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Summary: Genome wide association studies (GWASs) commonly used to search for genetic variants associated with 

quantitative traits. Pleiotropic effect of genes may cause the observed correlations among different phenotypes. This study proposed a 

two stage multilocus model for pleiotropic GWAS using a Bayesian mixture model to take into account of both small and major gene 

effects. The objectives of this study were to investigate if the two-stage model was useful for detecting pleiotropic genes using a 

simulated data set and to investigate existence of pleiotropic genes for testis weight and testis gene expression levels in house mouse. 

The analyses included relative testis weight and testis gene expression traits. The results showed that two stage model had higher power 

to detect the pleiotropic QTL than the single marker model. It was also noted the possible economical impact of sampling informative 

individuals for the GWAS analyses by observing genomic trends in the simulated dataset. Two stage model detected 50 and 53 major 

SNP effects using first and the second principal components. Additive genetic variation explained by chromosome X was found to be 

4% for the testis weight. 

Keywords: Bayesian mixture model, genome wide association analyses, pleiotropy. 

İki aşamalı bir model kullanarak ev faresinde hibrit sterilite üzerine genomik bir araştırma 

Özet: Genom tabanlı ilişki analizleri (GTİÇ) kantitatif verimler ile ilgili genleri bulmak için sıklıkla kullanılmaktadır. Farklı 

fenotipler arasındaki korelasyon pleiotropik genlerce açıklanabilir. Bu araştırmada, pleiotropik GTİÇ'da hem mendelci hem de major 

etkili genlerin iki aşamalı çoklu lokus modeli sayesinde birlikte kullanılmaları önerilmektedir. Bu çalışmanın ana amacı: bir benzeşim 

veri seti kullanarak: çoklu lokus yaklaşımın pleiotropik genlerin bulunmasında faydalı olup olmadığının incelenmesi ve bir fare 

verisetinde bu modeli kullanarak testis ağırlığı ve gen ifadelerinden sorumlu küçük ve major etkili pleiotropik genleri tespit etmektir. 

Göreceli testis ağırlıkları ve testis gen ifadesi karakterleri incelenmiştir. Sonuçlar iki aşamalı modelin pleiotropik QTL'leri tesbit 

etmede, tekil işaretleyici modelden daha yüksek güce sahip olduğunu ortaya koymuştur. Ek olarak benzeşim veri setlerinin genomik 

eğilimlerinin incelenmesi: GTİÇ'da bilgi veren bireylerin seçilmesinin daha ekonomik olduğunu ortaya koymuştur. Birinci ve ikinci 

temel bileşenli iki aşamalı model ile 50 ve 53 adet major SNP tesbit edilmiştir.. X kromozomunun, testis ağırlığındaki eklemeli genetik 

çeşitliliğin %4'ünü açıkladığı bulunmuştur. 

Anahtar sözcükler: Bayesçi karışım modeli, genom tabanlı ilişki analizi, pleiotropi. 

 
 

 

Introduction 

Gene flow is one of the important sources of genetic 

variation by hybridization of two distinct populations. 

Genetic biodiversity increase at hybridization area of 

locally separated populations (21). This hybrid might have 

hybrid sterility phenotypes due to divergent alleles at 

various loci (25). Storchova et al. (20) investigated the role 

of X chromosome in association with hybrid sterility 

phenotype. 

Genome wide association studies (GWASs) 

commonly used to search for genetic loci associated with 

quantitative phenotypes. A single gene might affects 

multiple phenotypes: that leads to construct of networks 

and pathways of genes (7,8). Pleiotropic effect of genes 

may cause the observed correlations among different 

phenotypes (23). Hartley et al (8) reported more than 8500 

associations obtained from 350 human complex traits: 

indicates that pleiotropy exist (24). Shriner (18) reviewed 

the statistical models to detect pleiotropic effects. 

Currently multivariate approaches are commonly used to 

combine multiple phenotypes for pleiotropic GWAS 

analyses. Gao et al. (4) demonstrated that GWAS using 

residuals of linear combination of multiple phenotypes 

lead to higher statistical power and lower false discoveries 

over single trait analyses. However most of the pleiotropic 

models are employing single marker regression 

approaches using outcome of multivariate models. 

