Research Article
BibTex RIS Cite

Lazer-Toz Yatağında Füzyon ile Üretilen Ti6Al4V Gyroid Yapıların Basma Dayanımlarının Nümerik Modellenmesi

Year 2023, Volume: 23 Issue: 1, 270 - 283, 01.03.2023
https://doi.org/10.35414/akufemubid.1171673

Abstract

Ortopedik metal implantlar fonksiyonun geri kazanılması amacıyla eklem ve kemik dokusunun onarımı sürecinde sağlamlığı korumak için yaygın kullanılır. İmplantların yük taşıma işlevi gören bölgeye uygun elastik modül değeri ve vücutta oluşacak olumsuz etkileri önleyici biyouyumluluk özelliklerinin olması, minimum gereksinimlerdir. İdeal implant malzemesi üzerine yaygınlaşmış çalışmalar, yüksek mekanik dayanıklılık ve osteointegrasyon özellikleri nedeniyle titanyum ve titanyum alaşımlı implantlar üzerinedir. Ancak implantasyon sonrası vücutta kalması istenen durumlarda biyoaktiviteyi daha da artırmak ve kemiğin mekanik özelliklerine yaklaşmak amacıyla üçlü periyodik minimal yüzey (ÜPMY) kafes yapısına sahip gözenekli implantlar kullanılır. Çalışma, istenen mekanik özellikleri ve gözenekler arası hücre hareketini sağlamak için kontrollü ÜPMY kafes yapılarından gyroid gözenek yapısına sahip lazer toz yatağında füzyon ile üretimi planlanan Ti6Al4V ilk olarak 40-80% arasında farklı gözeneklilik oranlarında tasarlanmıştır. Ardından her bir tasarım için basma altında mekanik dayanım ve deformasyon davranışlarını sonlu eleman analizi altında incelemeye odaklanılmıştır. Literatüre bakıldığında lazer toz yatağında füzyon ile üretilen gyroid Ti6Al4V yapıların basma testi sonuçları ile karşılaştırılmış ve uyumlu sonuçlar alınmıştır.

Supporting Institution

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu-TÜBİTAK

Project Number

120N943

Thanks

Bu çalışma PorouSLM (https://www.porouslm.org/) projesi için TUBİTAK (120N943) ve NRF Kore (2020K2A9A1A06108513) tarafından desteklenmiştir.

