Review
BibTex RIS Cite

Kırık İyileşmesinde Düşük Seviyeli Lazer Terapisinin Kullanılması

Year 2021, Volume: 2 Issue: 2, 80 - 84, 31.12.2021

Abstract

Veteriner hekimlikte kullanıma giren terapötik lazerler, noninvaziv ve ilaçsız bir tedavi yöntemi olması bakımından günümüzde yaygınlaşmaya başlamıştır. Lazer, yoğun, tek renkli, uyumlu ve yüksek oranda paralelleştirilmiş ışık demeti üreten bir cihazdır. Dalga boylarına göre düşük seviyeli (yumuşak lazer), orta seviyeli (mid lazer) ve yüksek seviyeli lazer (sert veya sıcak lazer) olmak üzere üç farklı grupta incelenebilmektedir. Lazerler, yara iyileşmesi doku nekrozu, osteoartrit, romatoid artrit, miyofasiyal ağrı, kırık iyileşmesi ve tendo-ligament yaralanmaları gibi geniş bir kullanım alanına sahiptir. Düşük seviyeli lazer terapisinin (LLLT) kırıklarda osteoblastik aktiviteyi, kan damarı sayısını ve mineralize kemik miktarını artırarak kırık iyileşmesini hızlandırdığı rapor edilmiştir. LLLT, çeşitli mekanizmalar aracılığıyla kırıkların iyileşmesini ve kallus oluşumunu hızlandırarak kırık onarım sürecini kısaltmaya yönelik kullanılan bir terapi şeklidir. Lazerin kırık iyileşmesi üzerindeki etkisi tartışmaya açıktır. Terapötik etkilerinin netleştirilmesi için daha fazla çalışmaya ihtiyaç duyulmaktadır.

