Research Article
BibTex RIS Cite

Kimyasal Buhar Biriktirme Yöntemi ile Farklı Kalınlıklarda Grafen Büyütülmesi

Year 2023, Volume: 11 Issue: 2, 787 - 798, 30.04.2023
https://doi.org/10.29130/dubited.1121793

Abstract

Grafen, atom kalınlığında düzlemsel altıgen bal peteği yapısına sahip iki boyutlu bir malzemedir. Nano teknolojik uygulamalarda kullanılabilme potansiyeli ile en çok çalışılan nano malzemelerden biri grafendir. Tek katmanlı grafen sentezlenmesinin veya izole edilmesinin farklı yolları vardır, ancak şu ana kadarki en popüler yöntem kimyasal buhar biriktirme adı verilen bir işlem kullanılmaktır. Kimyasal buhar biriktirme, CVD, yöntemi ile ölçekte nispeten daha yüksek kaliteli grafen üretme potansiyeline sahip bir metottur. CVD işlemi makul bir şekilde basittir, ancak bazı özel ekipman gerekli olmasına rağmen, iyi kalitede grafen oluşturmak için gaz hacimleri, basınç, sıcaklık ve süre parametrelerinin kontrolü büyük önem arz etmektedir. Bu proje çalışmasında Kimyasal Buhar Biriktirme Yöntemiyle stabil, kontrollü ve sürdürülebilir grafen elde edebilmek için farklı sıcaklık, basınç ve kaplama süreleri ile grafen sentezi gerçekleştirilmiştir. SEM, AFM ve Raman Spektroskopi analizleri ile elde edilen grafen tabakaların karakterizasyonu yapılmış ve kararlı, sürdürülebilir ve kontrollü grafen eldesi için optimum parametreler belirlenmiştir. Aynı zamanda grafenin farklı kalınlıklardaki filmlerinin elektriksel özellikleri incelenmiştir. Böylece tüm dünyada şu an ticarileştirilmeye çalışılan grafenin uygun alttaş üzerine büyütülmüş uygun kalınlıkta ince film eldesi, transferi ve elektriksel özelliklerinin incelenmesi yapılmıştır.