Assumptions for different gene effects lead to different 

models (hence results) in GWAS. Yang et al. (26) used a 

polygenic GWAS approach for human height and 
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explained higher proportion of missing heritability 

(explanatory variance was found to be 50 %) compared 

with the common practice of single marker regression 

GWAS (explanatory variance was found to be 5 %). Hill 

(9) suggested to incorporate small and pleiotropic effects 

into genomic studies. Gratten et al (7) also stressed the 

importance of both polygenic and mendelian pleiotropic 

effects for the proper interpretation of GWAS. Based on 

this suggestions and discussions this study proposed a 

two-stage model for pleiotropic GWAS using a Bayesian 

mixture model (16) to take into account of both small 

(polygenic) and major gene effects. 

The objectives of this study were to 1) investigate if 

the two-stage model was useful for detecting pleiotropic 

genes using a simulated data set (22) and 2) to investigate 

existence of associated loci and pleiotropic genes for 

hybrid sterility (for testis weight and testis gene 

expression levels) for house mouse (21) using the two 

stage model. 

 

Materials and Methods 

The present work describes the two-stage model for 

detecting pleiotropic genes using both simulated 

QTLMAS data and real mouse datasets.  

QTLMAS data set: The pedigree included four 

generations with 4100 individuals for the simulated 

quantitative traits (22). The genome consisted of 10000 

Single Nucleotide Polymorphisms (SNPs) distributed over 

5 chromosomes. The number of population founders were 

1020 (1000 females and 20 males). Each male mated with 

51 females to create families. Generations were forced to 

be nearly discrete hence overlapping. Phenotypes of 3080 

individuals were available. Three correlated quantitative 

phenotypes were simulated to mimic milk yield 

(heritability =0.35), fat yield (heritability=0.35) and fat 

content (heritability=0.50) in the sheep. The detail of the 

simulated dataset could be found in Usai et al (22). 

Mice Data Set: The mice data consists of 179 males 

from the house mouse hybrid zone (21). The analyses 

included relative testis weight and testis gene expression 

traits. Before statistical analyses, SNPs were removed 

from the data if the call rate are < 90%, minor allele 

frequencies are < 1 %. Finally, a total of 152342 SNPs 

were collected for the genomic analyses. The detail of the 

mouse dataset could be found in Turner and Harr (21). 

A two Stage Pleiotropic GWAS model: This study 

proposed a two-stage model of pleiotropic GWAS as a 

means of increasing power of detecting both small and 

major gene effects using multivariate dimension reduction 

(3) and genomic prediction models (15). Following we 

give a general formulation of the two- stage model. 

Factor and principal component analyses could be 

used to discover loadings that combines underlying 

relationships hence pleiotropy among different 

phenotypes in GWAS. Stage 1 can be based on linear and 

orthogonal combinations of the residuals of the correlated 

phenotypes ( pyyy ,,, 21  ); 
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with the coefficients (a) being chosen to convey highest 

explanatory variances compared with the original 

explanatory variables, ,,,, 21 pxxx   (3). 

The second stage employs a Bayesian mixture model 

(BayesR) (16) for predicting pleiotropic SNP effects based 

on outcome of the Stage 1. BayesR assumed a hierarchical 

models of mixtures using different SNP effects; 

𝑝(𝛽𝑗|𝑝, 𝜎𝑔
2) =∑ 𝑝𝑖𝑓(𝑥|𝜃𝑖)

𝑘=4
𝑖=1  

where 𝛽 is the SNP effects, p is the mixture proportions 

(assumed to be 0.00001, 0.0001, 0.001, 0.01), 𝜎𝑔
2 is the 

genetic variance, 𝑓(𝑥|𝜃𝑖) is normally distributed mixture 

densities with 𝜃 parameters vectors and observations, 𝑥, . 

The present study sampled 50000 markov chains and 

discarded first 5000 as burn in period and recorded every 

10th sample for thinning the chain. Uninformative priors 

were also used to obtain desired posteriors. 

A Single SNP Model: Discordant sib pair 

experimental design was also employed as described in 

Karacaören (10) using Yu's linear mixed model (27) as 

implemented in rrBLUP package (2,17). Pearson 

homogeneity statistic could be estimated from 2xm table 

via following formula; 
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where ijn  stands for counted alleles among cases and 

controls, i = 1, 2 for sib 1 and sib 2, respectively and j = 

1…m (number of alleles). Due to dependency of test 

statistics within siblings; permutation tests could be used 

for deciding of statistical thresholds. This study permuted 

the case and control states of the siblings with probability 

of 1/2 to detect threshold of significance level of the test 

statistics.  

