

JOURNAL OF ANIMAL PRODUCTION Hayvansal Üretim

ISSN 1301-9597

Number of citations is a vital criterion for not only the articles but also evaluation of the journals. It's noticed that there have been some wrong citations in the Journal of Animal Production.

Atıf sayısı hem makalelerin hem de dergilerin değerlendirilmesinde önemli bir kriterdir. Yapılan atıflar incelendiğinde **Hayvansal Üretim** dergisindeki makalelere bazen doğru atıf yapılmadığı saptanmıştır.

It must be written the name of the journal as *"Hayvansal Üretim"* when used for citation. If used in English, the name of the journal must be *"Journal of Animal Production"*.

Atıflarda derginin adı **"Hayvansal Üretim"** olarak yazılmalıdır. Dergi adı İngilizce olarak yazılacaksa **"Journal** of Animal Production" kullanılmalıdır.

Journal name of abbreviation must be "**Hay. Üret.**" as Turkish, but in English "**J. Anim. Prod.**" Except for obligatory situations, Turkish name of the journal and abbreviation should be preferred.

Dergi adı kısaltmaları Türkçe olarak "**Hay. Üret.**", İngilizce olarak ise "**J. Anim. Prod**." şeklinde olmalıdır. Zorunlu haller dışında Türkçe isim ve kısaltma tercih edilmelidir.

Journal of Animal Production

indexed by

Hayvansal Üretim aşağıdaki indekslerce taranmaktadır

- Ulusal Akademik Ağ ve Bilgi Merkezi (ULAKBİM), 2001
- CAB Abstracts, 2001
- AgBiotechNet, 2001
- Index Copernicus Journal Master List, 2008
- EBSCO, 2018
- Bielefeld Akademic Reserch Engine (BASE), 2018
- ResearchBib, 2018

JOURNAL OF ANIMAL PRODUCTION

(HAYVANSAL ÜRETİM)

Year (Yıl): 2018 Volume (Cilt): 59 Number (Sayı): 1

Publisher on Behalf of Turkish Animal Science Association

(Ege Zootekni Derneği Adına Sahibi) Prof. Dr. Nedim KOŞUM Dernek Başkanı

Editor in Chief

(Baş Editör) Prof. Dr. Nedim KOŞUM

Managing Editors

(Editör Yardımcısı) Arş. Gör. Dr. Çağrı KANDEMİR

Editorial Board in Alphabetical Order of Name

(Editörler Kurulu)

acan@harran.edu.tr

Prof. Dr. Abdullah CAN Dr. Öğr. Üye. Abdullah Nuri ÖZSOY Prof. Dr. Ahmet GÜLER Prof. Dr. Ahmet ŞAHİN Prof. Dr. Atakan KOC Prof. Dr. Banu YÜCEL Prof. Dr. Cemal ÜN Prof. Dr. Çiğdem TAKMA Prof. Dr. Ethem AKYOL Prof. Dr. Figen KIRKPINAR Prof. Dr. Güldehen BİLGEN Prof. Dr. Hayati KÖKNAROĞLU Prof. Dr. Havrettin OKUT Prof. Dr. Hatice B. MALAYOĞLU Prof. Dr. İbrahim CEMAL Doç. Dr. İbrahim KAYA Doç. Dr. İsmail DURMUŞ Prof. Dr. Mahmut KESKIN Prof. Dr. Mesut TÜRKOĞLU Prof. Dr. Mehmet İhsan SOYSAL Prof. Dr. Mehmet KOYUNCU Prof. Dr. Mehmet KURAN Doç. Dr. Muazzez CÖMERT Prof. Dr. Muhittin ÖZDER Prof. Dr. Muhammet ALAN Prof. Dr. M. Soner BALCIOĞLU Prof. Dr. Mustafa AKŞİT Prof. Dr. Muzaffer DENLİ Prof. Dr. Mürsel ÖZDOĞAN Prof. Dr. Numan ÖZCAN Prof. Dr. Ömer Cevdet BİLGİN Prof. Dr. Servet YALCIN Prof. Dr. Sezen ÖZKÁN Prof. Dr. Sinan Sefa PARLAT Prof. Dr. Şenay SARICA Prof. Dr. Turgay ŞENGÜL Prof. Dr. Turğay TAŞKIN Prof. Dr. Turgut AYGÜN Prof. Dr. Türker SAVAŞ Prof. Dr. Yusuf KONCA Prof. Dr. Zafer ULUTAŞ

nuriozsoy@sdu.edu.tr aguler@omu.edu.tr ahmet.sahin@ahievran.edu.tr akoc@adu.edu.tr banu.yucel@ege.edu.tr cemal.un@ege.edu.tr cigdem.takma@ege.edu.tr eakvol@ohu.edu.tr figen.kirkpinar@ege.edu.tr guldehen.bilgen@ege.edu.tr hayatikoknaroglu@sdu.edu.tr hokut@yyu.edu.tr hatice.basmacioğlu@ege.edu.tr icemal@adu.edu.tr ibrahim.kaya@ege.edu.tr idurmus@odu.edu.tr mkeskin@mku.edu.tr mturk@agri.ankara.edu.tr misoysal@nku.edu.tr koyuncu@uludag.edu.tr mkuran@omu.edu.tr muazzez.comert@ege.edu.tr mozder@nku.edu.tr muhammetalan@ogu.edu.tr msoner@akdeniz.edu.tr maksit@adu.edu.tr mdenli@dicle.edu.tr mozdogan@adu.edu.tr nozcan@cu.edu.tr ocbilgin@atauni.edu.tr servet.valcin@ege.edu.tr sezen.ozkan@ege.edu.tr sparlat@selcuk.edu.tr senay.sarica@gop.edu.tr tsengül@bingol.edu.tr turgay.taskin@ege.edu.tr taygunyyu.edu.tr tsavas@comu.edu.tr yusufkonca@erciyes.edu.tr zaferulutaş@ohu.edu.tr

Harran University, ŞANLIURFA Süleyman Demirel University, ISPARTA Ondokuz Mayıs University, SAMSUN Ahi Evran University, KIRŞEHİR Adnan Menderes University, AYDIN Ege University, IZMIR Ege University, IZMIR Ege University, IZMIR Ömer Halisdemir University, NİĞDE Ege University, IZMIR Ege University, IZMIR Süleyman Demirel University, ISPARTA Yüzüncü Yıl University, VAN Ege University, IZMIR Adnan Menderes University, AYDIN Ege University, IZMIR Ordu University, ORDU Mustafa Kemal University, HATAY Ankara University, ANKARA Namık Kemal University, TEKİRDAĞ Uludağ University, BURSA Ondokuz Mayıs University, SAMSUN Ege University, IZMIR Namık Kemal University TEKİRDAĞ Osmangazi University, ESKİŞEHİR Akdeniz University, ANTALYA Adnan Menderes University, AYDIN Dicle University, DİYARBAKIR Adnan Menderes University, AYDIN Çukurova University, ADANA Atatürk University, ERZURUM Ege University, IZMIR Ege University, IZMIR Selcuk University, KONYA Gaziosmanpaşa University, TOKAT Bingöl University, BİNGÖL Ege University, IZMIR Yüzüncü Yıl University, VAN Onsekiz Mart University, ÇANAKKALE Ercives University, KAYSERI Ömer Halisdemir University, NİĞDE

The referees list / Hakem listesi

Journal of Animal Production is a peer-reviewed journal. List of referees is given in the last press issue of the year.