References

  • Ataee A., Li Y., Brandt M., Wen C., 2018. Ultrahigh-strength titanium gyroid scaffolds manufactured by selective laser melting (SLM) for bone implant applications. Acta Materialia, 158, 354-368.
  • Al-Ketan, O., & Abu Al-Rub, R. K., 2019. Multifunctional mechanical metamaterials based on triply periodic minimal surface lattices. Advanced Engineering Materials, 21(10), 1900524.
  • Balaban, N., Çimenoğlu, H., 2007. Bioactivity Examination Of Titanium And Its Alloys, Thesis (M.Sc.), İstanbul Technical University, Institute of Science and Technology, http://hdl.handle.net/11527/9296
  • Blanquer, S. B., Werner, M., Hannula, M., Sharifi, S., Lajoinie, G. P., Eglin, D., ... & Grijpma, D. W., 2017. Surface curvature in triply-periodic minimal surface architectures as a distinct design parameter in preparing advanced tissue engineering scaffolds. Biofabrication, 9(2), 025001.
  • Bobbert, F. S. L., Lietaert, K., Eftekhari, A. A., Pouran, B., Ahmadi, S. M., Weinans, H., & Zadpoor, A. A., 2017. Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties. Acta biomaterialia, 53, 572-584.
  • Burton, H. E., Eisenstein, N. M., Lawless, B. M., Jamshidi, P., Segarra, M. A., Addison, O., ... & Cox, S. C., 2019. The design of additively manufactured lattices to increase the functionality of medical implants. Materials Science and Engineering: C, 94, 901-908.
  • Challis, V. J., Xu, X., Zhang, L. C., Roberts, A. P., Grotowski, J. F., & Sercombe, T. B., 2014. High specific strength and stiffness structures produced using selective laser melting. Materials & Design, 63, 783-788.
  • Chatterjee, A., Sapru, B. L., & Awasthi, P. N., 1999. Efficacy of Indigenously manufactured titanium bone plates and screws in maxillofacial surgery. Medical journal, Armed Forces India, 55(4), 287–290. doi:10.1016/S0377-1237(17)30349-0.
  • Depboylu, F. N., Yasa, E., Poyraz, Ö., Minguella-Canela, J., Korkusuz, F., & De los Santos López, M. A. 2022. Titanium based bone implants production using laser powder bed fusion technology. Journal of Materials Research and Technology, 17,1408-1426.
  • Deshpande, V. S., Ashby, M. F., & Fleck, N. A., 2001. Foam topology: bending versus stretching dominated architectures. Acta materialia, 49(6), 1035-1040.
  • Feng, J., Fu, J., Yao, X., & He, Y., 2022. Triply periodic minimal surface (TPMS) porous structures: from multi-scale design, precise additive manufacturing to multidisciplinary applications. International Journal of Extreme Manufacturing, 4(2), 022001.
  • Ge, J., Huang, J., Lei, Y., O'Reilly, P., Ahmed, M., Zhang, C., ... & Yin, S., 2020. Microstructural features and compressive properties of SLM Ti6Al4V lattice structures. Surface and Coatings Technology, 403, 126419.
  • Kelly, C. N., Francovich, J., Julmi, S., Safranski, D., Guldberg, R. E., Maier, H. J., & Gall, K., 2019. Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering. Acta Biomaterialia, 94, 610-626.
  • Keshavarzan, M., Kadkhodaei, M., Badrossamay, M., & Ravari, M. K., 2020. Investigation on the failure mechanism of triply periodic minimal surface cellular structures fabricated by Vat photopolymerization additive manufacturing under compressive loadings. Mechanics of Materials, 140, 103150.
  • Lehder, E. F., Ashcroft, I. A., Wildman, R. D., Ruiz-Cantu, L. A., & Maskery, I., 2021. A multiscale optimisation method for bone growth scaffolds based on triply periodic minimal surfaces. Biomechanics and Modeling in Mechanobiology, 20(6), 2085-2096.
  • Mahmoud, D., Al-Rubaie, K. S., & Elbestawi, M. A., 2021. The influence of selective laser melting defects on the fatigue properties of Ti6Al4V porosity graded gyroids for bone implants. International Journal of Mechanical Sciences, 193, 106180.Mittal, G., Dubbudu, R. R., & Cariappa, K. M., 2012. Three dimensional titanium mini plates in oral & maxillofacial surgery: a prospective clinical trial. Journal of Maxillofacial and Oral Surgery, 11(2), 152–159. doi:10.1007/s12663-011-0267-0.
