Research Article
BibTex RIS Cite

An analysis of the impact of nanofluids on the cooling effectiveness of pin and perforated heat sinks

Year 2024, Volume: 8 Issue: 2, 71 - 77
https://doi.org/10.26701/ems.1466806

Abstract

In the presented numerical study, the effect of the use of mono and hybrid (CuO/Water at 2% volume concentration and CuO + Fe/Water (1% CuO + 1% Fe)) type nanofluid in heat sinks designed in new geometric structures used to increase the processor cooling performance was investigated. The geometries used are circular, triangular, square, hexagonal, square, and hexagonal, and their perforated structures and their effects on a total of eight geometries were analyzed. In addition to these, the rate of improving the temperature distribution and heat transfer in the heat sink, i.e., the Performance Evaluation Criterion (PEC), was also examined. According to the results obtained, the lowest thermal resistance value is seen in the circular cross-section with Rth = 0.289 K/W, while the highest thermal, i.e., cooling performance is seen in the triangular perforated structure with Rth = 0.63 K/W and at the lowest pressure inlet condition. In terms of temperature distribution, the most uniform distribution was obtained between 311.82 and 308.98 K in the circular section. The most interesting result in terms of the results was the PEC = 1.4 for the triangular hole structure in the heat transfer improvement performance. The main reason for this is that the range of the temperature distribution shown is very high (319–311.5K).