Hayvansal Üretim hakemli bir dergi olup, hakem listesi her yılın son sayısında basılı yayınlanmaktadır.

Journal of Animal Production is published two times in a year (May and November) by Ege Animal Science Association in Turkey. Detail information about Ege Animal Science Association and Journal of Animal Science could be finding from the web site of the Ege Animal Science Association or correspondence address of the journal given below. Guidelines to authors are also given at the end of each issue of the journal.

Hayvansal Üretim dergisi, Ege Zootekni Derneği'nin "**yaygın süreli**" bir yayınıdır. Yılda iki kez (Mayıs ve Kasım aylarında) yayınlanmaktadır. Ege Zootekni Derneği ve Hayvansal Üretim dergisine ilişkin ayrıntılı ve güncel bilgiler Ege Zootekni Derneği'nin internet sitesinden veya dergi yazışma adresinden öğrenilebilir. Yazım kuralları derginin her sayısının sonunda verilmektedir.

Correspondence Address (Dergi İçin Yazışma Adresi):

Prof. Dr. Nedim KOŞUM Journal of Animal Production Editor in Chief Ege Universty, Faculty of Agriculture, Deperment of Animal Science 35100 Bornova, İzmir-TURKEY

Phone (Tel): +90 (232) 311 2718 (sekreter) Fax: +90 (232) 388 1867

E-posta (e-mail): nedim.kosum@ege.edu.tr, cagri.kandemir@ege.edu.tr, cagri.kandemir@ege.edu.tr, cagri.kandemir@ege.edu.tr, cagri.kandemir@ege.edu.tr, cagri.kandemir@ege.edu.tr, cagri.kandemir@ege.edu.tr, cagri.kandemir@ege.edu.tr, cagri.kandemir@ege.edu.tr, cagri.kandemir@ege.edu.tr)

All rights reserved. No part of this publication may be reproduced in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior permission of the publisher.

Bu derginin yayın hakları Ege Zootekni Derneği'ne aittir. Derginin hiçbir bölümü, yayıncının izni olmaksızın, elektronik, mekanik veya başka bir yöntemle, herhangi bir şekilde çoğaltılamaz.

Ege Zootekni Derneği Yönetim Adresi: Fevzipaşa Bulvarı No: 17 Azim Han K:4 D:408 Konak / İZMİR

Basım Yeri	: Ege Üniversitesi Rektörlüğü Basımevi Müdürlüğü
	No: 172/134 Kampüsiçi / Bornova, İzmir

- Tel : 0232 311 18 19
- e-mail : bsmmd@mail.ege.edu.tr

TC Kültür ve Turizm Bakanlığı Sertifika No: 18679

Baskı Tarihi: 31 Temmuz 2018

(Hayvansal Üretim)

YEAR 2018 YIL VOLUME 59 CILT NUMBER 1 SAYI

CONTENTS (İçindekiler)

RESEARCH ARTICLES (Araştırma Makaleleri)

A Study on the Change in Postpartum Immunoglobulins of Goats and Kids	
Keçi ve Oğlaklarda Doğum Sonrası Immünoglobulinlerin Değişimi Uzerine Bir Araştırma Nəfim KOSUM Turgay TASKINI Özer KINIK Cežir KANDEMİD, Feyn AKAN	1
Nedim KOŞUM, Turgay TAŞKIN, Özer KINIK, Çağrı KANDEMIK, Ecem AKAN	1
Yumurtacı Tavuk Rasvonlarına İlave Edilen Esansiyel Yağ ve Organik Asit Karısımının Performans.	
Yumurta Verimi ve Kalite Parametreleri Üzerine Etkisi	
Effect of Supplementation Essential Oil and Organic Acid Mixture on Performance, Egg Production and Egg Quality	
Egjeter of Jupplementation Essentiation and organic free fractine on Ferjormance, Esser Founction and Esse Quanty Paramaters in Lavina Hans	
Özlem KARADAĞOĞUU Mükremin ÖLMEZ Bülent ÖZSOV Tarkan SAHİN	9
)
Effects of Pre-milking Resting on Some Lactation Characteristics in Damascus (Shami) and Kilis Goats	
Sam ve Kilis Kecilerinde Sağım Öncesi Dinlendirmenin Bazı Süt Verim Özellikleri Üzerine Etkileri	
Sabri GÜL Mahmut KESKİN Zehra GÜLER Ahmet DURSUN Zuhal GÜNDÜZ	
Süleyman Ercüment ÖNEL. Diek TÜNEY BEBEK	17
	1 /
Hatav İli Damızlık Sığır Vetistiricileri Birliği Üvesi İsletmelerin Sosyo-Ekonomik Özellikleri	
Socia-Economic Characteristics of Members of Cattle Breeders Association in Hatav Province	
Nuran TAPKI İbrahim TAPKI Erdal DAĞISTAN Muhammet Hanifi SELVİ Avbüke KAYA Yusuf Ziya GÜZEY	
Rekir DEMİRTAS, Ahmet Duran CELİK	25
	20
Yetistirici Kosullarında Kıvırcık Kovunlarının Bazı Döl Verimi Özellikleri	
Some Fertility Traits of Kuyrcuk Sheep in Rural Farms	
Mehmet KOYUNCU. Hilal AKGÜN	
Saanen Kecilerinin Entansif Kosullarda Bazı Verim Özelliklerinin Belirlenmesi Üzerine Bir Arastırma	
A Study on the Determination of Some Production Characteristics of Saanen Goats in Intensive Conditions	
Cağrı KANDEMİR, Turğay TASKIN, Nedim KOSUM	41
REVIEWS (Derlemeler)	
Alternatif Protein Kaynaklarının Hayyan Beşlemede Kullanım Olanakları	
Possible Usage of Alternative Protein Sources in Animal Nutrition	
Hasan Hüsevin İPCAK Sema ÖZÜRETMEN Ahmet ALCİCEK Hülva ÖZELCAM	51
Importance of Characterization of the Vaginal Microbiota in Ewes and Nannies	
Kovun ve Kecilerde Vaginal Mikrohiata Karakterizasvonun Önemi	
Seniz ÖZİŞ ALTINCEKİC Mehmet KOYUNCU	59
Buzağılarda Yasama Gücünün Anahtarı "Kolostrum"	
Kev of Survival in Calves "Colostrum"	
Mehmet KOYUNCU. Merve KARACA	67
Effects of Feed Additives Used As an Alternative to Antibiotics on Mineral Absorption and Bone Characteristics in	
Poultry: A Review	
Antibiyotiklere Alternatif Olarak Kullanılan Yem Katkı Maddelerinin Kanatlılarda Mineral Emilimine ve Kemik	
Karakteristiklerine Etkileri: Derleme	
Ahmet Önder ÜSTÜNDAĞ, Mürsel ÖZDOĞAN	79

