= supervision, DCP= data collection and/or processing, DAI= data analysis and/or interpretation, L= literature search, W= writing, CR= critical review, SR= submission and revision, PM= project management, FA= funding acquisition.

Conflict of Interest

The authors declared that there is no conflict of interest.

Ethical Consideration

Ethics committee approval was not required for this study because of there was no study on animals or humans.

References

- Anonymous. 2022. Kahramanmaraş ili meteoroloji istasyonunda ölçülen 2022 yılına ait iklim verileri. URL: https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceleristatistik.aspx?k=H&m=K.MARAS (accessed date: March 11, 2022).
- Arora PP, Jeena SA, Upreti MC. 2003. Path analysis for yield improvement in chickpea. Agri Sci Digest. 23(2): 116-118.
- Azarmi R, Giglou MT, Taleshmikail RD. 2008. Influence of vermicompost on soil chemical and phsical properties in tomato (*Lycopersicum esculentum*) field. Afr J Biotechnol, 7 14): 2397-2401.
- Bahrman N, Le Gouis J, Negroni L, Amilhat L, Leroy P, Laine AL, Jaminon O. 2004. Differential protein expression assessed by two-dimensional gel electrophoresis for two wheat varieties grown at four nitrogen levels. Proteomics, 4: 709-19.
- Bakoğlu A. 2005. Agricultural characteristics and seed yield of chickpea (*Cicer arietinum* L.) In Elazığ conditions. Doğu Anadolu Bölgesi Araş Derg, 2005: 178-181.
- Colkesen M, Idikut L, ,Zulkadir G, Cokkizgin A, Girgel U, Boylu OA, 2014. Determination of yield and yield components of various winter lentil genotypes (*Lens culinaris* Medic) in Kahramanmaras conditions. Turkish J Agri Nat Sci, 2014: 1247-1253.
- Demirkıran AR, Özbay N, Demir Y. 2012. Leonardit ve inorganik gübrelemenin domates bitkisinin gelişimi üzerine etkileri. Türk Doğa Fen Derg, 1(2): 110-114.
- Dominguez J, Parmelee RW, Edwards CA. 2003. Interactions between *Eisenia andrei (Oligochaeta)* and nematode populations in cattle manure and biosolids. Pedobiologia, 47: 53-60.

