Research Article
BibTex RIS Cite

Sucul Ortamlarda Nanopartikül Toksisitesi

Year 2022, Volume: 11 Issue: Supplement 1 - Veterinary Pharmacology Congress Special Issue, 59 - 63, 01.12.2022
https://doi.org/10.53424/balikesirsbd.1158751

Abstract

Nanopartiküller (NP’ler) 1 ile 100 nm arasında bulunan partiküllere verilen isimdir. NP’ler normal malzemelerden farklı belirli fiziksel ve kimyasal özelliklerinden dolayı ticari kullanım için yapay olarak sentezlenmekte, endüstriyel üretim esnasında kasıtsız bir yan ürün veya doğal olarak meydana gelmektedir. Her gün gelişmekte olan nanoteknoloji, elektronik, tıp, inşaat, kozmetik, tekstil, otomotiv, çevre, gıda, ev aletleri, yenilebilir enerji, petrol, tarım, matbaacılık, spor ve sağlık gibi alanlarda kullanılmaktadır. En yaygın kullanılan NP’ler ise gümüş (Ag), titanyum (Ti) ve silikon dioksit (SiO2) veya karbon (C) tabanlı olanlardır. Ticari olarak üretilen NP’ler, üretim aşamalarında veya yaşam döngülerinin son aşamasında atık ürünler olarak sucul ortama deşarj edilebilmektedir. Bu NP’ler yüzey veya yeraltı suyu ortamlarına geçebilmektedir. Su kaynaklarına doğrudan, yağış veya topraktan süzülüp gelen NP’ler balık, kabuklular ve hatta tek hücreli organizmalar gibi sucul organizmalara yönelik önemli etkilere neden olabilmektedirler. Sucul organizmalar NP’lere solungaçları, yutma, dermal temas, hücrelere adsorpsiyon gibi yollarla maruz kalmaktadırlar. NP’ler canlılarda lipid peroksidasyonuna, hücre yapısının bozulmasına, mitokondride bozulmaya, protein oksidasyonuna ve DNA hasarı gibi etkilere neden olmaktadırlar. NP’ler çevresel risk değerlendirmeleri çoğunlukla tüm risk faktörlerini dikkate almayan standart laboratuvar koşulları altında gerçekleştirilmektedir. Bu nedenle çevre ve atık su ortamları gibi karmaşık ortamlara salınan NP’lerin bu ortamlardaki davranışları laboratuvar ortamından farklı olabilmektedir.

Thanks

II. Uluslararası VII. Ulusal Veteriner Farmakoloji ve Toksikoloji Kongresi katılımcısıyım. Kongrede sözü sunum yapacağım. Kongreyi düzenleyenlere teşekkür ederim.