How to cite: Gül, S., Keskin, M., Güler, Z., Dursun, A., Gündüz, Z., Önel, S.E., Tüney Bebek, D., Effects of Pre-milking Resting on Some Lactation Characteristics in Damascus (Shami) and Kilis Goats, J. Anim. Prod., 2018, 59 (1):17-24, DOI: 10.29185/hayuretim.372188

Research Article (Araștırma Makalesi)

Sabri GÜL¹ Mahmut KESKİN¹ Zehra GÜLER² Ahmet DURSUN² Zuhal GÜNDÜZ¹ Süleyman Ercüment ÖNEL³ Dilek TÜNEY BEBEK¹

¹Mustafa Kemal University Agriculture Faculty Department of Animal Science Hatay / Turkey ²Mustafa Kemal University Agriculture Faculty Department of Food Engineering Hatay / Turkey ³Mustafa Kemal University Samandağ Vocational School Hatay / Turkey **sorumlu yazar:** sabrigul@mku.edu.tr

Key Words:

Milk yield, milk composition, fatty acids, resting

Anahtar Kelimeler:

Süt verimi, süt kompozisyonu, yağ asitleri, dinlenme

J. Anim. Prod., 2018, 59 (1):17-24 DOI: 10.29185/hayuretim.372188

Effects of Pre-milking Resting on Some Lactation Characteristics in Damascus (Shami) and Kilis Goats

Şam ve Kilis Keçilerinde Sağım Öncesi Dinlendirmenin Bazı Süt Verim Özellikleri Üzerine Etkileri

Alınış (Received): 28.11.2017

Kabul tarihi (Accepted): 14.05.2018

ABSTRACT

Objective: This study was conducted to determine the effects of pre-milking resting on some milk yield characteristics in Damascus (Shami) and Kilis goats.

Material ve Methods: In this study, 20 head of Kilis goats and 20 head of Damascus (Shami) goats aged 2-4 years old were used. The goats in both genotypes were divided into two groups as Control (10 heads) and Treatment (10 heads) group to determine the effect of pre-milking resting on some lactation characteristics. After milking, milk samples were immediately transferred to laboratory using an ice box and some milk characteristics were determined.

Results: At the end of the study, the effects of the pre-milking resting and the breed differences on the milk yield and milk composition were not significant (p>0.05), except on lactose content (p<0.01). Moreover, the effect of the lactation months on the content of all fatty acids in the milk were also detected statistically important (p<0.05).

Conclusion: Shami and Kilis goats produced similar amount of marketable milk yield. Breed affected the content of lactose in the milk. One hour waiting before milking had no effect on milk yield and composition.

ÖΖ

Amaç: Bu çalışma, Şam ve Kilis keçilerinde sağım öncesi dinlendirmenin bazı süt verim özellikleri üzerine etkilerinin belirlenmesi amacı ile yapılmıştır.

Materyal ve Metot: Çalışmada, 2-4 yaşlı 20 baş Kilis keçisi ve 20 baş Şam keçisi kullanılmıştır. Her genotipteki keçiler, sağım öncesi 1 saat dinlendirmenin laktasyon özelliklerine etkisini belirlemek amacıyla, kontrol ve muamele olmak üzere 10'ar baş olarak iki gruba ayrılmışlardır. Sağımdan hemen sonra süt örnekleri buz kutuları içerisinde laboratuvara getirilmiş ve bazı süt özellikleri tespit edilmiştir.

Bulgular: çalışma sonunda ırklar ve gruplar arasında süt verimi ve kompozisyonu arasında elde edilen farklılıklar laktoz hariç istatistiksel açıdan önemsiz bulunmuştur (P>0.05). Bunun yanı sıra sütteki yağ asitlerinin aylara göre farklılık gösterdiği tespit edilmiştir (P<0.05).

Sonuç: Şam ve Kilis keçileri benzer süt verimine sahiptirler. Laktoz içeriği ırklardan etkilenmiştir. Sağım öncesi bekleme süt verimi ve kompozisyonunu etkilememiştir.

INTROCUTION

Hair goat a dominant goat breed of Turkey has been raised with extensive system similarly to the countries located in tropical and subtropical climate zones. There are almost 10.4 million of goat population and Hair goat is approximately 97% of the goat population in the country (www.tuik.gov.tr). Other goat breeds of the country are Angora goat, Kilis goat, Damascus (Shami) goat and some other local breeds as well as different crossbreds of Saanen and native goats (Keskin, 2000; Gül et. al. 2016). In Turkey, Damascus and Kilis goats known their high milk vield and litter size are raised in the regions near to Syrian border (Keskin and Bicer, 1997; Keskin, 2000; Keskin, 2013; Gül et al., 2016; Keskin et al., 2017). Unlike Hair goat farming, some Kilis and Damascus goat breeders give feed to the animals at morning and/or evening times as addition to the pasture. Some breeders who give additional feed to the goats claim that resting the goat for an hour before milking increases the milk yield. Therefore, after they give concentrated feed to the goats returning from pasture, they were in resting situation one hour before milking.

As reported by Sevi et al. (2009), in most Mediterranean countries, goats are grazed during daytime and housed during night-time. Concentrated feed, straw, hay or different feed raw materials can be offered to the goats at these countries depending on the production system, breed and the product characteristics demanded by the market. In the areas where sheep and goat breeding is more diffused, late spring and summer are characterized not only by poor grass availability and palatability but also by a marked reduction of its protein content (Negrave, 1996). The management of animals in such poor environments may cause imbalances in feeding. Rumen fermentation, protein and fat synthesis may be affected by these situations. It is also known that grazing in poor meadows with excessively fibrous vegetation, under bad weather conditions, and with limited time for herbage ingestion may lead to reduced milk yield in goat (Fedele et al., 1993). Pulina et al. (2006) reported that short-time feed restriction caused a sudden decrease in reduced milk yield and increased milk fat in Sarda dairy ewes. As explained above although there are a number of studies on the relationship between milk yield characteristics and feeding, there has been no study about the relation between these characteristics and resting the goat before milking. In this study, it was aimed to investigate whether one hour resting before

milking had effects on milk yield and composition for Kilis and Damascus goats.

MATERIAL and METHODS

In this study, 20 head of Kilis goats and 20 head of Damascus (Shami) goats aged 2-4 years old were used with the approval of the Mustafa Kemal University Ethics Committee (*MKUHADYEK-2015-1/8*).

The goats in both genotypes were divided into two groups as Control (10 heads) and Treatment (10 heads) group to determine the effect of premilking resting on some lactation characteristics. All goats grazed at the same pasture during day-time in accordance with traditional breeding system of the region. And, they were offered 1 kg/head/day concentrate containing 16% crude protein and 2600 kcal metabolizable energy in dry matter as reported by NRC (2001) when they returned to the pen. The control group goats were milked by hand while they were feeding the concentrate. The treatment group goats were rested an hour after concentrate feeding and then they milked by hand. All goats could reach to the fresh water all the day. Milk controls were conducted every 28 days and the marketable milk yield was calculated by the AT method of ICAR procedure (given below in 1st equality). The Fleischman method was used for each goat's milk yield calculation as mentioned by Gül et al (2016).