  • Navi, N. U., Tenenbaum, J., Sabatani, E., Kimmel, G., David, R. B., Rosen, B. A., ... & Eliaz, N. 2020. Hydrogen effects on electrochemically charged additive manufactured by electron beam melting (EBM) and wrought Ti–6Al–4V alloys. International Journal of Hydrogen Energy, 45(46), 25523-25540.
  • Okazaki, Y., Gotoh, E. & Mori, J., 2019. Strength–Durability Correlation of Osteosynthesis Devices Made by 3D Layer Manufacturing. Materials, doi:10.3390/ma12030436
  • Peterson J., Wang Q., Dechow PC., 2006. Material properties of the dentate maxilla. Anatomical Record Part A Discoveries Molecular Cellular and Evolutionary Biology, 288, 962-972.
  • Piao, C., Wu, D., Luo, M., & Ma, H. 2014. Stress shielding effects of two prosthetic groups after total hip joint simulation replacement. Journal of Orthopaedic Surgery and Research, 9(1), 1-8.
  • Pham, A., Kelly, C., & Gall, K., 2020. Free boundary effects and representative volume elements in 3D printed Ti–6Al–4V gyroid structures. Journal of Materials Research, 35(19), 2547-2555.
  • Raju, R., Duraiselvam, M., Petley, V., Verma, S., & Rajendran, R. 2015. Microstructural and mechanical characterization of Ti6Al4V refurbished parts obtained by laser metal deposition. Materials Science and Engineering: A, 643, 64-71.
  • Rashed, M. G., Ashraf, M., Mines, R. A. W., & Hazell, P. J., 2016. Metallic microlattice materials: A current state of the art on manufacturing, mechanical properties and applications. Materials & Design, 95, 518-533.
  • Ridzwan Mi. Z., Shuib, S., Hassan, A. Y., Shorki, A. A., & Ibrahim, M. M. 2007. Problem of stress shielding and improvement to the hip Implat designs: a review. J. Med. Sci, 7(3), 460-467.
  • Rumpler, M., Woesz, A., Dunlop, J. W., Van Dongen, J. T., & Fratzl, P., 2008. The effect of geometry on three-dimensional tissue growth. Journal of the Royal Society Interface, 5(27), 1173-1180.
  • Sharma, D., & Hiremath, S. S., 2021. Additively manufactured mechanical metamaterials based on triply periodic minimal surfaces: Performance, challenges, and application. Mechanics of Advanced Materials and Structures, 1-31.
  • Singh D, Rana A, Jhajhria SK, Garg B, Pandey PM, Kalyanasundaram D., 2019. Experimental assessment of biomechanical properties in human male elbow bone subjected to bending and compression loads. Journal of Applied Biomaterials and Functional Materials, 17 Available at: https://pubmed.ncbi.nlm.nih.gov/30229701/
  • Shi, J., Zhu, L., Li, L., 2018. A TPMS-based method for modeling porous scaffolds for bionic bone tissue engineering. Scientific Reports 8, 7395, https://doi.org/10.1038/s41598-018-25750-9.
  • Tao, W., & Leu, M. C., 2016. Design of lattice structure for additive manufacturing. In 2016 International Symposium on Flexible Automation (ISFA) (pp. 325-332). IEEE.
  • Torquato, S., & Donev, A., 2004. Minimal surfaces and multifunctionality. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 460(2047), 1849-1856.
  • Vijayavenkataraman, S., Zhang, L., Zhang, S., Hsi Fuh, J. Y., & Lu, W. F., 2018. Triply periodic minimal surfaces sheet scaffolds for tissue engineering applications: An optimization approach toward biomimetic scaffold design. ACS Applied Bio Materials, 1(2), 259-269.
  • Yan, C., Hao, L., Hussein, A., & Young, P. 2015. Ti–6Al–4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting. Journal of the mechanical behavior of biomedical materials, 51, 61-73.
  • Yan, C., Hao, L., Yang, L., Hussein, A., Young, P., Li, Z., & Li, Y. 2021. Triply Periodic Minimal Surface Lattices Additively Manufactured by Selective Laser Melting. Academic Press, 183-217
  • Yang, E., Leary, M., Lozanovski, B., Downing, D., Mazur, M., Sarker, A., ... & Brandt, M. 2019. Effect of geometry on the mechanical properties of Ti-6Al-4V Gyroid structures fabricated via SLM: A numerical study. Materials & Design, 184, 108165.
  • Yoo D.J. 2011, Porous scaffold design using the distance field and triply periodic minimal surface models, Biomaterials, 32, 7741-7754.
  • Wright ZM, Arnold AM, Holt BD, Eckhart KE, Sydlik SA., 2019. Functional Graphenic Materials, Graphene Oxide, and Graphene as Scaffolds for Bone Regeneration. Regenerative Engineering and Translational Medicine., 5, 19