Supporting Institution

Düzce Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Project Number

2015.05.02.383

References

  • [1] Adlakha-Hutcheon G, Khaydarov R, Korenstein R, et al., "Nanomaterials, Nanotechnology" In: Linkov, I., Steevens, J. (eds) Nanomaterials: Risks and Benefits. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht, 95–207, 2009.
  • [2] Endo M, Hayashi T, Kim YA, et al., "Applications of carbon nanotubes in the twenty-first century" Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 362, 2223–2238, 2004.
  • [3] Saito N, Usui Y, Aoki K, et al., "Carbon nanotubes: Biomaterial applications" Chem Soc Rev, vol. 38, 1897–1903, 2009.
  • [4] Morelos-Gomez A, Cruz-Silva R, Muramatsu H, et al., "Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes" Nat Nanotechnol, vol. 12, 1083–1088, 2017.
  • [5] Rodríguez-Reinoso F, "The role of carbon materials in heterogeneous catalysis" Carbon, vol. 36, 159–175, 1998.
  • [6] Manawi YM, Ihsanullah, Samara A, et al., "A Review of Carbon Nanomaterials’ Synthesis via the Chemical Vapor Deposition (CVD) Method" Materials, vol. 11, no 5, 822, 2018.
  • [7] Chabot V, Higgins D, Yu A, et al., "A review of graphene and graphene oxide sponge: Material synthesis and applications to energy and the environment" Energy Environ Sci, vol. 7, 1564–1596, 2014.
  • [8] Ambrosi A, Chua CK, Bonanni A, Pumera M, "Electrochemistry of graphene and related materials" Chem Rev, vol. 114, 7150–7188, 2014.
  • [9] Soldano C, Mahmood A, Dujardin E, "Production, properties and potential of graphene" Carbon, vol. 48, 2127–2150, 2010.
  • [10] Novoselov KS, Geim AK, Morozov S V, et al., "Electric field effect in atomically thin carbon films" Science, vol. 306, 666–9, 2004.
  • [11] Geim AK, Novoselov KS, "The rise of graphene" Nat Mater, vol. 6, 183–191, 2007.
  • [12] Novoselov KS, Fal’Ko VI, Colombo L, et al., "A roadmap for graphene" Nature, vol. 490, 192–200, 2012.
  • [13] Hancock Y, "The 2010 Nobel Prize in physics—ground-breaking experiments on graphene" J Phys D Appl Phys, vol. 44, 473001, 2011.
  • [14] Zhang Y, Tan Y-W, Stormer HL, Kim P, "Experimental observation of the quantum Hall effect and Berry’s phase in graphene" Nature, vol. 438, 201–204, 2005.
  • [15] Kocabas C, Dunham S, Cao Q, et al., "High-Frequency performance of submicrometer transistors that use aligned arrays of single-walled carbon nanotubes" Nano Lett, vol. 9, 1937–1943, 2009.
  • [16] Liu Z, Srot V, Yang JC,"Self-assembled crystalline silicon carbide y junctions by coalescence of nucleated iron catalysts" Appl Phys Lett, vol. 96, 253111, 2010.
  • [17] Juang ZY, Wu CY, Lu AY et al., "Graphene synthesis by chemical vapor deposition and transfer by a roll-to-roll process" Carbon, vol. 48 no 11, 3169-3174, 2010.
  • [18] Bae S, Kim H, Lee Y, et al., "Roll-to-roll production of 30-inch graphene films for transparent electrodes" Nat Nanotechnol, vol. 5, 574–578, 2010. https://doi.org/10.1038/nnano.2010.132
  • [19] Li X, Cai W, An J, et al, "Large-area synthesis of high-quality and uniform graphene films on copper foils" Science, vol. 324, 1312–1314, 2009.
  • [20]Somani PR, Somani SP, Umeno M, "Planer nano-graphenes from camphor by CVD" Chem Phys Lett, vol. 430,56–59, 2006.
  • [21] Çelebi K, "Chemical vapor deposition of graphene on copper". Ph.D. Thesis, Eth Zurich, [Online]. Available: https://doi.org/10.3929/ETHZ-A-010050109
  • [22] De Heer WA, Berger C, Wu X, et al., "Epitaxial graphene" Solid State Commun, vol. 143, 92–100, 2007.
  • [23]Bodepudi SC, Singh AP, Pramanik S, "Current-Perpendicular-to-Plane Magnetoresistance in Chemical Vapor Deposition-Grown Multilayer Graphene" Electron, vol. 2, 315-331, 2013.
  • [24] Zhang Y, Li Z, Kim P, et al., "Anisotropic hydrogen etching of chemical vapor deposited graphene" ACS Nano, vol. 6, 126–132, 2012.
  • [25] Zou L, Wang L, Wu Y, et al., "Trends Analysis of Graphene Research and Development" J Data Inf Sci, vol. 3, 82–100, 2018.
  • [26] Gao L, Guest JR, Guisinger NP, "Epitaxial graphene on Cu(111)" Nano Lett, vol. 10, 3512–3516, 2010.
  • [27] Subaşı A, Zurnacı M, Kahyaoğlu A, Demir E, "Polyester/Grafen Kompozitlerin Mekanik ve Termal Özelliklerinin İncelenmesi" El-Cezeri, vol. 4,472–481, 2017.
  • [28] Çetin H, Grafen Temelli Gaz Sensörü Geliştirilmesi, Tubitak Proje Raporu, 2013

Graphene Growth in Different Thickness by Chemical Vapor Deposition Method

Year 2023, Volume: 11 Issue: 2, 787 - 798, 30.04.2023
https://doi.org/10.29130/dubited.1121793

Abstract

Graphene is a two-dimensional honeycomb material with an atomic-thick planar structure. Graphene is one of the most studied nanomaterials that can be used in nanotechnology applications. There are various methods for synthesizing or isolating graphene monolayers, but by far the most popular uses a process called chemical vapor deposition. Chemical vapor deposition, or CVD, is a process that has the potential to produce relatively high-quality graphene at scale. The CVD process is relatively straightforward with some specialized equipment. However, controlling gas volume, pressure, temperature, and timing is critical to producing good quality graphene. In this project, the synthesis of graphene was carried out at different temperatures, pressures and coating times to produce stable, controlled and durable graphene by chemical vapor deposition. The characteristics of graphene sheets obtained by SEM, AFM and Raman spectroscopy analyzes were determined, as well as the optimal parameters for a stable, sustainable and controlled production of graphene. In parallel, the electrical properties of graphene films on different thicknesses have been studied. Therefore, obtaining a thin film with suitable thickness, transmission and electrical properties of graphene, which is currently
marketed worldwide, was investigated.