MY= IMY*(TMF/TF).....(1) MY, Milk yield of the goat in control day IMY, Individual milk yield of the goat in the morning TF, total milk yield of flock in the morning TMF, Total milk yield of the flock in the morning and evening

After milking, milk samples were immediately transferred to laboratory using an ice box. Total solids, fat and titratable acidity (as a percentage of lactic acid) were determined by gravimetric, gerber and titrimetric methods, respectively (AOAC, 1990). Total nitrogen was measured by the micro-Kjeldahl method (IDF, 1962), using the Gerhardt KB 40S digestion and Vapotest distillation systems (C. Gerhardt, Bonn, Germany). The pH was determined with a pH meter (Thermo, Beverly, MA, USA). Ash content was quantified by dry ashing the samples in a muffle furnace at 550 °C for 24 h. Lactose analysis was performed according to the procedure described bv Güler (2014) with slight modifications. Separations and detections were carried out in an automated high performance liquid chromatography system (HPLC-20 AD Prominence, Shimadzu, Kyoto, Japan) using an ion exchange column

(Aminex HPX-87 H, 300 × 7.8 mm, BIO-RAD, Hercules, CA, USA) and a refractive index detector (RID-10A, Shimadzu, Kyoto,

Japan). The concentration of lactose was calculated using linear regression curve-based peak areas. The obtained determination coefficient was 0.999. Extraction and guantification of FFAs, and also GC-MS (Agilent 6890 gas chromatograph and 5973 N mass selective detector; Agilent, Palo Alto, CA, USA) operating conditions were carried out according to the procedure described by Güler et al. (2007). A DB-FFAP-column (30 m × 0.25 mm id × 0.25 µm film thickness) was used for FFA separation. Tridecanoic acid as internal standard was added to all experimental milk samples at the time of extraction. The individual FFA concentration was calculated based on the real value (mg/L) of internal standard added to samples and its relative chromatogram area.

Statistical analyses

Mathematical model of the experiment is;

 $Y_{ijk} = \mu + \alpha_i + \beta_j + e_{ijk}$; in this model,

 Y_{jk} , k^{th} yield characteristic of animal in i^{th} treatment group and j^{th} breed μ = population mean of given trait, α_i , effect of treatment group B_j , effect of breed e_{ijk} , error terms

SPSS package program was used to evaluate the data (Windows version of SPSS release 22). Comparisons between group averages were analysed by using univariate and multiple comparison tests were made by using DUNCAN test in the same software.

RESULTS and DISCUSSION

Marketable milk yield and milk composition of the goats are given in Table 1. Differences between genotype and treatment groups were not statistically significant due to marketable milk yield and milk composition, except to lactose content (P>0.05).

Table 1. Marketable milk yield and milk composition (mean ± standard error) based on the breed and group

 Çizelge 1. Irk ve gruplara göre pazarlanabilir süt verimi ve süt kompozisyonu (ortalama ± standart hata)

-	Dan	nascus goat		Kilis	Р	
Items	Resting Control		Р	Resting	Control	Р
MMY	317.0±14.1	317.0±14.1 293.6±15.1		304.8±29.3	285.7±21.2	>0.05
Dry matter	13.3±0.36	13.3±0.26	>0.05	13.1±0.15	12.9±0.21	>0.05
Crude Protein	3.3±0.27	3.1±0.12	>0.05	3.3±0.08	3.0±0.09	>0.05
Crude Fat	4.4±0.17	4.5±0.14	>0.05	4.3±0.12	4.5±0.17	>0.05
Ash	0.8±0.03	0.8±0.03	>0.05	0.8±0.03	0.8±0.03	>0.05
Density	1.0±0.01	1.0±0.01	>0.05	1.0±0.01	1.0±0.01	>0.05
рН	6.7±0.08	6.7±0.04	>0.05	6.7±0.04	6.7±0.04	>0.05
Titratable acidity (as lactic acid)	0.2±0.01	0.2±0.01	>0.05	0.2±0.01	0.2±0.01	>0.05
Lactose	5.8±0.17	6.3±0.15	<0.05	5.6±0.13	5.0±0.08	<0.01
Glucose	0.2±0.01	0.3±0.01	<0.01	0.2±0.01	0.2±0.01	>0.05
Galactose	0.1±0.01	0.1±0.01	>0.05	0.1±0.01	0.1±0.01	>0.05
		General				
		Damascus goat	Kil	lis goat	Р	
MMY		305.3±10.4	295	.2±17.7	>0.05	
Dry matter		13.3±0.22	13.	0±0.13	>0.05	
Crude Protein		3.2±0.15	3.1	1±0.06	>0.05	
Crude Fat		4.4±0.11	4.4	4±0.10	>0.05	
Ash		0.8±0.02	0.8	8±0.02	>0.05	
Density		1.0±0.01	1.(0±0.01	>0.05	
рН		6.7±0.08	6.7	7±0.08	>0.05	
Titratable acidity (as lactic acid)		0.2±0.01	0.2	2±0.01	>0.05	
Lactose		6.1±0.12	5.3	3±0.08	<0.05	
Glucose		0.3±0.01	0.2	2±0.01	>0.05	
Galactose		0.1±0.01	0.1	1±0.01	>0.05	

MMY, marketable milk yield;

Gül et al.

The marketable milk yield calculated from the experimental goats given in Table 1 was found to be similar to the milk yield reported by Keskin (2000) for Damascus (Shami) goats. Milk yield values calculated for Kilis goat were found to be similar with that reported by Gül et al. (2016) and Keskin et al. (2017) for Kilis goats raised under semi-intensive conditions of Hatay and Kilis provinces. The fact that the Damascus (Shami) goat and Kilis goat have similar characteristics in terms of marketable milk vield and milk composition values indicate that Kilis goats can be raised on Shami goat breeding regions. Although not statistically significant, the milk yield values for both breeds were found to be higher in the animals that were rested for 1 hour before milking. Lactose content of milk was significantly (P<0.01) influenced by goat breed. It is well known that lactose is synthesized from glucose in blood but the rate of lactose synthesis is dependent upon the alactoalbumin to ß-1,4 -galactosyltransferase ratio.

High lactose content of milk from Shami breed may be due to the high α -lactoalbumin or glucose contents in mammary epithelial cell since without alactalbumin, galactosyltransferase cannot synthesize lactose (Hill, 2006). On the other hand, Kilis breed might have been demanded more energy since glucose could be processed by glycolysis to provide energy instead of lactose synthesis (Khan et al., 2011). The effect of 1 hour-waiting before milking on lactose content was changed depending on the breed. It resulted in an increase for Kilis breed and a decrease for Shami breed. As reported by Ollier et al. (2007), lactose synthesis is mostly dependent on genetic factors rather than feeding. When compared with Kilis breed, Shami breed with high lactose content had a high milk yield since lactose synthesis could be resulted in an increase in milk volume (Lin et al., 2016).

Table 2. The effects of pre-milk waiting period on acetic acid and free fatty acids in milk (mg/L) (mean ± standard error) during the milking period in Damascus goats.