The present study used genomic kinship information 

in linear mixed model to take into account of the pedigree 

structure as was implemented in rrBLUP: (2) a linear 

mixed model (27) approach in R software (17) 

The linear mixed model (single marker regression 

approach) was used as 

y = Xb+Za+e    (1) 
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where y contains the observations, b is the sex effects, a is 

the additive genetic effect, matrices X and Z are incidence 

matrices, and e is a vector containing residuals.  
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For the random effects, it is assumed that A is the 

coefficient of coancestry obtained from genotype of 

animals; I is an identity matrix, 2
a is the additive genetic 

variance and 2
e is the residual variance. 

 

Results 

QTLMAS dataset: 301 SNP’s were excluded due to 

minor allele frequency <1%, leaving 9699 SNP’s in the 

analyses. Mean heterozygosity for the SNPs and the 

individuals were estimated as 0.35 with a standard error of 

0.01. Normality was confirmed by Kolmogorow Smirnow 

test, p>0.150 for each trait. Based on model (1) estimated 

genomic heritabilities were 0.31, 0.30, 0.47 for 

quantitative traits, respectively.  

Different genetic architectures were assumed for the 

QTLMAS phenotypes. BayesR assumed that SNPs effects 

were obtained by different mixture proportions from the 

normal distribution. Since some phenotypes could be 

controlled by both polygenic and major genes such an 

approximation might be useful. The Markov chain 

algorithm was run 4 times and the trace plot of number of 

significant SNPs was investigated (Table 1). Visual 

inspection of the trace plots show convergence (results not 

shown) of Markov chains. The posterior mean number of 

major SNPs were 51, 73 and 200 for trait 1, trait 2 and trait 

3 respectively. 

Single marker regression model was used (2, 27) to 

detect putative genomic associations using different 

number of discordant sib pairs (DSP) (Table 1). DSP 

design leads to homogenized samples by controlling for 

population stratification. In DSP design, sib pairs from 

each family could be used as cases and controls. Boehnke 

and Langefeld (1) used one case and one control from each 

family. In this study different number of DSP was sampled 

to association mapping using QTLMAS simulated dataset 

similar to Karacaören et al. (11) and Karacaören(12). 

Table 1 showed that number of detected true SNPs and 

QTLs increased with larger discordant sib pair families. 

Table 2 (a, b ,c, d) presents genotype and allele 

counts for top two markers (1685 and 3585) by counting 

all alleles (scheme 1) or discordant alleles (scheme 2). 

There was concordant results for both markers using both 

allele counting schemes and GWA analyses. The results 

showed that both GWA using all individuals and samples 

of discordant sip pairs gave similar results. Contrasting 

alleles that are discordant between sib pairs (scheme 2) 

also increased the association test statistics compared with 

test statistics obtained by all alleles (scheme 1) (Table 3). 

The p values were obtained using Monte Carlo 

simulations (Figure 1) based on 100.000 permutations of 

the data. Permutated p-values show agreement with GWA 

results.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Permutation results for markers 1685 and 

3585. 

Şekil 1. 1685 ve 3585. işaretleyiciler için permutasyon 

sonuçları 
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Table 1. Number of true / number of total significant SNPs 

(number of true QTLs) from genome wide association analyses 

(GWA) with all individuals (All) and different sampling schemes 

for discordant sib pairs (DSP) (n=2, 5, 10, 15, 20). 

Tablo 1. Gerçek/ toplam önemli SNP'lerin bütün bireyler (All) 

ve farklı örnekleme desenleri ile ayrık kardeş deneme deseni için 

(DSP) (n=2, 5, 10, 15, 20) genom tabanlı ilişki analizi (GWA) 

sonuçları.  

 Trait 1 Trait 2 Trait 3 

(n=2) 7/8 (4) 3/7 (3) 14/18 (7) 

(n=5) 22/23 (11) 12/26 (6) 22/23 (11) 

(n=10) 24/24 (12) 16/39 (8) 16/25 (8) 

(n=15) 30/34 (15) 18/34 (9) 23/36 (11) 

(n=20) 32/32 (16) 16/34 (8) 22/37 (11) 

All 22/32 (11) 16/35 (8) 22/40 (11) 

BAYESR 32/51 (16) 28/73 (14) 56/200 (28) 

 
Table 2a. Genotype counts for markers 1685  

Tablo 2a. 1685 işaretleyicisi için genotip sayımları. 