Numerical Modeling of Mechanical Strength of Tİ6AL4V Gyroid Structures for Orthopedic Implants

Year 2023, Volume: 23 Issue: 1, 270 - 283, 01.03.2023
https://doi.org/10.35414/akufemubid.1171673

Abstract

Metal orthopedic implants are widely used to maintain stability during tissue repair in joint and bone injuries to restore function. Elastic modulus values suitable for the area where the implants carry the load-bearing part and have biocompatibility features that prevent harmful effects on the body are the minimum requirements. Widespread studies on the ideal implant material are on titanium and titanium alloy implants due to their high mechanical strength and osteointegration properties. However, in cases where it is desired to remain in the body after implantation, porous implants with triply periodic minimal surface (TPMS) lattice structures are used in order to increase the bioactivity further and reach the mechanical properties of the bone. In the study, Ti6Al4V with gyroid pore structure, one of the controlled TPMS lattice structures planned to be produced by laser powder bed fusion technology, was designed with different porosity rates between 40-80%. Then, the focus is on examining the mechanical strength and deformation behaviors under compression for each design with the finite element analysis. The results of the study were compared with the compression test of gyroid Ti6Al4V structures produced by laser powder bed fusion from the literature and consistent results were obtained.

Project Number

120N943

References

  • Ataee A., Li Y., Brandt M., Wen C., 2018. Ultrahigh-strength titanium gyroid scaffolds manufactured by selective laser melting (SLM) for bone implant applications. Acta Materialia, 158, 354-368.
  • Al-Ketan, O., & Abu Al-Rub, R. K., 2019. Multifunctional mechanical metamaterials based on triply periodic minimal surface lattices. Advanced Engineering Materials, 21(10), 1900524.
  • Balaban, N., Çimenoğlu, H., 2007. Bioactivity Examination Of Titanium And Its Alloys, Thesis (M.Sc.), İstanbul Technical University, Institute of Science and Technology, http://hdl.handle.net/11527/9296
  • Blanquer, S. B., Werner, M., Hannula, M., Sharifi, S., Lajoinie, G. P., Eglin, D., ... & Grijpma, D. W., 2017. Surface curvature in triply-periodic minimal surface architectures as a distinct design parameter in preparing advanced tissue engineering scaffolds. Biofabrication, 9(2), 025001.
  • Bobbert, F. S. L., Lietaert, K., Eftekhari, A. A., Pouran, B., Ahmadi, S. M., Weinans, H., & Zadpoor, A. A., 2017. Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties. Acta biomaterialia, 53, 572-584.
  • Burton, H. E., Eisenstein, N. M., Lawless, B. M., Jamshidi, P., Segarra, M. A., Addison, O., ... & Cox, S. C., 2019. The design of additively manufactured lattices to increase the functionality of medical implants. Materials Science and Engineering: C, 94, 901-908.
  • Challis, V. J., Xu, X., Zhang, L. C., Roberts, A. P., Grotowski, J. F., & Sercombe, T. B., 2014. High specific strength and stiffness structures produced using selective laser melting. Materials & Design, 63, 783-788.
  • Chatterjee, A., Sapru, B. L., & Awasthi, P. N., 1999. Efficacy of Indigenously manufactured titanium bone plates and screws in maxillofacial surgery. Medical journal, Armed Forces India, 55(4), 287–290. doi:10.1016/S0377-1237(17)30349-0.
  • Depboylu, F. N., Yasa, E., Poyraz, Ö., Minguella-Canela, J., Korkusuz, F., & De los Santos López, M. A. 2022. Titanium based bone implants production using laser powder bed fusion technology. Journal of Materials Research and Technology, 17,1408-1426.
  • Deshpande, V. S., Ashby, M. F., & Fleck, N. A., 2001. Foam topology: bending versus stretching dominated architectures. Acta materialia, 49(6), 1035-1040.
  • Feng, J., Fu, J., Yao, X., & He, Y., 2022. Triply periodic minimal surface (TPMS) porous structures: from multi-scale design, precise additive manufacturing to multidisciplinary applications. International Journal of Extreme Manufacturing, 4(2), 022001.
  • Ge, J., Huang, J., Lei, Y., O'Reilly, P., Ahmed, M., Zhang, C., ... & Yin, S., 2020. Microstructural features and compressive properties of SLM Ti6Al4V lattice structures. Surface and Coatings Technology, 403, 126419.
  • Kelly, C. N., Francovich, J., Julmi, S., Safranski, D., Guldberg, R. E., Maier, H. J., & Gall, K., 2019. Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering. Acta Biomaterialia, 94, 610-626.
  • Keshavarzan, M., Kadkhodaei, M., Badrossamay, M., & Ravari, M. K., 2020. Investigation on the failure mechanism of triply periodic minimal surface cellular structures fabricated by Vat photopolymerization additive manufacturing under compressive loadings. Mechanics of Materials, 140, 103150.
  • Lehder, E. F., Ashcroft, I. A., Wildman, R. D., Ruiz-Cantu, L. A., & Maskery, I., 2021. A multiscale optimisation method for bone growth scaffolds based on triply periodic minimal surfaces. Biomechanics and Modeling in Mechanobiology, 20(6), 2085-2096.