References

  • 1. Pryor B, Millis DL. Therapeutic laser in veterinary medicine. Veterinary Clinics: Small Animal Practice 2015; 45: 45-56. doi: 10.1016/j.cvsm.2014.09.003.
  • 2. Bhagyashree RK, Amit AA, Amit BS, Kshitij VP, Chetan PR. Low-level Laser Therapy: A Literature Rewiew. International Journal of Laser Dentistry 2015; 5: 1-5. doi: 10.5005/jp-journals-10022-1064.
  • 3. Farivar S, Malekshahabi T, Shiari R. Biological effects of low level laser therapy. Journal of Lasers in Medical Sciences 2014; 5: 8-63.
  • 4. Singh SC, Zeng H, Guo C, Cai W. Nanomaterials: processing and characterization with lasers. Weinheim, Germany: Wiley‐VCH Verlag & Co. KGa, 2012; p.96.
  • 5. Boyraz İ, Yıldız A. Lazer Çeşitleri ve yüksek yoğunluklu lazer kullanımı. Çağdaş Tıp Dergisi. 2017; 6: 104-109. doi: 10.16899/ctd. 55797.
  • 6. Sarı H, Tüzün Ş, Akgün K. Hareket Sistemi Hastalıklarında Fiziksel Tıp Yöntemleri. İstanbul: Nobel Tıp Kitabevleri, 2002; p.86.
  • 7. Alper S. Fiziksel Tıp ve Rehabilitasyon In: Mehmet Beyazova, Yeşim Gökçe Kutsal. Fiziksel Tıp ve Rehabilitasyon 201; p. 823-826.
  • 8. Gordon SA, Surrey K. Red and far-red action on oxidative phosphorylation. Radiation Research 1960; 12: 325-339. doi: 10.2307/3571041.
  • 9. Lubart R, Eichler M, Lavi R, Friedman H, Shainberg A. Low-energy laser irradiation promotes cellular redox activity. Photomedicine and Laser Therapy 2005; 23: 3-9. doi: 10.1089/pho.2005.23.3.
  • 10. Yamada EF, Villaverde AGJB, Munin E, Zangaro RA, Pacheco MTT. Effect of low-power laser therapy on edema dynamics: sensing by using the electrical capacitance method. Laser Interaction with Tissue and Cells 2004; 5319: 355-362. doi: 10.1117/12.528105.
  • 11. Kato M. Cytochrome oxidase is a possible photoreceptor in mitochondria. Photobiochem Photobiophys 1981; 2: 263-269.
  • 12. Dourado DM, Favero S, Matias R, Carvalho PdTC, Cruz‐Höfling MA. Low‐level laser therapy promotes vascular endothelial growth factor receptor‐1 expression in endothelial and nonendothelial cells of mice gastrocnemius exposed to snake venom. Photochemistry and Photobiology 2011; 87: 418-426. doi: 10.1111/j.1751-1097.2010.00878.x.
  • 13. Cury V, Moretti AIS, Assis L, Bossini P, Crusca JdSC, et al. Low level laser therapy increases angiogenesis in a model of ischemic skin flap in rats mediated by VEGF, HIF-1α and MMP-2. Journal of Photochemistry and Photobiology B: Biology 2013; 125: 164-170. doi: 10.1016/j.jphotobiol.2013.06.004.
  • 14. Asimov M, Thanh NC. Laser-induced photodissociation of oxyhemoglobin: Optical method of elimination of hypoxia (oxygen deficiency in biotissue). Optics and Spectroscopy 2011; 111: 224-229. doi: 10.1134/S0030400X11080066.
  • 15. Heu F, Forster C, Namer B, Dragu A, Lang W. Effect of low-level laser therapy on blood flow and oxygen-hemoglobin saturation of the foot skin in healthy subjects: a pilot study. Laser Therapy 2013; 22: 21-30. doi: 10.5978/islsm.13-OR-03.
  • 16. Pereira MCM, de Pinho CB, Medrado ARP, de Araujo Andrade Z, Almeida Reis SR. Influence of 670 nm low-level laser therapy on mast cells and vascular response of cutaneous injuries. Journal of Photochemistry and Photobiology B: Biology 2010; 98: 188-192. doi: 10.1016/j.jphotobiol.2009.12.005.
  • 17. Mi X, Chen J, Zhou L. Effect of low power laser irradiation on disconnecting the membrane-attached hemoglobin from erythrocyte membrane. Journal of Photochemistry and Photobiology B: Biology 2006; 83: 146-150. doi: 10.1016/j.jphotobiol.2005.12.018.
  • 18. Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: current concepts and future directions. BMC Medicine 2011; 9: 1-10. doi: 10.1186/1741-7015-9-66.
  • 19. Chao E, Inoue N. Biophysical stimulation of bone fracture repair, regeneration and remodelling. Eur Cell Mater 2003; 6: 72-85. doi: 10.22203/eCM.v006a07.