DSP GENOTYPE COUNT=1685 

 AFFECTED-SIB GENOTYPE 

UNAFFECTED-SIB 

GENOTYPE 

AA AB BB 

AA 6 5 1 

AB 6 18 5 

BB 6 10 3 

 
Table 2b. Genotype counts for markers 3585  

Tablo 2b. 3585 işaretleyicisi için genotip sayımları. 

DSP GENOTYPE COUNT=3585 

 AFFECTED-SIB GENOTYPE 

UNAFFECTED-SIB 

GENOTYPE 

AA AB BB 

AA 0 2 0 

AB 6 14 5 

BB 4 15 14 

 
Table 2c. Allele counts for markers 1685  

Tablo 2c. 1685 işaretleyicisi için alel sayımları. 

DSP ALLELE COUNT=1685 

 A B 

All Alleles (scheme 1)   

Affected Sibs 53 67 

Unaffected Sibs 69 51 

Discordant Alleles (scheme 2)   

Affected Sibs 18 33 

Unaffected Sibs 33 22 

 
Table 2d. Allele counts for markers 3585  

Tablo 2d. 3585 işaretleyicisi için alel sayımları. 

DSP ALLELE COUNT=3585 

 A B 

All Alleles (scheme 1)   

Affected Sibs 29 91 

Unaffected Sibs 51 69 

Discordant Alleles (scheme 2)   

Affected Sibs 13 34 

Unaffected Sibs 31 22 

Table 3. Test statistics, T1, for all alleles, DSP alleles and whole 

genome wide association analyses for different markers (Pearson 

correlation coefficient values and p values) 

Tablo 3. Bütün alleler DSP alleleri ve bütün genomik ilişki 

analizindeki farklı işaretleyiciler için test istatistikleri , T1 

(Pearson korelasyon katsayısı değerleri ve p değerleri). 

 All Alleles DSP allele 

count 

-log(P) 

Marker 

1685 

4.27 (0.10094) 6.62 (0.02886) 17.17 

Marker 

3585 

12.86 (0.00036) 15.71 

(0.00003) 

14.47 

 

 

Table 4. Estimates of genomic heritabilites using first (1) and 

second (2) scores obtained from different rotation techniques. 

Tablo 4. Farklı döndürüm (rotasyon) tekniklerine ait birinci (1) 

ve ikinci (2) puanlardan elde edilmiş genomik kalıtım derecesi 

tahminleri. 

Model Estimates of heritability 

Principal Component 1 0.33 

Principal Component 2 0.45 

Harris-Kaiser 1 0.31 

Harris-Kaiser 2 0.36 

Promax 1 0.31 

Promax 2 0.37 

Varimax 1 0.32 

Varimax 2 0.37 

 

 

Linear combinations of multivariate phenotypes 

were used (loadings) for detecting pleiotropy. Loadings 

were used as a response variable with the models to detect 

pleiotropic genes. Principal component analyses can be 

used to discover underlying pleiotropic patterns of 

genomic datasets. The method could also be used for 

reduction of dimension of datasets as well. Principal 

component rotation techniques were used to obtain linear 

combinations of multivariate phenotypes for detecting 

pleiotropy. Loadings were used to estimate heritabilites 

and to detect putative associations (Table 1 and Table 4). 

Genomic heritabilites were estimated based on first 

two loadings from principal components and factor 

analyses (Table 4) with different rotations (16). The 

highest heritability was obtained by second principal 

components (0.45). However first principal component 

had the highest explanatory variation (0.620 and 0.376 

respectively). Hence both principal component scores 

were used to detect pleiotropy in subsequent analyses.  

Genome scans of the principal components were 

generally successful in finding significant true positive 

genomic signals for pleiotropy. In single marker 

regression analyses for each of the two top principal 

components: 28 (of 33) and 20 (of 33) SNPs were detected 

using the linear mixed model. In two stage analyses of 

each of the two top principal components: 20 (of 48) and 
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30 (45) SNPs were detected. A total of 36 and 48 

pleiotropic QTLs were detected by single marker and the 

two stage approaches. Therefore, the two stage model had 

higher power to detect the pleiotropic QTL than the single 

marker model. 