References

  • [1] Ajayan, J., Nirmal, D., Tayal, S., Bhattacharya, S., Arivazhagan, L., Fletcher, A. A., ... & Ajitha, D. (2021). Nanosheet field effect transistors-A next generation device to keep Moore’s law alive: An intensive study. Microelectronics Journal, 114, 105141. https://doi.org/10.1016/j.mejo.2021.105141.
  • [2] Matallana Fernández, A., Ibarra Basabe, E., López Ropero, I., Andreu Larrañaga, J., Gárate Añibarro, J. I., Jordà, X., & Rebollo, J. (2019). Power module electronics in HEVEV applications New trends in widebandgap semiconductor technologies and design aspects. https://doi.org/10.1016/j.rser.2019.109264.
  • [3] Jayaramu, P., Gedupudi, S., & Das, S. K. (2021). Experimental investigation of the influence of boiling-induced ageing on high heat flux flow boiling in a copper microchannel. International Journal of Heat and Mass Transfer, 181, 121862. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121862.
  • [4] Al-Neama, A. F., Kapur, N., Summers, J., & Thompson, H. M. (2018). Thermal management of GaN HEMT devices using serpentine minichannel heat sinks. Applied Thermal Engineering, 140, 622-636. https://doi.org/10.1016/j.applthermaleng.2018.05.072.
  • [5] Chiu, H. C., Hsieh, R. H., Wang, K., Jang, J. H., & Yu, C. R. (2017). The heat transfer characteristics of liquid cooling heat sink with micro pin fins. International communications in heat and mass transfer, 86, 174-180. https://doi.org/10.1016/j.icheatmasstransfer.2017.05.027.
  • [6] Chiu, H. C., Youh, M. J., Hsieh, R. H., Jang, J. H., & Kumar, B. (2023). Numerical investigation on the temperature uniformity of micro-pin-fin heat sinks with variable density arrangement. Case Studies in Thermal Engineering, 44, 102853. https://doi.org/10.1016/j.csite.2023.102853.
  • [7] Göksu, T. T., & Yılmaz, F. (2021). Numerical comparison study on heat transfer enhancement of different cross-section wire coils insert with varying pitches in a duct. Journal of Thermal Engineering, 7(7), 1683-1693. https://doi.org/10.18186/thermal.1025930.
  • [8] Yılmaz, İ. H., & Göksu, T. T. (2019). Enhancement of heat transfer using twisted tape insert in a plain tube. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 8(1), 251-260. https://doi.org/10.17798/bitlisfen.462169.
  • [9] Kuru, M. N. (2023). The effect of the triangular rib usage in the plate fin heat sinks on the pressure drop, base plate temperature, and entropy generation. European Mechanical Science, 7(2), 99-108.
  • [10] Parlak, M. (2024). Thermal management with double layered heat sink produced by direct metal laser sintering. International Journal of Energy Studies, 9(1), 155-173. https://doi.org/10.58559/ijes.1439889.
  • [11] Thangavel, P., & SEKAR, A. (2021). Investigations on Heat Transfer Characteristics of Porous type Copper Heat Sink with Bifurcations. Journal of Thermal Engineering, 7(3), 584-594. https://doi.org/10.18186/thermal.888428.
  • [12] Mukeshkumar, P. C., & Kumar, A. (2023). Numerical study on the performance of Al2O3/water nanofluids as a coolant in the fin channel heat sink for an electronic device cooling. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.02.337.
  • [13] Siginer, D. A., & Wang, H. P. (1995). Developments and Applications of Non-Newtonian Flows, 1995: Presented at the 1995 ASME International Mechanical Engineering Congress and Exposition, November 12-17, 1995, San Francisco, California.
  • [14] Choi, S. U., & Eastman, J. A. (1995). Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29). Argonne National Lab.(ANL), Argonne, IL (United States).
  • [15] Wu, X., Wu, H., & Cheng, P. (2009). Pressure drop and heat transfer of Al2O3-H2O nanofluids through silicon microchannels. Journal of Micromechanics and Microengineering. Structures, Devices and Systems, 19. https://doi.org/10.1088/0960-1317/19/10/105020.
  • [16] Ghadikolaei, S. S., Siahchehrehghadikolaei, S., Gholinia, M., & Rahimi, M. (2023). A CFD modeling of heat transfer between CGNPs/H2O Eco-friendly nanofluid and the novel nature-based designs heat sink: Hybrid passive techniques for CPU cooling. Thermal Science and Engineering Progress, 37, 101604. https://doi.org/10.1016/j.tsep.2022.101604.
  • [17] Khoshvaght-Aliabadi, M., Ghodrati, P., Mortazavi, H., & Kang, Y. T. (2023). Numerical analysis of heat transfer and flow characteristics of supercritical CO2-cooled wavy mini-channel heat sinks. Applied Thermal Engineering, 226, 120307. https://doi.org/10.1016/j.applthermaleng.2023.120307.