References

  • Ameen, F., Alsamhary, K., Alabdullatif, J. A.& Alnadhari, S. (2021). A Review on metal-based nanoparticles and their toxicity to beneficial soil bacteria and fungi. Ecotoxicology and Environmental Safety, 213, 112027. https://doi.org/10.1016/j.ecoenv.2021.112027.
  • Andaç, M., Dikbaş, Ç.& Akyüz, G. (2022). Nanopartiküllerin genel özellikleri, sentez ve karakterizasyon teknikleri. Turkiye Klinikleri Veterinary Sciences- Pharmacology and Toxicology - Special Topics, p.1- 10.
  • Ateş, M., Demir, V., Adıgüzel, R.& Arslan, Z. (2013). Bioaccumulation, subacute toxicity, and tissue distribution of engineered titanium dioxide nanoparticles in goldfish (carassius auratus). Hindawi Publishing Corporation Journal of Nanomaterials, Article ID 460518, 6 pages. http://dx.doi.org/10.1155/2013/460518.
  • Bakshi, M., Singh, H. B.& Abhilash, P. C. (2014). The unseen impact of nanoparticles: more or less?. Current Scıence, Vol. 106, No. 3.
  • Chen, L., Hu, P., Zhang, L., Huang, S., Lou, L.& Huang, C. Z. (2012). Toxicity of graphene oxide and multi-walled carbon nanotubes against human cells and zebrafish. Science China Chemistry October, Vol.55 No.10. doi: 10.1007/s11426-012-4620-z.
  • Chen, R., Hu, B., Liu, Y., Xu, J., Yang, G., Xu, D., et al. (2016). Beyond pm2.5: the role of ultrafine particles on adverse health effects of air pollution. Biochimica et Biophysica Acta., 1860(12):2844–2855.
  • Daniel, M. C.& Astruc, D. (2004). Gold nanoparticles: assembly, supramolecular chemistry, quantum-size related properties, and applications toward biology, Catalysis, And Nanotechnology. Chemical Reviews, 104, 293−346.
  • Długosz, O., Sochocka, M., Ochnik, M.& Banach, M. (2021). Metal and bimetallic nanoparticles: flow synthesis, bioactivity and toxicity. Journal of Colloid and Interface Science, 586, 807–818. https://doi.org/10.1016/j.jcis.2020.11.005.
  • Du, J., Tang, J., Xu, S., Ge, J., Dong, Y., Li, H., et al. (2020). ZnO nanoparticles: recent advances in ecotoxicity and risk assessment. Drug and Chemical Toxicology, 43:3, 322-333, DOI: 10.1080/01480545.2018.1508218.
  • Filazi, A. & Şimşek, İ. (2022). Nanomateryallerin istenmeyen etkileri ve toksikolojik değerlendirme yöntemleri. Turkiye Klinikleri Veterinary Sciences- Pharmacology and Toxicology - Special Topics, p. 71-77.
  • Griffin, S., Masood, M. I., Nasim, M. J., Sarfraz, M., Ebokaiwe, A. P., Schäfer, K-H., et al. (2018). Natural nanoparticles: a particular matter inspired by nature. Antioxidants, 7, 3. doi:10.3390/antiox7010003.
  • Haghighat, F., Kim, Y., Sourinejad, I., Yu, I. J.& Johari, S. A. (2021). Titanium dioxide nanoparticles affect the toxicity of silver nanoparticles in common carp (cyprinus carpio). Chemosphere, 262, 127805.https://doi.org/10.1016/j.chemosphere.2020.127805.
  • Imani, M., Halimi, M.& Khara, H. (2015). Effects of silver nanoparticles (agnps) on hematological parameters of rainbow trout, oncorhynchus mykiss. Comparative Clinical Pathology, 24:491–495. DOI 10.1007/s00580-014-1927-5.
  • Jovanovic, B., Ji, T.& Palic, D. (2011). Gene expression of zebrafish embryos exposed to titaniumdioxide nanoparticles and hydroxylated fullerenes. Ecotoxicology and Environmental Safety, 74,1518–1525.
  • Kachenton, S., Jiraungkoorskul, W., Kangwanrangsan, N.& Tansatit, T. (2019). Cytotoxicity and histopathological analysis of titanium nanoparticles via artemia salina. Environmental Science and Pollution Research, 26:14706–14711. https://doi.org/10.1007/s11356-018-1856-y.
  • Krysanov, E. Y., Pavlov, D. S., Demidova, T. B.& Dgebuadze, Y. Y. (2010). Effect of nanoparticles on aquatic organisms. Biology Bulletin, Vol. 37, No. 4, pp. 406–412.
  • Lopez-Serrano, A., Olivas, R. M., Landaluze, J. S.& Camara, C. (2014). Nanoparticles: a global vision. characterization, separation, and quantification methods. potential environmental and health impact. Analytical Methods, 6, 38–56.
  • Ma, Z., Yin, X., Ji, X., Yue, J. Q., Zhang, L., Qin, J. J., et al. (2016). Evaluation and removal of emerging nanoparticle contaminants in water treatment: a review. Desalin Water Treatment, 57, 11221–11232. https://doi.org/10.1080/19443994.2015.1038734.
  • Malakar, A., Kanel, S. R., Ray, C., Snow, D. D.& Nadagouda, M. N. (2021). Nanomaterials in the environment, human exposure pathway, and health effects: a review. Science of the Total Environment, 759, 143470. https://doi.org/10.1016/j.scitotenv.2020.143470.
  • Overbeck, S., Rink, L.& Haase, H. (2008), Modulating the immune response by oral zinc supplementation: a single approach for multiple diseases. Archivum Immunologiae et Therapiae Experimentalis, 56, 15–30. DOI:10.1007/s00005-008-0003-8.
  • Paital, B., Guru, D., Mohapatra, P., Panda, B., Parida, N., Rath, S., et al. (2019). Ecotoxic impact assessment of graphene oxide on lipid peroxidation at mitochondrial level and redox modulation in fresh water fish anabas testudineus. Chemosphere, 224, 796-804. https://doi.org/10.1016/j.chemosphere.2019.02.156.
  • Ruttkay-Nedecky, B., Skalickova, S., Kepinska, M., Cihalova, K., Docekalova, M., Stankova, M., et al. (2018). Development of new silver nanoparticles suitable for materials with antimicrobial properties. Journal of Nanoscience and Nanotechnology, Vol. 18, 1–8. doi:10.1166/jnn.2018.15867.
  • Shaw, B. J. & Handy, R. D. (2011). Physiological effects of nanoparticles on fish: a comparison of nanometals versus metal ions. Environment International, 37, 1083–1097.
  • Taghavi, S. M., Momenpour, M., Azarian, M., Ahmadian, M., Souri, F., Taghavi, S. A., et al. (2013). Effects of nanoparticles on the environment and outdoor workplaces. Electronic physician,, Vol. 5; Issue 4.
  • Xiong, D., Fang, T., Yu, L., Sima, X.& Zhu, W. (2011). Effects of nano-scale tio2, zno and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Science of The Total Environment, 409, 1444–1452.
  • Yalsuyi, A. M. & Vajargah, M. F. (2017). Acute toxicity of silver nanoparticles in roach (rutilus rutilus) and goldfish (carassius auratus). Journal of Environmental Treatment Techniques, Volume 5, Issue 1, Pages: 1-4.
  • Zhao, C-M. & Wang, W-X. (2010). Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to daphnia magna. Environmental Toxicology and Chemistry, Vol. 30, No. 4, pp. 885–892. https://doi.org/10.1002/etc.451.