  • 20. Massari L, Benazzo F, Falez F, Perugia D, Pietrogrande L. et al. Biophysical stimulation of bone and cartilage: state of the art and future perspectives. International Orthopaedics 2019; 43: 539-551. doi: 10.1007/s00264-018-4274-3.
  • 21. Cheng W, Yao M, Sun K, Li W. Progress in Photobiomodulation for Bone Fractures: A Narrative Review. Photobiomodulation, Photomedicine, and Laser Surgery 2020; 38: 260-271. doi: 10.1089/photob.2019.4732.
  • 22. Chiari S. Photobiomodulation and lasers. Frontiers of Oral Biology 2016; 18: 118-123. doi: 10.1159/000351906.
  • 23. Gavish L, Houreld NN. Therapeutic efficacy of home-use photobiomodulation devices: a systematic literature review. Photobiomodulation, Photomedicine, and Laser Surgery 2019; 37: 4-16. doi: 10.1089/photob.2018.4512.
  • 24. Fernandes MR, Suzuki SS, Suzuki H, Martinez EF, Garcez AS. Photobiomodulation increases intrusion tooth movement and modulates IL‐6, IL‐8 and IL‐1β expression during orthodontically bone remodeling. Journal of Biophotonics 2019; 12: 1-10. doi: 10.1002/jbio.201800311.
  • 25. Yang H, Liu J, Yang K. Comparative study of 660 and 830 nm photobiomodulation in promoting orthodontic tooth movement. Photobiomodulation, Photomedicine, and Laser Surgery 2019; 37: 349-355. doi: 10.1089/photob.2018.4615.
  • 26. Kulkarni S, Meer M, George R. Efficacy of photobiomodulation on accelerating bone healing after tooth extraction: a systematic review. Lasers in Medical Science 2019; 34: 685-692. doi: 10.1007/s10103-018-2641-3.
  • 27. Gojkov-Vukelic M, Hadzic S, Zukanovic A, Pasic E, Pavlic V. Application of diode laser in the treatment of dentine hypersensitivity. Medical Archives 2016; 70: 466. doi: 10.5455/medarh.2016.70.466-469.
  • 28. Huang X, Das R, Patel A, Nguyen TD. Physical stimulations for bone and cartilage regeneration. Regenerative Engineering and Translational Medicine 2018; 4: 216-237. doi: /10.1007/s40883-018-0064-0.
  • 29. Walker NA, Denegar CR, Preische J. Low-intensity pulsed ultrasound and pulsed electromagnetic field in the treatment of tibial fractures: a systematic review. Journal of Athletic Training 2007; 42: 530.
  • 30. Schandelmaier S, Kaushal A, Lytvyn L, Heels-Ansdell D, Siemieniuk RA, et al. Low intensity pulsed ultrasound for bone healing: systematic review of randomized controlled trials. BMJ 2017; 356.: 1-16. doi: 10.1136/bmj.j656.
  • 31. Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent stem cells current stage and future perspectives. Biomaterials 2018; 180: 143–162.
  • 32. Shakouri SK, Soleimanpour J, Salekzamani Y, Oskuie MR. Effect of low-level laser therapy on the fracture healing process. Lasers in Medical Science 2010; 25: 73-77. doi: 10.1007/s10103-009-0670-7.
  • 33. Leo JA, Cunha Ad, Oliveira EFdO, Prado RP. Effect of low-level laser (GaAs, 904 ηm) for bone repair on fractures in rats. Revista Brasileira de Ortopedia 2012; 47: 235-240. doi: 10.1016/S2255-4971(15)30092-6.
  • 34. Mostafavinia A, Farahani RM, Abbasian M, Farahani MV, Fridoni M, et al. Effect of pulsed wave low-level laser therapy on tibial complete osteotomy model of fracture healing with an intramedullary fixation. Iranian Red Crescent Medical Journal 2015; 17: 12 doi: 10.5812/ircmj.32076.
  • 35. Junior S, Aurelicio N, Pinheiro A, Oliveira L, Weismann G, et al. Computerized morphometric assessment of the effect of low-level laser therapy on bone repair: an experimental animal study. Journal of Clinical Laser Medicine & Surgery 2002; 20: 83-87. doi: 10.1089/104454702753768061. 36. Trelles M, Mayayo E. Bone fracture consolidates faster with low‐power laser. Lasers in Surgery and Medicine 1987; 7: 36-45. doi: 10.5812/ircmj.32076.
  • 37. İlman AA. Tavşanlarda kırık iyileşmesinde helyum-neon (He-Ne) ve galyum-alüminyum-arsenit (Ga-Al-As) lazerin kallus formasyonu ve mineral yoğunluğu üzerine etkilerinin deneysel araştırılması, Doktora tezi, Uludağ Üniv Sağ Bil Ens, Bursa 2005; s.26-27. (thesis in Turkish with an English abstract).