  • Mahmoud, D., Al-Rubaie, K. S., & Elbestawi, M. A., 2021. The influence of selective laser melting defects on the fatigue properties of Ti6Al4V porosity graded gyroids for bone implants. International Journal of Mechanical Sciences, 193, 106180.Mittal, G., Dubbudu, R. R., & Cariappa, K. M., 2012. Three dimensional titanium mini plates in oral & maxillofacial surgery: a prospective clinical trial. Journal of Maxillofacial and Oral Surgery, 11(2), 152–159. doi:10.1007/s12663-011-0267-0.
  • Navi, N. U., Tenenbaum, J., Sabatani, E., Kimmel, G., David, R. B., Rosen, B. A., ... & Eliaz, N. 2020. Hydrogen effects on electrochemically charged additive manufactured by electron beam melting (EBM) and wrought Ti–6Al–4V alloys. International Journal of Hydrogen Energy, 45(46), 25523-25540.
  • Okazaki, Y., Gotoh, E. & Mori, J., 2019. Strength–Durability Correlation of Osteosynthesis Devices Made by 3D Layer Manufacturing. Materials, doi:10.3390/ma12030436
  • Peterson J., Wang Q., Dechow PC., 2006. Material properties of the dentate maxilla. Anatomical Record Part A Discoveries Molecular Cellular and Evolutionary Biology, 288, 962-972.
  • Piao, C., Wu, D., Luo, M., & Ma, H. 2014. Stress shielding effects of two prosthetic groups after total hip joint simulation replacement. Journal of Orthopaedic Surgery and Research, 9(1), 1-8.
  • Pham, A., Kelly, C., & Gall, K., 2020. Free boundary effects and representative volume elements in 3D printed Ti–6Al–4V gyroid structures. Journal of Materials Research, 35(19), 2547-2555.
  • Raju, R., Duraiselvam, M., Petley, V., Verma, S., & Rajendran, R. 2015. Microstructural and mechanical characterization of Ti6Al4V refurbished parts obtained by laser metal deposition. Materials Science and Engineering: A, 643, 64-71.
  • Rashed, M. G., Ashraf, M., Mines, R. A. W., & Hazell, P. J., 2016. Metallic microlattice materials: A current state of the art on manufacturing, mechanical properties and applications. Materials & Design, 95, 518-533.
  • Ridzwan Mi. Z., Shuib, S., Hassan, A. Y., Shorki, A. A., & Ibrahim, M. M. 2007. Problem of stress shielding and improvement to the hip Implat designs: a review. J. Med. Sci, 7(3), 460-467.
  • Rumpler, M., Woesz, A., Dunlop, J. W., Van Dongen, J. T., & Fratzl, P., 2008. The effect of geometry on three-dimensional tissue growth. Journal of the Royal Society Interface, 5(27), 1173-1180.
  • Sharma, D., & Hiremath, S. S., 2021. Additively manufactured mechanical metamaterials based on triply periodic minimal surfaces: Performance, challenges, and application. Mechanics of Advanced Materials and Structures, 1-31.
  • Singh D, Rana A, Jhajhria SK, Garg B, Pandey PM, Kalyanasundaram D., 2019. Experimental assessment of biomechanical properties in human male elbow bone subjected to bending and compression loads. Journal of Applied Biomaterials and Functional Materials, 17 Available at: https://pubmed.ncbi.nlm.nih.gov/30229701/
  • Shi, J., Zhu, L., Li, L., 2018. A TPMS-based method for modeling porous scaffolds for bionic bone tissue engineering. Scientific Reports 8, 7395, https://doi.org/10.1038/s41598-018-25750-9.
  • Tao, W., & Leu, M. C., 2016. Design of lattice structure for additive manufacturing. In 2016 International Symposium on Flexible Automation (ISFA) (pp. 325-332). IEEE.
  • Torquato, S., & Donev, A., 2004. Minimal surfaces and multifunctionality. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 460(2047), 1849-1856.
  • Vijayavenkataraman, S., Zhang, L., Zhang, S., Hsi Fuh, J. Y., & Lu, W. F., 2018. Triply periodic minimal surfaces sheet scaffolds for tissue engineering applications: An optimization approach toward biomimetic scaffold design. ACS Applied Bio Materials, 1(2), 259-269.
  • Yan, C., Hao, L., Hussein, A., & Young, P. 2015. Ti–6Al–4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting. Journal of the mechanical behavior of biomedical materials, 51, 61-73.
  • Yan, C., Hao, L., Yang, L., Hussein, A., Young, P., Li, Z., & Li, Y. 2021. Triply Periodic Minimal Surface Lattices Additively Manufactured by Selective Laser Melting. Academic Press, 183-217
  • Yang, E., Leary, M., Lozanovski, B., Downing, D., Mazur, M., Sarker, A., ... & Brandt, M. 2019. Effect of geometry on the mechanical properties of Ti-6Al-4V Gyroid structures fabricated via SLM: A numerical study. Materials & Design, 184, 108165.
  • Yoo D.J. 2011, Porous scaffold design using the distance field and triply periodic minimal surface models, Biomaterials, 32, 7741-7754.
  • Wright ZM, Arnold AM, Holt BD, Eckhart KE, Sydlik SA., 2019. Functional Graphenic Materials, Graphene Oxide, and Graphene as Scaffolds for Bone Regeneration. Regenerative Engineering and Translational Medicine., 5, 19
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Biomedical Engineering, Biomaterial
Journal Section Articles
Authors