Nanoparticle Toxicity in Aquaculture

Year 2022, Volume: 11 Issue: Supplement 1 - Veterinary Pharmacology Congress Special Issue, 59 - 63, 01.12.2022
https://doi.org/10.53424/balikesirsbd.1158751

Abstract

Nanoparticles (NPs) are the name given to particles that exist between 1 and 100 nm. NPs are synthesized artificially for commercial use due to certain physical and chemical properties different from normal materials, occur as an unintentional by-product during industrial production, or occur naturally. Nanotechnology, which is developing every day, is used in fields such as electronics, medicine, construction, cosmetics, textiles, automotive, environment, food, household appliances, renewable energy, petroleum, agriculture, printing, sports and health. The most commonly used NPs are those based on silver (Ag), titanium (Ti), and silicon dioxide (SiO2) or carbon (C). Commercially produced NPs can be discharged into the aquatic environment as waste products during the production stages or at the final stage of their life cycle. These NPs can migrate to surface or groundwater environments. NPs that leach into water sources directly from precipitation or soil can cause significant effects on aquatic organisms such as fish, crustaceans and even single cell organisms. Aquatic organisms are exposed to NPs through gills, ingestion, dermal contact, and adsorption to cells. NPs cause effects such as lipid peroxidation, disruption of cell structure, deterioration in mitochondria, protein oxidation and DNA damage in living things. Environmental risk assessments of NPs are often performed under standard laboratory conditions that do not consider all risk factors. Because of that the behavior of NPs released into complex environments such as environment and wastewater environments may be different from the laboratory environment.