Project Number

2015.05.02.383

References

  • [1] Adlakha-Hutcheon G, Khaydarov R, Korenstein R, et al., "Nanomaterials, Nanotechnology" In: Linkov, I., Steevens, J. (eds) Nanomaterials: Risks and Benefits. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht, 95–207, 2009.
  • [2] Endo M, Hayashi T, Kim YA, et al., "Applications of carbon nanotubes in the twenty-first century" Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 362, 2223–2238, 2004.
  • [3] Saito N, Usui Y, Aoki K, et al., "Carbon nanotubes: Biomaterial applications" Chem Soc Rev, vol. 38, 1897–1903, 2009.
  • [4] Morelos-Gomez A, Cruz-Silva R, Muramatsu H, et al., "Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes" Nat Nanotechnol, vol. 12, 1083–1088, 2017.
  • [5] Rodríguez-Reinoso F, "The role of carbon materials in heterogeneous catalysis" Carbon, vol. 36, 159–175, 1998.
  • [6] Manawi YM, Ihsanullah, Samara A, et al., "A Review of Carbon Nanomaterials’ Synthesis via the Chemical Vapor Deposition (CVD) Method" Materials, vol. 11, no 5, 822, 2018.
  • [7] Chabot V, Higgins D, Yu A, et al., "A review of graphene and graphene oxide sponge: Material synthesis and applications to energy and the environment" Energy Environ Sci, vol. 7, 1564–1596, 2014.
  • [8] Ambrosi A, Chua CK, Bonanni A, Pumera M, "Electrochemistry of graphene and related materials" Chem Rev, vol. 114, 7150–7188, 2014.
  • [9] Soldano C, Mahmood A, Dujardin E, "Production, properties and potential of graphene" Carbon, vol. 48, 2127–2150, 2010.
  • [10] Novoselov KS, Geim AK, Morozov S V, et al., "Electric field effect in atomically thin carbon films" Science, vol. 306, 666–9, 2004.
  • [11] Geim AK, Novoselov KS, "The rise of graphene" Nat Mater, vol. 6, 183–191, 2007.
  • [12] Novoselov KS, Fal’Ko VI, Colombo L, et al., "A roadmap for graphene" Nature, vol. 490, 192–200, 2012.
  • [13] Hancock Y, "The 2010 Nobel Prize in physics—ground-breaking experiments on graphene" J Phys D Appl Phys, vol. 44, 473001, 2011.
  • [14] Zhang Y, Tan Y-W, Stormer HL, Kim P, "Experimental observation of the quantum Hall effect and Berry’s phase in graphene" Nature, vol. 438, 201–204, 2005.
  • [15] Kocabas C, Dunham S, Cao Q, et al., "High-Frequency performance of submicrometer transistors that use aligned arrays of single-walled carbon nanotubes" Nano Lett, vol. 9, 1937–1943, 2009.
  • [16] Liu Z, Srot V, Yang JC,"Self-assembled crystalline silicon carbide y junctions by coalescence of nucleated iron catalysts" Appl Phys Lett, vol. 96, 253111, 2010.
  • [17] Juang ZY, Wu CY, Lu AY et al., "Graphene synthesis by chemical vapor deposition and transfer by a roll-to-roll process" Carbon, vol. 48 no 11, 3169-3174, 2010.
  • [18] Bae S, Kim H, Lee Y, et al., "Roll-to-roll production of 30-inch graphene films for transparent electrodes" Nat Nanotechnol, vol. 5, 574–578, 2010. https://doi.org/10.1038/nnano.2010.132
  • [19] Li X, Cai W, An J, et al, "Large-area synthesis of high-quality and uniform graphene films on copper foils" Science, vol. 324, 1312–1314, 2009.
  • [20]Somani PR, Somani SP, Umeno M, "Planer nano-graphenes from camphor by CVD" Chem Phys Lett, vol. 430,56–59, 2006.
  • [21] Çelebi K, "Chemical vapor deposition of graphene on copper". Ph.D. Thesis, Eth Zurich, [Online]. Available: https://doi.org/10.3929/ETHZ-A-010050109
  • [22] De Heer WA, Berger C, Wu X, et al., "Epitaxial graphene" Solid State Commun, vol. 143, 92–100, 2007.
  • [23]Bodepudi SC, Singh AP, Pramanik S, "Current-Perpendicular-to-Plane Magnetoresistance in Chemical Vapor Deposition-Grown Multilayer Graphene" Electron, vol. 2, 315-331, 2013.
  • [24] Zhang Y, Li Z, Kim P, et al., "Anisotropic hydrogen etching of chemical vapor deposited graphene" ACS Nano, vol. 6, 126–132, 2012.
  • [25] Zou L, Wang L, Wu Y, et al., "Trends Analysis of Graphene Research and Development" J Data Inf Sci, vol. 3, 82–100, 2018.
  • [26] Gao L, Guest JR, Guisinger NP, "Epitaxial graphene on Cu(111)" Nano Lett, vol. 10, 3512–3516, 2010.
  • [27] Subaşı A, Zurnacı M, Kahyaoğlu A, Demir E, "Polyester/Grafen Kompozitlerin Mekanik ve Termal Özelliklerinin İncelenmesi" El-Cezeri, vol. 4,472–481, 2017.
  • [28] Çetin H, Grafen Temelli Gaz Sensörü Geliştirilmesi, Tubitak Proje Raporu, 2013
There are 28 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Aliye Kahyaoğlu 0000-0002-7796-1147