  • [18] Massoudi, M. D., & Hamida, M. B. B. (2023). Combined impacts of square fins fitted wavy wings and micropolar magnetized-radiative nanofluid on the heat sink performance. Journal of Magnetism and Magnetic Materials, 574, 170655. https://doi.org/10.1016/j.jmmm.2023.170655.
  • [19] Seyf, H. R., & Feizbakhshi, M. (2012). Computational analysis of nanofluid effects on convective heat transfer enhancement of micro-pin-fin heat sinks. International Journal of Thermal Sciences, 58, 168-179. https://doi.org/10.1016/j.ijthermalsci.2012.02.018.
  • [20] Ambreen, T., Saleem, A., & Park, C. W. (2019). Pin-fin shape-dependent heat transfer and fluid flow characteristics of water-and nanofluid-cooled micropin-fin heat sinks: Square, circular and triangular fin cross-sections. Applied Thermal Engineering, 158, 113781. https://doi.org/10.1016/j.applthermaleng.2019.113781.
  • [21] Cai, W., Toghraie, D., Shahsavar, A., Barnoon, P., Khan, A., Beni, M. H., & Jam, J. E. (2021). Eulerian-Lagrangian investigation of nanoparticle migration in the heat sink by considering different block shape effects. Applied Thermal Engineering, 199, 117593. https://doi.org/10.1016/j.applthermaleng.2021.117593.
  • [22] Yasir, M., Khan, M., Alqahtani, A. S., & Malik, M. Y. (2023). Numerical study of axisymmetric hybrid nanofluid MgO-Ag/H2O flow with non-uniform heat source/sink. Alexandria Engineering Journal, 75, 439-446. https://doi.org/10.1016/j.aej.2023.05.062.
  • [23] Cabir, B., & Yakın, A. (2024). Evaluation of gasoline-phthalocyanines fuel blends in terms of engine performance and emissions in gasoline engines. Journal of the Energy Institute, 112, 101483. https://doi.org/10.1016/j.joei.2023.101483.
  • [24] Uçkan, İ., Yakın, A., & Behçet, R. (2024). Second law analysis of an internal combustion engine for different fuels consisting of NaBH4, ethanol and methanol mixtures. International Journal of Hydrogen Energy, 49, 1257-1267. https://doi.org/10.1016/j.ijhydene.2023.10.302.
  • [25] Uçkan, İ., Yakın, A., & Behçet, R. (2024). Investigation of the effect of dead-state temperature on the performance of boron-added fuels and different fuels used in an internal combustion engine. Heat Transfer Research, 55(12). https://doi.org/10.1615/HeatTransRes.2024050089.
  • [26] Mukherjee, S., Wciślik, S., Khadanga, V., & Mishra, P. C. (2023). Influence of nanofluids on the thermal performance and entropy generation of varied geometry microchannel heat sink. Case Studies in Thermal Engineering, 49, 103241. https://doi.org/10.1016/j.csite.2023.103241.
  • [27] Al-Fatlawi, A. W., & Niazmand, H. (2024). Thermal analysis of hybrid nanofluids inside a microchannel heat exchanger for electronic cooling. Journal of Thermal Analysis and Calorimetry, 1-13. https://doi.org/10.1007/s10973-024-12991-2.
  • [28] Ozbalci, O., Dogan, A., & Asilturk, M. (2023). Performance of discretely mounted metal foam heat sinks in a channel with nanofluid. Applied Thermal Engineering, 235, 121375. https://doi.org/10.1016/j.applthermaleng.2023.121375.
  • [29] Karaaslan, I., & Menlik, T. (2021). Numerical study of a photovoltaic thermal (PV/T) system using mono and hybrid nanofluid. Solar Energy, 224, 1260-1270. https://doi.org/10.1016/j.solener.2021.06.072.
  • [30] Martin, K., Sözen, A., Çiftçi, E., & Ali, H. M. (2020). An experimental investigation on aqueous Fe–CuO hybrid nanofluid usage in a plain heat pipe. International Journal of Thermophysics, 41, 1-21. https://doi.org/10.1007/s10765-020-02716-6.
  • [31] Ho, C. J., Peng, J. K., Yang, T. F., Rashidi, S., & Yan, W. M. (2023). On the assessment of the thermal performance of microchannel heat sink with nanofluid. International Journal of Heat and Mass Transfer, 201, 123572. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123572.
  • [32] Sriharan, G., Harikrishnan, S., & Oztop, H. F. (2022). Performance improvement of the mini hexagonal tube heat sink using nanofluids. Thermal Science and Engineering Progress, 34, 101390. https://doi.org/10.1016/j.tsep.2022.101390.
  • [33] Göksu, T. T. (2024). Enhancing cooling efficiency: Innovative geometric designs and mono-hybrid nanofluid applications in heat sinks. Case Studies in Thermal Engineering, 104096. https://doi.org/10.1016/j.csite.2024.104096.
  • [34] Göksu TT (2024) Numerical investigation of the cooling effect of Al2O3 nanofluid in heat sinks. All Sciences Academy, pp 1277–1284.
  • [35] Göksu, T. T. (2024). Investigation of pin and perforated heatsink cooling efficiency and temperature distribution. Journal of Thermal Analysis and Calorimetry, 1-13. https://doi.org/10.1007/s10973-024-13078-8.
Year 2024, Volume: 8 Issue: 2, 71 - 77
https://doi.org/10.26701/ems.1466806