Çizelge 2. Şam keçilerinde laktasyon süresince sütteki serbest yağ asitlerine sağım öncesi beklemenin etkisi (mg/L) (ortalama±standart hata)

		Months						
Items	Gr	1	2	3	4	5	6	Р
A satis said	Wt	2.40±0.14 ^a	2.11±0.21 ^a	4.46±0.20°	1.20±0.16 ^a	1.01±0.07 ^a	1.42±0.21 ^a	0.000
Acetic acid	Ct	3.47±0.42 ^b	2.08±0.15 ^a	8.47±0.92°	1.14±0.16 ^a	1.11±0.20 ^a	1.17±0.14 ^a	0.000
Dutancia acid	Wt	4.07±0.45 ^c	2.27±0.43 ^b	3.87±0.57℃	2.01±0.25 ^{ab}	1.03±0.13 ^a	1.26±0.22 ^{ab}	0.000
Butanoic acid	Ct	3.04±0.75 ^c	2.75±0.39°	3.13±0.60°	2.46±0.23 ^{bc}	1.07±0.26 ^a	1.31±0.10 ^{ab}	0.009
Llovensis said	Wt	5.85±0.88 ^d	3.17±0.46 ^{bc}	4.52±0.78 ^{cd}	2.47±0.34 ^{ab}	1.35±0.51 ^a	1.12±0.19 ^a	0.000
	Ct	4.08±1.17 ^b	3.52±0.51 ^b	4.64±0.99 ^b	2.77±0.22 ^{ab}	1.07±0.15 ^a	1.27±0.12 ^a	0.003
Ostancia coid	Wt	6.24±0.61 ^d	2.53±0.38 ^{bc}	3.71±0.30°	2.32±0.41 ^{ab}	1.10±0.38 ^a	1.26±0.39 ^{ab}	0.000
Octanoic acid	Ct	3.33±0.14 ^{cd}	3.39±0.36 ^{cd}	3.65±0.28 ^d	2.73±0.24 ^{bc}	2.18±0.42 ^b	1.07±0.10 ^a	0.000
Neuronaia agid	Wt	2.51±0.23 ^d	1.16±0.04°	0.80 ± 0.02^{ab}	0.55±0.03 ^a	0.95±0.12 ^{bc}	0.59±0.05 ^a	0.000
Nanonoic acid	Ct	2.24±0.25 ^d	1.21±0.04°	0.76±0.09 ^{ab}	0.60±0.04 ^a	1.00±0.06 ^{bc}	0.83±0.06 ^{ab}	0.000
Decencie coid	Wt	16.85±1.71 ^d	10.23±0.71°	11.20±0.98°	6.85±0.61 ^b	2.29±0.44 ^a	2.80±0.51 ^a	0.000
Decanoic acid	Ct	16.24±1.70 ^d	10.85±0.85°	7.73±1.29 ^b	9.13±0.71 ^{bc}	2.74±0.38 ^a	3.26±0.24 ^a	0.000
Dedecencie esid	Wt	6.30±0.46°	3.28±0.32 ^b	3.89±0.39 ^b	2.98±0.42 ^b	1.04±0.26 ^a	1.41±0.29 ^a	0.000
Dodeconoic acid	Ct	3.96±0.63 ^b	3.53±0.54 ^b	3.61±0.84 ^b	3.49±0.16 ^b	1.47±0.14 ^a	1.31±0.12 ^a	0.001
Totradaganaia gaid	Wt	17.45±2.20 ^c	9.41±1.67 ^b	14.38±2.41°	9.45±0.95 ^b	4.23±0.40 ^a	5.35±0.83 ^{ab}	0.000
Tetradeconoic acid	Ct	14.77±1.58 ^b	14.48±1.00 ^b	14.89±0.94 ^b	12.23±0.74 ^b	5.47±0.24 ^a	6.52±0.67 ^a	0.000
Dontadogonoja gold	Wt	1.64±0.13℃	0.83±0.13 ^{ab}	1.09±0.28 ^b	0.81±0.11 ^{ab}	0.56±0.04 ^a	0.46±0.05 ^a	0.000
Pentadeconoic acid	Ct	1.46±0.23°	0.86±0.09 ^{ab}	1.15±0.21 ^{bc}	0.91±0.07 ^{ab}	0.56±0.05 ^a	0.54 ± 0.05^{a}	0.000
Llovadaganaia gaid	Wt	79.49±4.97 ^d	62.57±6.03 ^{bc}	72.64±7.11 ^{cd}	49.31±3.90 ^b	32.92±2.83 ^a	31.88±2.47 ^a	0.000
	Ct	59.89±4.66 ^b	78.41±4.61°	74.64±7.43°	55.67±3.95 ^b	34.32±2.97 ^a	36.57±3.04 ^a	0.000
Hantadaganaja gaid	Wt	1.99±0.19 ^b	1.06±0.21ª	1.20±0.34 ^a	0.80±0.09 ^a	0.64±0.07 ^a	0.84±0.09 ^a	0.001
Replaceconoic acid	Ct	1.88±0.39 ^b	1.21±0.29 ^{ab}	1.78±0.36 ^b	0.79±0.11ª	0.52±0.04 ^a	0.44±0.09 ^a	0.001
Ostadosonais asid	Wt	59.07±4.62 ^b	57.66±3.64 ^b	51.01±6.22 ^b	28.78±3.98ª	35.43±1.99ª	30.44±3.17 ^a	0.000
	Ct	57.66±3.98 ^b	58.13±5.55 ^b	58.75±7.84 ^b	27.19±1.42 ^a	33.32±1.65 ^a	25.15±2.55 ^a	0.000
aía 0. Ostadosonais asid	Wt	43.98±3.83°	22.62±3.94 ^{ab}	29.76±2.35 ^b	21.82±0.92 ^{ab}	14.82±2.17 ^a	15.14±2.50 ^a	0.000
cis-9- Octadeconoic acid	Ct	34.08±3.90 ^b	32.19±2.45 ^b	38.73±3.68 ^b	29.18±3.45 ^b	17.14±2.18 ^a	16.53±2.23 ^a	0.000
trana 0 Ostadosonais asid	Wt	2.54±0.20 ^d	1.02±0.19 ^{bc}	1.24±0.08 ^c	0.38±0.05 ^a	0.64±0.12 ^{ab}	0.30±0.03 ^a	0.000
trans 9-Octaveconoic aciu	Ct	1.75±0.20 ^b	1.61±0.23 [♭]	1.39±0.04 ^b	0.50±0.08 ^a	0.53±0.09 ^a	0.43±0.10 ^a	0.000
0.12 Octadoconoic acid	Wt	4.77±0.36 ^d	2.85±0.41 ^{bc}	3.51±0.39c	2.37±0.23 ^{ab}	1.57±0.31 ^a	2.17±0.32 ^{ab}	0.000
9.12- Octaveconoic aciu	Ct	7.81±0.17 ^c	3.92±0.33 ^b	3.56±0.40 ^b	3.16±0.28 ^b	1.72±0.29 ^a	1.94±0.24ª	0.000

Gr, groups; Wt, resting group, Ct, Control group; superscripts in same row indicate statistically different months

 Table 3. The effects of pre-milk waiting period on acetic acid and free fatty acids in milk (mg/L) (mean ± standard error) during the milking period in Kilis goats.