Use of Low Level Laser Therapy for Fracture Healing

Year 2021, Volume: 2 Issue: 2, 80 - 84, 31.12.2021

Abstract

Therapeutic lasers, which have been used in veterinary medicine, have started to become widespread today in terms of being a noninvasive and drug-free treatment method. A laser is a device that produces an intense, monochromatic, coherent and highly parallelized beam of light. It can be examined in three different groups according to wavelengths: low level (soft laser), medium level (mid laser) and high level laser (hard or hot laser). Lasers have a wide range of uses such as wound healing, tissue necrosis, osteoarthritis, rheumatoid arthritis, myofascial pain, fracture healing and tendon-ligament injuries. It has been reported that low-level laser therapy (LLLT) accelerates fracture healing by increasing osteoblastic activity, number of blood vessels and amount of mineralized bone in fractures. LLLT is a form of therapy used to shorten the fracture repair process by accelerating the healing of fractures and callus formation through various mechanisms. The effect of laser on fracture healing is open to discussion. More studies are needed to clarify its therapeutic effects.

References

  • 1. Pryor B, Millis DL. Therapeutic laser in veterinary medicine. Veterinary Clinics: Small Animal Practice 2015; 45: 45-56. doi: 10.1016/j.cvsm.2014.09.003.
  • 2. Bhagyashree RK, Amit AA, Amit BS, Kshitij VP, Chetan PR. Low-level Laser Therapy: A Literature Rewiew. International Journal of Laser Dentistry 2015; 5: 1-5. doi: 10.5005/jp-journals-10022-1064.
  • 3. Farivar S, Malekshahabi T, Shiari R. Biological effects of low level laser therapy. Journal of Lasers in Medical Sciences 2014; 5: 8-63.
  • 4. Singh SC, Zeng H, Guo C, Cai W. Nanomaterials: processing and characterization with lasers. Weinheim, Germany: Wiley‐VCH Verlag & Co. KGa, 2012; p.96.
  • 5. Boyraz İ, Yıldız A. Lazer Çeşitleri ve yüksek yoğunluklu lazer kullanımı. Çağdaş Tıp Dergisi. 2017; 6: 104-109. doi: 10.16899/ctd. 55797.
  • 6. Sarı H, Tüzün Ş, Akgün K. Hareket Sistemi Hastalıklarında Fiziksel Tıp Yöntemleri. İstanbul: Nobel Tıp Kitabevleri, 2002; p.86.
  • 7. Alper S. Fiziksel Tıp ve Rehabilitasyon In: Mehmet Beyazova, Yeşim Gökçe Kutsal. Fiziksel Tıp ve Rehabilitasyon 201; p. 823-826.
  • 8. Gordon SA, Surrey K. Red and far-red action on oxidative phosphorylation. Radiation Research 1960; 12: 325-339. doi: 10.2307/3571041.
  • 9. Lubart R, Eichler M, Lavi R, Friedman H, Shainberg A. Low-energy laser irradiation promotes cellular redox activity. Photomedicine and Laser Therapy 2005; 23: 3-9. doi: 10.1089/pho.2005.23.3.
  • 10. Yamada EF, Villaverde AGJB, Munin E, Zangaro RA, Pacheco MTT. Effect of low-power laser therapy on edema dynamics: sensing by using the electrical capacitance method. Laser Interaction with Tissue and Cells 2004; 5319: 355-362. doi: 10.1117/12.528105.
  • 11. Kato M. Cytochrome oxidase is a possible photoreceptor in mitochondria. Photobiochem Photobiophys 1981; 2: 263-269.
  • 12. Dourado DM, Favero S, Matias R, Carvalho PdTC, Cruz‐Höfling MA. Low‐level laser therapy promotes vascular endothelial growth factor receptor‐1 expression in endothelial and nonendothelial cells of mice gastrocnemius exposed to snake venom. Photochemistry and Photobiology 2011; 87: 418-426. doi: 10.1111/j.1751-1097.2010.00878.x.
  • 13. Cury V, Moretti AIS, Assis L, Bossini P, Crusca JdSC, et al. Low level laser therapy increases angiogenesis in a model of ischemic skin flap in rats mediated by VEGF, HIF-1α and MMP-2. Journal of Photochemistry and Photobiology B: Biology 2013; 125: 164-170. doi: 10.1016/j.jphotobiol.2013.06.004.
  • 14. Asimov M, Thanh NC. Laser-induced photodissociation of oxyhemoglobin: Optical method of elimination of hypoxia (oxygen deficiency in biotissue). Optics and Spectroscopy 2011; 111: 224-229. doi: 10.1134/S0030400X11080066.
  • 15. Heu F, Forster C, Namer B, Dragu A, Lang W. Effect of low-level laser therapy on blood flow and oxygen-hemoglobin saturation of the foot skin in healthy subjects: a pilot study. Laser Therapy 2013; 22: 21-30. doi: 10.5978/islsm.13-OR-03.
  • 16. Pereira MCM, de Pinho CB, Medrado ARP, de Araujo Andrade Z, Almeida Reis SR. Influence of 670 nm low-level laser therapy on mast cells and vascular response of cutaneous injuries. Journal of Photochemistry and Photobiology B: Biology 2010; 98: 188-192. doi: 10.1016/j.jphotobiol.2009.12.005.
  • 17. Mi X, Chen J, Zhou L. Effect of low power laser irradiation on disconnecting the membrane-attached hemoglobin from erythrocyte membrane. Journal of Photochemistry and Photobiology B: Biology 2006; 83: 146-150. doi: 10.1016/j.jphotobiol.2005.12.018.