Abstract

References

  • [1] Ajayan, J., Nirmal, D., Tayal, S., Bhattacharya, S., Arivazhagan, L., Fletcher, A. A., ... & Ajitha, D. (2021). Nanosheet field effect transistors-A next generation device to keep Moore’s law alive: An intensive study. Microelectronics Journal, 114, 105141. https://doi.org/10.1016/j.mejo.2021.105141.
  • [2] Matallana Fernández, A., Ibarra Basabe, E., López Ropero, I., Andreu Larrañaga, J., Gárate Añibarro, J. I., Jordà, X., & Rebollo, J. (2019). Power module electronics in HEVEV applications New trends in widebandgap semiconductor technologies and design aspects. https://doi.org/10.1016/j.rser.2019.109264.
  • [3] Jayaramu, P., Gedupudi, S., & Das, S. K. (2021). Experimental investigation of the influence of boiling-induced ageing on high heat flux flow boiling in a copper microchannel. International Journal of Heat and Mass Transfer, 181, 121862. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121862.
  • [4] Al-Neama, A. F., Kapur, N., Summers, J., & Thompson, H. M. (2018). Thermal management of GaN HEMT devices using serpentine minichannel heat sinks. Applied Thermal Engineering, 140, 622-636. https://doi.org/10.1016/j.applthermaleng.2018.05.072.
  • [5] Chiu, H. C., Hsieh, R. H., Wang, K., Jang, J. H., & Yu, C. R. (2017). The heat transfer characteristics of liquid cooling heat sink with micro pin fins. International communications in heat and mass transfer, 86, 174-180. https://doi.org/10.1016/j.icheatmasstransfer.2017.05.027.
  • [6] Chiu, H. C., Youh, M. J., Hsieh, R. H., Jang, J. H., & Kumar, B. (2023). Numerical investigation on the temperature uniformity of micro-pin-fin heat sinks with variable density arrangement. Case Studies in Thermal Engineering, 44, 102853. https://doi.org/10.1016/j.csite.2023.102853.
  • [7] Göksu, T. T., & Yılmaz, F. (2021). Numerical comparison study on heat transfer enhancement of different cross-section wire coils insert with varying pitches in a duct. Journal of Thermal Engineering, 7(7), 1683-1693. https://doi.org/10.18186/thermal.1025930.
  • [8] Yılmaz, İ. H., & Göksu, T. T. (2019). Enhancement of heat transfer using twisted tape insert in a plain tube. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 8(1), 251-260. https://doi.org/10.17798/bitlisfen.462169.
  • [9] Kuru, M. N. (2023). The effect of the triangular rib usage in the plate fin heat sinks on the pressure drop, base plate temperature, and entropy generation. European Mechanical Science, 7(2), 99-108.
  • [10] Parlak, M. (2024). Thermal management with double layered heat sink produced by direct metal laser sintering. International Journal of Energy Studies, 9(1), 155-173. https://doi.org/10.58559/ijes.1439889.
  • [11] Thangavel, P., & SEKAR, A. (2021). Investigations on Heat Transfer Characteristics of Porous type Copper Heat Sink with Bifurcations. Journal of Thermal Engineering, 7(3), 584-594. https://doi.org/10.18186/thermal.888428.
  • [12] Mukeshkumar, P. C., & Kumar, A. (2023). Numerical study on the performance of Al2O3/water nanofluids as a coolant in the fin channel heat sink for an electronic device cooling. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.02.337.
  • [13] Siginer, D. A., & Wang, H. P. (1995). Developments and Applications of Non-Newtonian Flows, 1995: Presented at the 1995 ASME International Mechanical Engineering Congress and Exposition, November 12-17, 1995, San Francisco, California.
  • [14] Choi, S. U., & Eastman, J. A. (1995). Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29). Argonne National Lab.(ANL), Argonne, IL (United States).