- Ferreras L, Gomez E, Toresani S, Firpo I, Rotondo R. 2006. Effect of organic amendments on some physical, chemical and biological properties in a horticultural soil. Bioresour Techonol, 97: 635-640.
- Fuertes-Mendizabal, T, Aizpurua A, Gonzalez-Moro MB, Estavillo JM. 2010. Improving wheat bread making quality by splitting the N fertilizer rate. European J Agron, 33: 52-61.
- Gaind S, Singh YV. 2016. Short-term impact of organic fertilization and seasonal variations on enzymes and microbial indices under rice-wheat rotation. Clean-Soil, Air, Water, 44: 1396-404.
- Girgel U, Cokkizgin A, 2019. Effect of conventional and organic farming on morphological and agronomic characteristics of common bean (Phaseolus vulgaris L.). Agriculture-Elixir Inter J, (129): 53007-53010.
- Girgel U, Cokkizgin A, Colkesen M, 2018. Bayburt ve Kahramanmaraş koşullarında yetiştirilen bezelye (*Pisum sativum* ve *P. elatius*) genotiplerinin bitkisel ve tarımsal özelliklerinin belirlenmesi üzerine bir araştırma. 3rd Inter Congress on Multidisciplinary Studies, 9-10 May, Ukraine, Kiev, 2018: 395-404.
- Jones SK, Rees RM, Skiba UM, Ball BC.2007. Influence of organic and mineral N fertilizer on N_2O fluxes from temperate grassland. Agri Ecosystem Environ, 121: 74-83.
- Kahraman A. 2017. Effect of Humic Acid Applications on the Yield Components in Chickpea. J Agri Fac Gaziosmanpasa Univ, 34(1): 218-222.
- Kamithi DK, Kibe AM, Akuja TE. 2009. Effects of nitrogen fertilizer and plant population on growth, yield and harvest index (HI) of chickpea (*Cicer arietinum* L.) under dryland conditions in Kenya. J Applied BioSci, 22: 1359-1367
- Kara Z, Saltalı K, Çokkızgın A, Girel Ü, Çölkesen M, Yürürdurmaz C. 2022a. Farklı organik düzenleyicilerin toprak nem sabiteleri ve hidrolik iletkenlik üzerine etkisi. MAS J Applied Sci, 7(2): 348-356.
- Kara Z, Aydemir S, Saltalı K. 2022b. Rehabilitation of light textured soils with olive pomace application. MAS J Applied Sci, 7(2): 316-325.
- Kara Z, Yakupoğlu T. 2023. Time-Dependent changes in moisture content of some organic matter sources used as soil conditioners. ISPEC J Agri Sci, 7(1): 95-104.
- Kushwah SS, Damodar Reddy D, Somasundaram J, Srivastava S, Khamparia RS. 2016. Crop residue retention and nutrient management practices on stratification of phosphorus and soil organic carbon in the soybean-wheat system in Vertisols of Central India. Communicat Soil Sci Plant Analysis, 47(21): 2387-2395.
- Laamrani A, Joosse P, Feithauer N. 2017. Determining the number of measurements required to estimate crop residue cover by different methods. J Soil Water Conserv, 72: 471-479.
- Liang S, Li X, Wang J. 2012. Chapter 24-Land Cover and land use changes. In Liang S, Li X, Wang J, Eds. Advanced remote sensing. Academic Press, Amsterdam, The Netherlands, 1st ed., pp: 728.
- Lopez-Bellido L, Lopez-Bellido RJ, Castillo JE, Lopez Bellido FJ. 2004. Chickpea response to tillage and soil residual nitrogen in continuous rotation with wheat. Field Crops Res, 88(2/3): 191-200.
- Meagy MJ, Eaton TE, Barker AV, Bryson GM. 2016. Assessment of organic and conventional soil fertility practices and cultivar selection on mineral nutrient accumulation in field-

grown lettuce. J Plant Nutr, 39: 1936-1949.

- Olivella MA, Del Rio JC, Palacios J, Vairavamoorthy MA, Des Las Heras. 2002. Characterization of humic acid from leonardite coal: An integrated study of PY-GC-MS-XPS and XANES techniques. J Anal Applied Prolyses, 63: 59-68.
- Reddy SS, Shivaraj B, Reddy VC, Ananda MG. 2005. Direct effect of fertilizer and residual effect of organic manure on yield and nutrient uptake of maize (*Zea may* L.) in groundnutmaize cropping system. Crop Res, 29: 390-395
- Saha S, Mina BL, Gopinath KA, Kundu S, Gupta HS. 2008. Relative changes in phosphatase activities as influenced by source and application rate of organic composts in field crops. Bioresource Technol, 99: 1750-1757.
- SAS. 2004. SAS/STAT 9.1. User's guide: Statistics. SAS institute Inc., Carry, NC, USA.

- Shivay YS, Prasad R, Rahal A. 2010. Studies on some nutritional quality parameters of organically or conventionally grown wheat. Cereal Res Communicat, 38: 345-352.
- Soysal S, Uçar Ö, Erman M. 2020. The effects of DAP (Diammoniumphosphate) fertilizer doses on grain yield and some yield properties of chickpea (*Cicer arietinum* L.) in the ecological conditions of Siirt province. ISPEC J Agri Sci, 4(4): 834-842.
- Uçar Ö. 2019. The importance of fertilizers containing organic matter in chickpea cultivation. ISPEC J Agri Sci, 3(1): 116-127.
- Yasir TA, Aslam S, Rizwan MS, Wasaya A, Ateeq M, Khan MN, Tanveer SK, Soufan W, Ali B, Ditta A, Arpna Kumari A, EL Sabagh A. 2022. Role of organic amendments to mitigate cd toxicity and its assimilation. Phyton, 91: 2491-2504.