References

  • Ameen, F., Alsamhary, K., Alabdullatif, J. A.& Alnadhari, S. (2021). A Review on metal-based nanoparticles and their toxicity to beneficial soil bacteria and fungi. Ecotoxicology and Environmental Safety, 213, 112027. https://doi.org/10.1016/j.ecoenv.2021.112027.
  • Andaç, M., Dikbaş, Ç.& Akyüz, G. (2022). Nanopartiküllerin genel özellikleri, sentez ve karakterizasyon teknikleri. Turkiye Klinikleri Veterinary Sciences- Pharmacology and Toxicology - Special Topics, p.1- 10.
  • Ateş, M., Demir, V., Adıgüzel, R.& Arslan, Z. (2013). Bioaccumulation, subacute toxicity, and tissue distribution of engineered titanium dioxide nanoparticles in goldfish (carassius auratus). Hindawi Publishing Corporation Journal of Nanomaterials, Article ID 460518, 6 pages. http://dx.doi.org/10.1155/2013/460518.
  • Bakshi, M., Singh, H. B.& Abhilash, P. C. (2014). The unseen impact of nanoparticles: more or less?. Current Scıence, Vol. 106, No. 3.
  • Chen, L., Hu, P., Zhang, L., Huang, S., Lou, L.& Huang, C. Z. (2012). Toxicity of graphene oxide and multi-walled carbon nanotubes against human cells and zebrafish. Science China Chemistry October, Vol.55 No.10. doi: 10.1007/s11426-012-4620-z.
  • Chen, R., Hu, B., Liu, Y., Xu, J., Yang, G., Xu, D., et al. (2016). Beyond pm2.5: the role of ultrafine particles on adverse health effects of air pollution. Biochimica et Biophysica Acta., 1860(12):2844–2855.
  • Daniel, M. C.& Astruc, D. (2004). Gold nanoparticles: assembly, supramolecular chemistry, quantum-size related properties, and applications toward biology, Catalysis, And Nanotechnology. Chemical Reviews, 104, 293−346.
  • Długosz, O., Sochocka, M., Ochnik, M.& Banach, M. (2021). Metal and bimetallic nanoparticles: flow synthesis, bioactivity and toxicity. Journal of Colloid and Interface Science, 586, 807–818. https://doi.org/10.1016/j.jcis.2020.11.005.
  • Du, J., Tang, J., Xu, S., Ge, J., Dong, Y., Li, H., et al. (2020). ZnO nanoparticles: recent advances in ecotoxicity and risk assessment. Drug and Chemical Toxicology, 43:3, 322-333, DOI: 10.1080/01480545.2018.1508218.
  • Filazi, A. & Şimşek, İ. (2022). Nanomateryallerin istenmeyen etkileri ve toksikolojik değerlendirme yöntemleri. Turkiye Klinikleri Veterinary Sciences- Pharmacology and Toxicology - Special Topics, p. 71-77.
  • Griffin, S., Masood, M. I., Nasim, M. J., Sarfraz, M., Ebokaiwe, A. P., Schäfer, K-H., et al. (2018). Natural nanoparticles: a particular matter inspired by nature. Antioxidants, 7, 3. doi:10.3390/antiox7010003.
  • Haghighat, F., Kim, Y., Sourinejad, I., Yu, I. J.& Johari, S. A. (2021). Titanium dioxide nanoparticles affect the toxicity of silver nanoparticles in common carp (cyprinus carpio). Chemosphere, 262, 127805.https://doi.org/10.1016/j.chemosphere.2020.127805.
  • Imani, M., Halimi, M.& Khara, H. (2015). Effects of silver nanoparticles (agnps) on hematological parameters of rainbow trout, oncorhynchus mykiss. Comparative Clinical Pathology, 24:491–495. DOI 10.1007/s00580-014-1927-5.
  • Jovanovic, B., Ji, T.& Palic, D. (2011). Gene expression of zebrafish embryos exposed to titaniumdioxide nanoparticles and hydroxylated fullerenes. Ecotoxicology and Environmental Safety, 74,1518–1525.
  • Kachenton, S., Jiraungkoorskul, W., Kangwanrangsan, N.& Tansatit, T. (2019). Cytotoxicity and histopathological analysis of titanium nanoparticles via artemia salina. Environmental Science and Pollution Research, 26:14706–14711. https://doi.org/10.1007/s11356-018-1856-y.