Mouse data set: A hierarchical Bayesian mixture 

model was used (16) for detecting major and minor SNP 

effects for relative testis weight and genome wide testis 

gene expression patterns. Since most of the quantitative 

traits influenced by number of genes with various effect 

sizes: such an assumption might lead to useful findings in 

practice (6). Visual inspection of the trace plots show 

convergence (results not shown) of Markov chains. The 

posterior mean number of SNPs for the testis weight were 

1123.  

Table 5 shows that there are SNPs with major SNP 

effects. Additive genetic variation explained by chromosome 

X was found to be 4% for the testis weight. Over all 1123 

SNPs explained 99% of the total genetic variance. 

 

Table 5. Predicted SNPs effects for testis weight by a Bayesian 

mixture model. 

Tablo 5. Testis ağırlığı için Bayesçi karışım modeli ile elde 

edilmiş SNP etkileri 

SNP Chromosome Position Effect 

JAX00486833 2 33426476 0.056959 

JAX00034959 12 37595107 0.036166 

JAX00391946 14 124643672 0.025451 

JAX00596027 5 127055315 0.024441 

JAX00397676 15 34048660 0.021275 

JAX00659084 7 151799616 0.019798 

JAX00664173 8 29420605 0.019018 

JAX00639799 7 62418975 0.019005 

JAX00273087 1 160478940 0.018338 

JAX00486833 2 33426476 0.056959 

 

To identify fertility related pleiotropic genomic 

regions in 179 male mice: relative testis weight (testis 

weight/ body weight) and genome wide testis gene 

expression patterns were analysed using the two-stage 

model (Table 6). The first principal component account 

for highest explanatory proportion (14 %) of the data. 

Each succeeding principal components predicted very 

small sizes of SNPs effects. Two-stage model detected 50 

and 53 major SNP effects using first and the second 

principal components. 

 

Discussion and Conclusion 

QTLMAS data set: Table 1 showed that number of 

detected true SNPs and QTLs increased with larger 

discordant sib pair families. This was particularly true for 

the trait 1. Although Marker 1685 had highest –logP value 

(Table 3), it was not found to be statistically significant by 

counting Scheme of 1 (p =0.1009). The main reason was 

uncorrected inbreeding structure in the genotypic data set. 

However, when counting Scheme of 2 was used to 

incorporate the inbreeding structure, the genomic signal 

was detected by at the level of 100.000 permutations. 

There was a good agreement for marker 3585 using both 

allele counting schemes and whole genome wide 

association analyses (Table 3). The results showed that 

both GWA using all individuals and samples of discordant 

sip pairs gave similar results. Contrasting alleles that are 

discordant between sib pairs (scheme 2) also increased the 

association test statistics compared with test statistics 

obtained by all alleles (scheme 1) (Table 3). Hence 

evidence for association was much higher when using 

discordant alleles instead of using all alleles. The p values 

were evaluated using Monte Carlo simulations (Table 3) 

based on 100.000 permutations of the data. Permutated p-

values show agreement with full genome wide association 

results. Stronger association were observed for marker 

3585 compared with marker 1685. The possible economical 

impact of sampling informative individuals was also noted 

for the GWAS analyses by observing genomic trends in 

the Table 1. For example, usage of discordant sib pairs of 

20 (detected 16 QTLs) had higher accuracy instead of 

using the whole individuals (detected 11 QTLs).  

 

 

Table 6. Summary of top ten identified pleiotropic loci of the mouse data set. 

Tablo 6. Fare veri setinden elde edilmiş ilk on pleiotropik lokusa ait özet. 

PRINCIPAL COMPONENT SNP ID CHR POSITION EFFECT SIZE 

1 JAX00498433 2 103801050 167.168 

1 JAX00266356 1 130401319 95.2271 

1 JAX00598774 5 137616662 74.6396 

1 JAX00706991 9 117110944 72.2723 

1 JAX00611301 6 58617650 64.7165 

1 JAX00050167 14 13585763 63.1884 

1 JAX00488905 2 49260698 53.7426 

1 JAX00263226 1 115832554 53.1671 

1 JAX00309656 11 45140995 33.1346 

1 JAX00661579 8 14496838 26.6909 
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The two stage analyses were able to identify 

additional new positions missed by the single marker 

regression model. This was particularly true for the 

phenotype 2 (14 true QTLs) and phenotype 3 (28 true 

QTLs). 