Çizelge 3. Kilis keçilerinde laktasyon süresince sütteki serbest yağ asitlerine sağım öncesi beklemenin etkisi (mg/L) (ortalama±standart hata)

		Months						
Items	Gr	1	2	3	4	5	6	Р
Apotio poid	Wt	2.37±0.15 ^a	2.34±0.47 ^a	8.80±1.50 ^b	0.89±0.11 ^a	1.20±0.07 ^a	1.18±0.13ª	0.000
Acelic aciu	Ct	5.31±0.60 ^b	1.40±0.21 ^a	13.60±0.83°	1.60±0.83 ^a	1.14±0.06 ^a	1.37±0.31ª	0.000
Putanaia aaid	Wt	3.30±0.58 ^b	2.56±0.35 ^{ab}	2.70±0.64 ^{ab}	2.82±0.63 ^{ab}	1.57±0.28 ^a	1.51±0.27ª	0.020
	Ct	5.79±1.24 ^a	3.35±0.30°	2.36±0.33 ^{abc}	3.08±0.52 ^{bc}	1.13±0.10 ^a	1.23±0.08 ^{ab}	0.000
Hovenois soid	Wt	4.44±0.77 ^b	3.68±0.44 ^{ab}	4.32±1.17 [♭]	3.77±0.83 ^{ab}	1.89±0.33 ^a	1.71±0.31ª	0.000
	Ct	6.87±1.33°	4.14±0.34 ^b	3.02±0.43 ^{ab}	3.46±0.44 ^b	1.34±0.10 ^a	1.23±0.14 ^a	0.000
Ostanoja poid	Wt	3.94±0.34 ^b	3.46±0.36 ^b	2.89±0.42 ^b	3.61±0.38 [♭]	1.62±0.23 ^a	1.38±0.27ª	0.000
	Ct	4.27±0.32°	3.65±0.30°	2.41±0.40 ^b	3.79±0.27°	1.13±0.06 ^a	1.07±0.02 ^a	0.000
Nananaja agid	Wt	2.24±0.19°	1.31±0.06 ^b	0.62±0.11ª	0.57±0.06 ^a	1.10±0.05 [♭]	0.79±0.01ª	0.000
	Ct	1.66±0.23 ^d	1.35±0.09 ^{cd}	0.63±0.05 ^a	0.54±0.05 ^a	1.08±0.08 ^{bc}	0.89±0.07 ^{ab}	0.000
Decencie acid	Wt	15.23±2.57 ^b	11.16±1.56 ^{ab}	10.03±1.79 ^{ab}	15.35±2.33 ^b	6.24±0.87 ^a	5.95±0.50 ^a	0.003
Decanoic aciu	Ct	13.86±1.89 ^b	11.77±0.93 [♭]	6.41±0.72 ^a	11.23±1.50 ^b	3.27±0.40 ^a	2.93±0.40 ^a	0.000
Dedeesensis said	Wt	4.01±0.29°	3.41±0.23℃	2.99±0.38 ^{bc}	3.83±0.37°	2.15±0.39 ^{ab}	1.58±0.37ª	0.000
	Ct	6.30±0.60°	3.69±0.20 ^b	2.14±0.26 ^a	3.61±0.45 [♭]	1.38±0.15 ^a	1.22±0.07ª	0.000
Totradaganaia goid	Wt	8.54±1.37 ^{ab}	9.86±1.13 [♭]	5.77±0.64ª	10.25±1.34 ^b	6.95±0.74 ^{ab}	6.36±0.52 ^a	0.024
	Ct	15.21±1.94 ^b	13.57±0.73 ^b	7.54±0.57ª	12.26±1.47 ^b	6.35±0.41a	6.07±0.16 ^a	0.000
Pontadoconoic acid	Wt	1.33±0.39 ^b	0.80±0.12 ^{ab}	0.85±0.13 ^{ab}	0.73±0.10 ^{ab}	0.73±0.05 ^{ab}	0.59±0.07ª	0.050
Fentadeconoic acid	Ct	2.04±0.31 ^b	1.11±0.12 ^a	0.84±0.12 ^a	0.85±0.10 ^a	0.68±0.07 ^a	0.61±0.07ª	0.000
Hovadoconoic acid	Wt	58.82±4.43 ^b	59.18±3.92 ^b	58.77±5.58 ^b	55.19±6.10 ^{ab}	44.11±4.10 ^{ab}	41.08±2.47ª	0.040
	Ct	82.66±5.90 ^e	76.07±1.93 ^d	54.30±2.52 ^{bc}	63.60±6.75 ^{cd}	45.53±2.40 ^{ab}	39.65±3.72 ^{ae}	0.000
Hantadoconoic acid	Wt	1.31±0.15°	1.20±0.15 ^{bc}	0.96±0.17 ^{abc}	0.88±0.13 ^{ab}	0.73±0.05 ^a	0.59±0.07ª	0.008
	Ct	1.83±0.23℃	1.64±0.10 ^c	1.04±0.10 ^{ab}	1.41±0.25 ^{bc}	1.06±0.10 ^{ab}	0.70±0.14ª	0.001
Octadoconoic acid	Wt	56.62±2.11 ^{bc}	60.24±3.25 ^c	54.44±7.98 ^{bc}	33.66±3.69 ^a	44.92±2.54 ^{ab}	34.51±4.08ª	0.001
	Ct	59.00±2.86°	75.52±1.46 ^d	49.76±2.45 ^b	42.10±4.58 ^{ab}	48.86±3.29 ^b	38.04±2.69 ^a	0.000
cis 9. Octadoconois acid	Wt	25.24±2.43 ^{ab}	22.88±3.14 ^{ab}	28.45±3.19 ^{ab}	31.78±3.05 [♭]	24.67±2.53 ^{ab}	19.87±3.15ª	0.024
cis-9- Octadeconoic acid	Ct	55.69±3.24 ^e	31.51±3.31°	28.19±3.45 ^{bc}	41.96±4.01 ^d	20.60±1.93 ^{ab}	18.49±1.76ª	0.000
trana 0. Ostadosonais said	Wt	2.24±0.40 ^d	1.14±0.24 ^{bc}	1.50±0.05°	0.64±0.13 ^{ab}	0.33±0.05 ^a	0.26±0.01ª	0.000
trans 9-Octadeconoic acid	Ct	1.90±0.13 ^{cd}	1.51±0.25 ^{cd}	1.39±0.08 ^d	0.50±0.12 ^{ab}	1.01±0.31 ^{bc}	0.34±0.07ª	0.000
0.12 Octadoconois acid	Wt	5.09±0.36°	3.77±0.31 ^b	2.00±0.26 ^a	2.87±0.36 ^{ab}	3.14±0.47 ^b	3.02±0.26 ^{ab}	0.000
	Ct	5.71±0.44 ^d	3.98±0.36°	3.55±0.44 ^{bc}	5.56±0.23d	2.72±0.14 ^{ab}	2.04±0.33ª	0.000

Gr, groups; Wt, resting group, Ct, Control group; superscripts in same row indicate statistically different months

As shown in Table 2 and 3, where the effect of premilk waiting on acetic acid and free fatty acids (FFAs) in the milk during the lactation period of Shami and Kilis goats was presented, fatty acids were changed depending on the lactation period. This situation is consistent with the report made by Güler et al. (2007) that informed significant changes in the fatty acids except of short-chain fatty acids during lactation for the German Fawn x Hair goat crossbreds and Shami goats. Similarly, Tudisco et al. (2014) reported that fatty acids of goats' milk were changed as a function of sampling month. Fatty acids up to partly C16 are de novo synthesized within the mammary gland from acetate and butanoate produced by rumen bacteria. A part of C16 and fatty acids with more carbons originate mainly from plasma uptake depending on feeding. In milk free fatty acids can originate from three sources: from blood; by passive loss of unesterified fatty acids in epithelial cells of the mammary gland; or by hydrolysis of milk triglycerides (Walstra and Touters, 2006; Chilliard et al., 2003).