Özlem Ünlü 0000-0002-1818-6646

Project Number 2015.05.02.383
Publication Date April 30, 2023
Published in Issue Year 2023 Volume: 11 Issue: 2

Cite

APA Kahyaoğlu, A., & Ünlü, Ö. (2023). Graphene Growth in Different Thickness by Chemical Vapor Deposition Method. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 11(2), 787-798. https://doi.org/10.29130/dubited.1121793
AMA Kahyaoğlu A, Ünlü Ö. Graphene Growth in Different Thickness by Chemical Vapor Deposition Method. DUBİTED. April 2023;11(2):787-798. doi:10.29130/dubited.1121793
Chicago Kahyaoğlu, Aliye, and Özlem Ünlü. “Graphene Growth in Different Thickness by Chemical Vapor Deposition Method”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 11, no. 2 (April 2023): 787-98. https://doi.org/10.29130/dubited.1121793.
EndNote Kahyaoğlu A, Ünlü Ö (April 1, 2023) Graphene Growth in Different Thickness by Chemical Vapor Deposition Method. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 11 2 787–798.
IEEE A. Kahyaoğlu and Ö. Ünlü, “Graphene Growth in Different Thickness by Chemical Vapor Deposition Method”, DUBİTED, vol. 11, no. 2, pp. 787–798, 2023, doi: 10.29130/dubited.1121793.
ISNAD Kahyaoğlu, Aliye - Ünlü, Özlem. “Graphene Growth in Different Thickness by Chemical Vapor Deposition Method”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 11/2 (April 2023), 787-798. https://doi.org/10.29130/dubited.1121793.
JAMA Kahyaoğlu A, Ünlü Ö. Graphene Growth in Different Thickness by Chemical Vapor Deposition Method. DUBİTED. 2023;11:787–798.
MLA Kahyaoğlu, Aliye and Özlem Ünlü. “Graphene Growth in Different Thickness by Chemical Vapor Deposition Method”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 11, no. 2, 2023, pp. 787-98, doi:10.29130/dubited.1121793.
Vancouver Kahyaoğlu A, Ünlü Ö. Graphene Growth in Different Thickness by Chemical Vapor Deposition Method. DUBİTED. 2023;11(2):787-98.