For pleiotropic analyses: simulated GWAS data of 

9699 SNPs were employed with 3080 individuals for 3 

quantitative phenotypes: the heritabilities were equal to 

0.35, 0.35, and 0.50 respectively. The outcome of 

principal component analyses of the 3 quantitative 

phenotypes were used for detecting pleiotropic effects by 

the Bayesian hierarchical model (BayesR). The assumed 

SNPs effects were obtained with different effect sizes: the 

first containing 56 SNPs with major effects, the second 

containing 128 SNPs with smaller effect, and a large group 

of 1410 SNPs representing a polygenic component for the 

first principal component. The second principal 

component contained 64 major effects, 66 moderate 

effects and 545 polygenic effects. Since the QTLMAS 

data set simulated with high level of inbreeding structure: 

moderate and polygenic effects were essential for taking 

into account of the associated pedigree (and population) 

structure. The genomic signals from the major effects of 

the BayesR were compared with the organizers true results 

(22) by the threshold of 1Mb. BayesR was able to detect 

20 and 30 true SNPs using first and second principal 

components respectively. A total of 48 (out of 50) QTLs 

were detected on both principal components. In general, 

the two-stage model showed the highest detection power, 

particularly when it was used with the second principal 

component. However, the two stage model also produced 

larger number of false positives: success rates were found 

to be 0.42 and 0.67 (for principal components 1 and 2, 

respectively): compared with the results of single marker 

regression approach as 0.85 and 0.61 (for principal 

components 1 and 2, respectively). However, the two-

stage model was able to detect higher number of true 

QTLs (48 true QTLs) compared with the single marker 

regression approach (36 true QTLs). Similar to our 

findings, importance of genetic architecture was also 

stressed by Leong et al. (13), Liu et al. (14) and Usai et al. 

(22) by comparing the different genetic models and 

assumptions for detecting pleiotropic genes. However, 

Gianola et al. (5) pointed out potential problems for 

detecting pleiotropy using molecular markers due to 

unaccounted linkage disequilibrium structure in the 

GWAS. The proposed two-stage model may have 

limitations in terms of false positive signals, however it 

has an advantage over most other single marker regression 

models since it does take into account of linkage 

disequilibrium by modeling whole SNPs simultaneously.  

Mouse data set: Turner and Harr (21) assumed major 

genes for the testis weight and detected genomic signals 

from 9 autosomes and X chromosome by using permissive 

false discovery rate (stringent threshold detected four 

SNPs). Since Turner and Harr (21) used threshold for p 

values to take into account of multiple hypothesis testing 

such results expectable. The proposed model that affects 

multiple SNPs simultaneously can resolve the multiple 

hypothesis testing problem in pleiotropic analyses of 

GWAS. BayesR model provides flexibility in terms of 

effect sizes for the SNPs. The analyses of this study 

showed that most of the SNPs (>0.98) had small effects 

for the testis weight, demonstrating importance of the 

polygenic component. By carrying out a pleiotropic 

GWAS in a male house mouse, up to 103 SNPs that are 

associated in top two principal components variation with 

joint effects of testis weight and testis gene expression 

levels were identified. Top two principal components 

explain 21 % of the total variation.  

A new two stage method to detect pleiotropic SNPs 

using a Bayesian mixture model (16) was presented to 

increase accuracy in this study. By definition, GWAS uses 

hypothesis free explanatory tools. In that regard two-stage 

model of the present study might be useful to investigate 

pleiotropic GWAS referring different genetical 

architectures for the phenotypes. Employing the Bayesian 

mixture model (BayesR) at the second stage corrects for 

both the linkage disequilibrium and the polygenic effects 

(16). Compared with the single marker regression 

pleiotropic models: the two stage model was also prune to 

well known multiple hypothesis testing problems in 

GWAS. Although the simulated data showed that two-

stage model of the present study subject to false positive 

results, it still might be informative (and hypothesis 

producer) to use it for scanning the genome to detect major 

and small pleiotropic effects. 
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