Acetic acid and the FFAs in all the milk samples analysed showed changing tendency during lactation period. This could be attributed to the variations in feeding regime and goats' physiological status as progressing lactation. Throughout the end of lactation, the decrease in all free fatty acids may be related to their converting to triglyceride form, as a result of which results in an increase in fat concentration in milk. This is confirmed by an increase in fat content in milk of all groups throughout lactation (data not shown). On the other hand, at the beginning of lactation is corresponding summer months, the high levels of FFA indicates that the fat present in goats' milk may be more susceptible to lipolysis caused by lipoprotein lipase naturally present in raw milk or the freer fatty acids may be de novo synthesized in mammary gland and their without unterrified transferring to milk and also the high long chain fatty acid content of pasture depending on the lactation month (Samkova et al., 2018). As seen in Table 4, one hour waiting before milking had no effect on acetic acid and the free fatty acid contents in milk for the both breeds except of cis-9-Octadecanoic acid. Fatty acids most commonly identified in the milk of all groups during the trial were hexadecanoic, octadecanoic. 9-octadecenoic. tetradecanoic and decanoic acids. This finding is consistent with the reports by Zan et al. (2006) on milk produced from Alpine and Saanen goats that are grazed on pasture. In contrast to the previous study for Shami breed (Güler et al., 2007) octadecanoic acid in milk of all groups during the trial was significantly higher than its unsaturated isomers such as 9-octadecenoic and 9,12-octadecadienoic acids. Tudisco et al. (2014) and Sanz-Sampelayo et al., (2007) reported that predominant FFA with 18 carbons was octadodecanoic acid in goat milk and its unsaturated isomers could be dependent mostly on the pasture and also the activity of desaturase enzyme in mammary cells of ruminants since this enzyme could be converted saturated C18 to unsaturated C18 isomers. However, cyclopropene acids found in some plants are inhibited to enzyme activity (Wastra, et.al., 2006). Therefore, the changes in pasture composition depending on lactation stages and also rumen microbial flora of each breed and also the enzyme activity in mammary cell may affect the concentrations of unsaturated C18 FFAs having the beneficial effects on health.

Among free fatty acids short chain FFAs (butanoic, hexanoic, octanoic and decanoic) are important for the flavour of goat's milk. The variation of this type of fatty acids with respect to the breeds and treatments are given in Table 5.

While C4 FFA is responsible for 'fatty' and 'sweaty' flavour notes, C6 to C10 contribute characteristic 'pungent' 'medicanal' and 'goaty' flavour notes, which characterize to flavour of goat milk (Siefarth and Buettner, 2014). As seen in Table 5, the higher contents of hexanoic and octanoic acids detected for Kilis goats indicates that milk from this breed has relatively more marked flavour compared to Shami breed and also is relatively readly digested due to high short chain fatty acids (Strzalkowska et al., 2009). Pre-weaning waiting has no influence on these types of fatty acids' concentration. However, decanoic acid is responsible for characteristic 'goaty' flavour has shown the most marked decrease during lactation (Table 2 and 3). This finding is important for the desirable flavour quality of goat milk since some consumers unlike goat milk and its products due to 'goaty' flavour (Siefarth and Buettner, 2014). Both breed and trial had no an effect on decanoic acid.

In this study, odd-numbered free fatty acids (OFFA) such as nonanoic, pentadecanoic and heptadecanoic acids were identified in milk. They are either derived directly from diet or synthesized by cellulolytic rumen bacteria (Civico et al., 2017). One hour-waiting before milking caused relatively an increase in odd-FFAs, but it was not significant (P>0.05). This may be important to the palatability of milk since high concentrations of odd-FFAs result in a softer fat due to their low melting points (Civico et al., 2017; Vlaeminck et al., 2006).

Table 4.	The effects of pr	e-milk waiting perio	od on acetic acid a	and some fatty	acids in the breeds.
Çizelge	4. Irklarda sağım	öncesi beklemenii	n asetik asit ve ba	zı yağ asitleri ü	izerine etkisi

Items	[Damascus		•	Kilis			
	Waiting	Control	Р	Waiting	Control	Р		
Acetic acid	2.10±0.23	2.91±0.51	0.157	2.85±0.58	4.16±0.88	0.218		
Butanoic acid	2.42±0.26	2.29±0.22	0.712	2.44±0.22	2.88±0.37	0.319		
Pentanoic acid	1.03±0.15	1.09±0.39	0.887	1.19±0.43	0.69±0.21	0.324		
Hexanoic acid	3.08±0.38	2.89±0.35	0.719	3.36±0.34	3.42±0.43	0.911		
Octanoic acid	2.86±0.36	2.72±0.19	0.744	2.87±0.22	2.78±0.26	0.792		
Nanonoic acid	1.09±0.13	1.11±0.11	0.928	1.12±0.12	1.03±0.09	0.556		
decanoic acid	8.37±1.00	8.33±0.93	0.975	10.82±0.98	8.43±0.91	0.078		
Dodeconoic acid	3.15±0.35	2.90±0.27	0.568	3.04±0.20	3.12±0.35	0.850		
Tetradeconoic acid	10.04±1.05	11.39±0.81	0.312	8.01±0.50	10.31±0.80	0.18		
pentadeconoic acid	0.90±0.09	0.91±0.08	0.909	0.85±0.08	1.04±0.11	0.174		
Hexadeconoic acid	54.80±3.85	56.58±3.59	0.736	53.26±2.22	61.01±3.30	0.056		
Heptadeconoic acid	1.09±0.11	1.10±0.14	0.944	0.96±0.07	1.30±0.09	0.005		
Octadeconoic acid	43.73±2.80	43.37±3.24	0.932	47.82±2.55	52.70±2.58	0.184		
cis-9- Octadeconoic acid	24.69±2.13	27.97±1.93	0.257	25.67±1.29	33.23±2.67	0.014		
<i>trans</i> 9-Octadeconoic acid	1.02±0.15	1.04±0.12	0.933	1.05±0.15	1.13±0.12	0.659		
9.12 Octadeconoic acid	2.87±0.23	3.69±0.39	0.078	3.32±0.22	3.99±0.28	0.068		

		Breed		Group		
Fatty acids	Shami (60)	Kilis (58)	Р	Waiting	Control	Р
				(59)	(59)	
Butanoic	1.66±0.118	2.15±0.144	<0.01	1.80±0.124	1.99±0.144	>0.05
Hexanoic	1.99±0.157	2.77±0.205	<0.01	2.32±0.172	2.42±0.205	>0.05
Octanoic	1.74±0.138	2.34±0.215	<0.05	2.01±0.163	2.05±0.201	>0.05
Decanoic	7.19±0.606	7.86±0.588	>0.05	7.46±0.586	4.58±0.614	>0.05

CONCLUSION

The results obtained in the study can be concluded as following;

(a) Shami and Kilis goats produced similar amount of marketable milk yield. For this reason, both breeds can be raised in this region which is located in the subtropical climate zone.