Fatma Nur Depboylu 0000-0003-0401-5923

Özgür Poyraz 0000-0001-9892-5738

Evren Yasa 0000-0001-5443-3598

Feza Korkusuz 0000-0001-9486-3541

Project Number 120N943
Early Pub Date March 1, 2023
Publication Date March 1, 2023
Submission Date September 8, 2022
Published in Issue Year 2023 Volume: 23 Issue: 1

Cite

APA Depboylu, F. N., Poyraz, Ö., Yasa, E., Korkusuz, F. (2023). Lazer-Toz Yatağında Füzyon ile Üretilen Ti6Al4V Gyroid Yapıların Basma Dayanımlarının Nümerik Modellenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 23(1), 270-283. https://doi.org/10.35414/akufemubid.1171673
AMA Depboylu FN, Poyraz Ö, Yasa E, Korkusuz F. Lazer-Toz Yatağında Füzyon ile Üretilen Ti6Al4V Gyroid Yapıların Basma Dayanımlarının Nümerik Modellenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. March 2023;23(1):270-283. doi:10.35414/akufemubid.1171673
Chicago Depboylu, Fatma Nur, Özgür Poyraz, Evren Yasa, and Feza Korkusuz. “Lazer-Toz Yatağında Füzyon Ile Üretilen Ti6Al4V Gyroid Yapıların Basma Dayanımlarının Nümerik Modellenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23, no. 1 (March 2023): 270-83. https://doi.org/10.35414/akufemubid.1171673.
EndNote Depboylu FN, Poyraz Ö, Yasa E, Korkusuz F (March 1, 2023) Lazer-Toz Yatağında Füzyon ile Üretilen Ti6Al4V Gyroid Yapıların Basma Dayanımlarının Nümerik Modellenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23 1 270–283.
IEEE F. N. Depboylu, Ö. Poyraz, E. Yasa, and F. Korkusuz, “Lazer-Toz Yatağında Füzyon ile Üretilen Ti6Al4V Gyroid Yapıların Basma Dayanımlarının Nümerik Modellenmesi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 23, no. 1, pp. 270–283, 2023, doi: 10.35414/akufemubid.1171673.
ISNAD Depboylu, Fatma Nur et al. “Lazer-Toz Yatağında Füzyon Ile Üretilen Ti6Al4V Gyroid Yapıların Basma Dayanımlarının Nümerik Modellenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23/1 (March 2023), 270-283. https://doi.org/10.35414/akufemubid.1171673.
JAMA Depboylu FN, Poyraz Ö, Yasa E, Korkusuz F. Lazer-Toz Yatağında Füzyon ile Üretilen Ti6Al4V Gyroid Yapıların Basma Dayanımlarının Nümerik Modellenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23:270–283.
MLA Depboylu, Fatma Nur et al. “Lazer-Toz Yatağında Füzyon Ile Üretilen Ti6Al4V Gyroid Yapıların Basma Dayanımlarının Nümerik Modellenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 23, no. 1, 2023, pp. 270-83, doi:10.35414/akufemubid.1171673.
Vancouver Depboylu FN, Poyraz Ö, Yasa E, Korkusuz F. Lazer-Toz Yatağında Füzyon ile Üretilen Ti6Al4V Gyroid Yapıların Basma Dayanımlarının Nümerik Modellenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23(1):270-83.