  • Krysanov, E. Y., Pavlov, D. S., Demidova, T. B.& Dgebuadze, Y. Y. (2010). Effect of nanoparticles on aquatic organisms. Biology Bulletin, Vol. 37, No. 4, pp. 406–412.
  • Lopez-Serrano, A., Olivas, R. M., Landaluze, J. S.& Camara, C. (2014). Nanoparticles: a global vision. characterization, separation, and quantification methods. potential environmental and health impact. Analytical Methods, 6, 38–56.
  • Ma, Z., Yin, X., Ji, X., Yue, J. Q., Zhang, L., Qin, J. J., et al. (2016). Evaluation and removal of emerging nanoparticle contaminants in water treatment: a review. Desalin Water Treatment, 57, 11221–11232. https://doi.org/10.1080/19443994.2015.1038734.
  • Malakar, A., Kanel, S. R., Ray, C., Snow, D. D.& Nadagouda, M. N. (2021). Nanomaterials in the environment, human exposure pathway, and health effects: a review. Science of the Total Environment, 759, 143470. https://doi.org/10.1016/j.scitotenv.2020.143470.
  • Overbeck, S., Rink, L.& Haase, H. (2008), Modulating the immune response by oral zinc supplementation: a single approach for multiple diseases. Archivum Immunologiae et Therapiae Experimentalis, 56, 15–30. DOI:10.1007/s00005-008-0003-8.
  • Paital, B., Guru, D., Mohapatra, P., Panda, B., Parida, N., Rath, S., et al. (2019). Ecotoxic impact assessment of graphene oxide on lipid peroxidation at mitochondrial level and redox modulation in fresh water fish anabas testudineus. Chemosphere, 224, 796-804. https://doi.org/10.1016/j.chemosphere.2019.02.156.
  • Ruttkay-Nedecky, B., Skalickova, S., Kepinska, M., Cihalova, K., Docekalova, M., Stankova, M., et al. (2018). Development of new silver nanoparticles suitable for materials with antimicrobial properties. Journal of Nanoscience and Nanotechnology, Vol. 18, 1–8. doi:10.1166/jnn.2018.15867.
  • Shaw, B. J. & Handy, R. D. (2011). Physiological effects of nanoparticles on fish: a comparison of nanometals versus metal ions. Environment International, 37, 1083–1097.
  • Taghavi, S. M., Momenpour, M., Azarian, M., Ahmadian, M., Souri, F., Taghavi, S. A., et al. (2013). Effects of nanoparticles on the environment and outdoor workplaces. Electronic physician,, Vol. 5; Issue 4.
  • Xiong, D., Fang, T., Yu, L., Sima, X.& Zhu, W. (2011). Effects of nano-scale tio2, zno and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Science of The Total Environment, 409, 1444–1452.
  • Yalsuyi, A. M. & Vajargah, M. F. (2017). Acute toxicity of silver nanoparticles in roach (rutilus rutilus) and goldfish (carassius auratus). Journal of Environmental Treatment Techniques, Volume 5, Issue 1, Pages: 1-4.
  • Zhao, C-M. & Wang, W-X. (2010). Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to daphnia magna. Environmental Toxicology and Chemistry, Vol. 30, No. 4, pp. 885–892. https://doi.org/10.1002/etc.451.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Derlemeler
Authors

İlker Şimşek 0000-0001-9181-9879

Özgür Kuzukıran 0000-0001-9294-2801

Ayhan Filazi 0000-0002-2800-6215

Publication Date December 1, 2022
Submission Date August 7, 2022
Published in Issue Year 2022 Volume: 11 Issue: Supplement 1 - Veterinary Pharmacology Congress Special Issue

Cite

APA Şimşek, İ., Kuzukıran, Ö., & Filazi, A. (2022). Sucul Ortamlarda Nanopartikül Toksisitesi. Balıkesir Sağlık Bilimleri Dergisi, 11(Supplement 1), 59-63. https://doi.org/10.53424/balikesirsbd.1158751

International Peer Reviewed Journal

The journal adopts Open Access Policy and does not request article proccessing charge (APC), article publishing charge or any other charges.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.