  • 18. Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: current concepts and future directions. BMC Medicine 2011; 9: 1-10. doi: 10.1186/1741-7015-9-66.
  • 19. Chao E, Inoue N. Biophysical stimulation of bone fracture repair, regeneration and remodelling. Eur Cell Mater 2003; 6: 72-85. doi: 10.22203/eCM.v006a07.
  • 20. Massari L, Benazzo F, Falez F, Perugia D, Pietrogrande L. et al. Biophysical stimulation of bone and cartilage: state of the art and future perspectives. International Orthopaedics 2019; 43: 539-551. doi: 10.1007/s00264-018-4274-3.
  • 21. Cheng W, Yao M, Sun K, Li W. Progress in Photobiomodulation for Bone Fractures: A Narrative Review. Photobiomodulation, Photomedicine, and Laser Surgery 2020; 38: 260-271. doi: 10.1089/photob.2019.4732.
  • 22. Chiari S. Photobiomodulation and lasers. Frontiers of Oral Biology 2016; 18: 118-123. doi: 10.1159/000351906.
  • 23. Gavish L, Houreld NN. Therapeutic efficacy of home-use photobiomodulation devices: a systematic literature review. Photobiomodulation, Photomedicine, and Laser Surgery 2019; 37: 4-16. doi: 10.1089/photob.2018.4512.
  • 24. Fernandes MR, Suzuki SS, Suzuki H, Martinez EF, Garcez AS. Photobiomodulation increases intrusion tooth movement and modulates IL‐6, IL‐8 and IL‐1β expression during orthodontically bone remodeling. Journal of Biophotonics 2019; 12: 1-10. doi: 10.1002/jbio.201800311.
  • 25. Yang H, Liu J, Yang K. Comparative study of 660 and 830 nm photobiomodulation in promoting orthodontic tooth movement. Photobiomodulation, Photomedicine, and Laser Surgery 2019; 37: 349-355. doi: 10.1089/photob.2018.4615.
  • 26. Kulkarni S, Meer M, George R. Efficacy of photobiomodulation on accelerating bone healing after tooth extraction: a systematic review. Lasers in Medical Science 2019; 34: 685-692. doi: 10.1007/s10103-018-2641-3.
  • 27. Gojkov-Vukelic M, Hadzic S, Zukanovic A, Pasic E, Pavlic V. Application of diode laser in the treatment of dentine hypersensitivity. Medical Archives 2016; 70: 466. doi: 10.5455/medarh.2016.70.466-469.
  • 28. Huang X, Das R, Patel A, Nguyen TD. Physical stimulations for bone and cartilage regeneration. Regenerative Engineering and Translational Medicine 2018; 4: 216-237. doi: /10.1007/s40883-018-0064-0.
  • 29. Walker NA, Denegar CR, Preische J. Low-intensity pulsed ultrasound and pulsed electromagnetic field in the treatment of tibial fractures: a systematic review. Journal of Athletic Training 2007; 42: 530.
  • 30. Schandelmaier S, Kaushal A, Lytvyn L, Heels-Ansdell D, Siemieniuk RA, et al. Low intensity pulsed ultrasound for bone healing: systematic review of randomized controlled trials. BMJ 2017; 356.: 1-16. doi: 10.1136/bmj.j656.
  • 31. Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent stem cells current stage and future perspectives. Biomaterials 2018; 180: 143–162.
  • 32. Shakouri SK, Soleimanpour J, Salekzamani Y, Oskuie MR. Effect of low-level laser therapy on the fracture healing process. Lasers in Medical Science 2010; 25: 73-77. doi: 10.1007/s10103-009-0670-7.
  • 33. Leo JA, Cunha Ad, Oliveira EFdO, Prado RP. Effect of low-level laser (GaAs, 904 ηm) for bone repair on fractures in rats. Revista Brasileira de Ortopedia 2012; 47: 235-240. doi: 10.1016/S2255-4971(15)30092-6.
  • 34. Mostafavinia A, Farahani RM, Abbasian M, Farahani MV, Fridoni M, et al. Effect of pulsed wave low-level laser therapy on tibial complete osteotomy model of fracture healing with an intramedullary fixation. Iranian Red Crescent Medical Journal 2015; 17: 12 doi: 10.5812/ircmj.32076.
  • 35. Junior S, Aurelicio N, Pinheiro A, Oliveira L, Weismann G, et al. Computerized morphometric assessment of the effect of low-level laser therapy on bone repair: an experimental animal study. Journal of Clinical Laser Medicine & Surgery 2002; 20: 83-87. doi: 10.1089/104454702753768061. 36. Trelles M, Mayayo E. Bone fracture consolidates faster with low‐power laser. Lasers in Surgery and Medicine 1987; 7: 36-45. doi: 10.5812/ircmj.32076.
  • 37. İlman AA. Tavşanlarda kırık iyileşmesinde helyum-neon (He-Ne) ve galyum-alüminyum-arsenit (Ga-Al-As) lazerin kallus formasyonu ve mineral yoğunluğu üzerine etkilerinin deneysel araştırılması, Doktora tezi, Uludağ Üniv Sağ Bil Ens, Bursa 2005; s.26-27. (thesis in Turkish with an English abstract).
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Veterinary Sciences
Journal Section Reviews
Authors

Ferda Turgut 0000-0003-2956-7548

Ayşe Gölgeli Bedir 0000-0002-9798-8638

Publication Date December 31, 2021
Submission Date October 8, 2021
Published in Issue Year 2021 Volume: 2 Issue: 2

Cite

Vancouver Turgut F, Gölgeli Bedir A. Kırık İyileşmesinde Düşük Seviyeli Lazer Terapisinin Kullanılması. Bozok Vet Sci. 2021;2(2):80-4.