(b) Breed affected the content of lactose in the milk.

(c) Milk yield and composition were influenced by lactation months.

(d) Kilis goats, the locally goat breed of the region, are richer in terms of some fatty acids such as butanoic acid, hexanoic acid and octanoic acid affecting the milk flavour and its palatability.

(e) One hour waiting before milking had no effect on milk yield and composition.

ACKNOWLEDGMENTS

The authors thank to the Research Foundation of Mustafa Kemal University for its financial support (Project No: 13404).

REFERENCES

- AOAC. 1990. Association official analysis chemistry. In: Hortwitz W. (Editor) Official methods of analysis. Washington DC, USA.
- Chilliard Y, Ferlay A, Rouel J, Lamberet G. 2003. A review of nutritional and physiological factors affecting goat milk lipid synthesis and lipolysis. Journal of Dairy Science 86: 1751-1770.
- Civico A, Sánchez NN, Gómez-Cortés P, de la Fuente MA, Blanco FP, Juárez M, Schiavone A, Marín ALM. 2017. Odd- and branched- chain fatty acids in goat milk as indicators of the diet composition. Italian Journal Animal Science 2017; 16: 68-74-
- Fedele D, Pizzillo M, Claps S, Morand-Fehr P, Rubino R., 1993. Grazing behaviour and diet selection of goats on native pasture in Southern Italy. Small Ruminant Research 11: 305-322.
- Gül S, Keskin M, Göçmez Z, Gündüz Z. 2016. Effects of supplemental feeding on performance of Kilis goats kept on pasture condition. Italian Journal of Animal Science 15: 110-115.
- Güler Z, Keskin M, Masatçıoglu T, Gül S, Biçer O. 2007. Effects of breed and lactation period on some characteristics and free fatty acid composition of raw milk from Damascus Goats and German Fawn × Hair goat B₁ Crossbreds. Turkish Journal of Veterinary and Animal Sciences 31: 347-354.
- Güler Z. 2014. Profiles of organic acid and volatile Compounds in acid-type cheeses containing herbs and spices (surk cheese). International Journal of Food Properties 17: 1379–1392.
- Hill RL. 2006. Lactose synthesis in the mammary gland. The Journal of Biological Chemistry 6: 6-8.
- Huston JE. 2001. Nutrient Requirement of Small Ruminants, Sheep, Goats, Cervids, and New World Camelids. Washington DC, USA: The National Academies Press.
- IDF. 1962. Determination of the protein content of milk. International Dairy Federation Standard 28 A. Brussels, Belgium.
- Keskin M, Biçer O. 1997. Some Morphological and Physiological Characteristics of Goats Bred in Hatay Region. Journal of Agricultural Faculty Mustafa Kemal University 2: 73-86.
- Keskin M. 2000. Determination of some morphological characteristics and performance of Shami (damascus) goats in extensive breeding condition of Hatay region. PhD, Mustafa Kemal University, Hatay, Turkey.
- Keskin M, Atay O, Gökdal O, Konyalı A. 2012. Türkiye'de yetiştirilen keçi ırkları. Tarım Türk Dergisi 35: 71-74.
- Keskin M. 2013. Türkiye süt keçisi yetiştiriciliğinde alternatif bir ırk; Şam-Halep keçisi. Drink Techmarket İçecek ve Teknoloji Dergisi 70: 76-77.
- Keskin M, Gül S, Biçer O, Daşkıran İ. 2017. Some reproductive, lactation, and kid growth characteristics of Kilis goats under semiintensive conditions. Turkish Journal of Veterinary and Animal Sciences 41: 248-254.

- Khan S, Qureshi MS, Ahmed I, Shah SM. 2011. Milk composition and yield changes with advancing pregnancy in dairy buff aloes (Bubalus bubalis). Turkish Journal of Veterinary and Animal Sciences 35: 375-380.
- Lin Y, Sun X, Hou X, Qu B, Gao X, Li Q. 2016. Effects of glucose on lactose synthesis in mammary epithelial cells from dairy cow. BMC Veterinary Research 81: 1-11.
- Negrave R. 1996. Sheep grazing controls Calamagrostis Canadensis-dominated vegetation in the Boreal forest integrated forest vegetation management. Options and Application, FRDA Report 251.
- Ollier S, Robert-Granié C, Bernard L, Chilliard Y, Leroux C. 2007. Mammary transcriptome analysis of food-deprived lactating goats highlights genes involved in milk secretion and programmed cell death. Journal of Nutrition 137: 560–567.
- Pulina G, Mazzette A, Battacone G, Nudda A. 2006. Feed restriction alters milk production traits in Sarda dairy ewes. Jounal of Dairy Sciences 89: 59.
- Samkova, E., Kaubova, J., Hasonova, L., Hanus, O., Kala, R., Kvac, M., Pelikanova, T., Spicka, J. 2018. Joint effects of breed, parity, month of lactation, and cow individuality on the milk fatty acids composition. Mljekarstvo 68 (2), 98-107.
- Sanz-Sampelona MR, Chilliard Y, Schmidely P, Boza J. 2007. Influence of type of diet on the fat constituents of goat and sheep milk. Small Ruminant Research 68: 42-63.
- Sevi A, Casamassima D, Pulina G, Pazzona A. 2009. Factors of welfare reduction in dairy sheep and goat Italian Journal of Animal Sciences 8: 80-101.
- Siefarth C, Buettner A. 2014. The aroma of goat milk: Seasonal effects and changes through heat treatment. Journal Agricultural and Food Chemistry 62: 11805–11817.
- Strzałkowska N, Jóźwik A, Bagnicka E, Krzyżewski J, Horbańczuk K, Pyzel B, Horbańczuk JO. 2009. Chemical composition, physical traits and fatty acid profile of goat milk as related to the stage of lactation. Animal Science Papers and Reports 27: 311-320.
- Tudisco R, Grossi M, Addi L, Musco N, Cutrignelli MI, Calabrò S, Infascelli F. 2014. Fatty acid profile and CLA content of goat milk: Influence of feeding system. Journal of Food Research 4: 93-100.
- Vlaeminck B, Fievez V, Cabrita ARJ, Fonseca AJM, Dewhurst RJ. 2006. Factors affecting odd- and branched-chain fatty acids in milk: a review. Animal Feed Science and Technology 131: 389–417.
- Walstra P, Wouters JTM, Geurts TJ. 2006. Dairy Science and Technology. Boka Raton, NY, USA: Taylor and Francis Group.
- Zan M, Stibilij V, Rogelj I. 2006. Milk fatty acid composition of goat grazing on alpine pasture. Small Ruminant Research 64: 45-52.