  • [15] Wu, X., Wu, H., & Cheng, P. (2009). Pressure drop and heat transfer of Al2O3-H2O nanofluids through silicon microchannels. Journal of Micromechanics and Microengineering. Structures, Devices and Systems, 19. https://doi.org/10.1088/0960-1317/19/10/105020.
  • [16] Ghadikolaei, S. S., Siahchehrehghadikolaei, S., Gholinia, M., & Rahimi, M. (2023). A CFD modeling of heat transfer between CGNPs/H2O Eco-friendly nanofluid and the novel nature-based designs heat sink: Hybrid passive techniques for CPU cooling. Thermal Science and Engineering Progress, 37, 101604. https://doi.org/10.1016/j.tsep.2022.101604.
  • [17] Khoshvaght-Aliabadi, M., Ghodrati, P., Mortazavi, H., & Kang, Y. T. (2023). Numerical analysis of heat transfer and flow characteristics of supercritical CO2-cooled wavy mini-channel heat sinks. Applied Thermal Engineering, 226, 120307. https://doi.org/10.1016/j.applthermaleng.2023.120307.
  • [18] Massoudi, M. D., & Hamida, M. B. B. (2023). Combined impacts of square fins fitted wavy wings and micropolar magnetized-radiative nanofluid on the heat sink performance. Journal of Magnetism and Magnetic Materials, 574, 170655. https://doi.org/10.1016/j.jmmm.2023.170655.
  • [19] Seyf, H. R., & Feizbakhshi, M. (2012). Computational analysis of nanofluid effects on convective heat transfer enhancement of micro-pin-fin heat sinks. International Journal of Thermal Sciences, 58, 168-179. https://doi.org/10.1016/j.ijthermalsci.2012.02.018.
  • [20] Ambreen, T., Saleem, A., & Park, C. W. (2019). Pin-fin shape-dependent heat transfer and fluid flow characteristics of water-and nanofluid-cooled micropin-fin heat sinks: Square, circular and triangular fin cross-sections. Applied Thermal Engineering, 158, 113781. https://doi.org/10.1016/j.applthermaleng.2019.113781.
  • [21] Cai, W., Toghraie, D., Shahsavar, A., Barnoon, P., Khan, A., Beni, M. H., & Jam, J. E. (2021). Eulerian-Lagrangian investigation of nanoparticle migration in the heat sink by considering different block shape effects. Applied Thermal Engineering, 199, 117593. https://doi.org/10.1016/j.applthermaleng.2021.117593.
  • [22] Yasir, M., Khan, M., Alqahtani, A. S., & Malik, M. Y. (2023). Numerical study of axisymmetric hybrid nanofluid MgO-Ag/H2O flow with non-uniform heat source/sink. Alexandria Engineering Journal, 75, 439-446. https://doi.org/10.1016/j.aej.2023.05.062.
  • [23] Cabir, B., & Yakın, A. (2024). Evaluation of gasoline-phthalocyanines fuel blends in terms of engine performance and emissions in gasoline engines. Journal of the Energy Institute, 112, 101483. https://doi.org/10.1016/j.joei.2023.101483.
  • [24] Uçkan, İ., Yakın, A., & Behçet, R. (2024). Second law analysis of an internal combustion engine for different fuels consisting of NaBH4, ethanol and methanol mixtures. International Journal of Hydrogen Energy, 49, 1257-1267. https://doi.org/10.1016/j.ijhydene.2023.10.302.
  • [25] Uçkan, İ., Yakın, A., & Behçet, R. (2024). Investigation of the effect of dead-state temperature on the performance of boron-added fuels and different fuels used in an internal combustion engine. Heat Transfer Research, 55(12). https://doi.org/10.1615/HeatTransRes.2024050089.
  • [26] Mukherjee, S., Wciślik, S., Khadanga, V., & Mishra, P. C. (2023). Influence of nanofluids on the thermal performance and entropy generation of varied geometry microchannel heat sink. Case Studies in Thermal Engineering, 49, 103241. https://doi.org/10.1016/j.csite.2023.103241.
  • [27] Al-Fatlawi, A. W., & Niazmand, H. (2024). Thermal analysis of hybrid nanofluids inside a microchannel heat exchanger for electronic cooling. Journal of Thermal Analysis and Calorimetry, 1-13. https://doi.org/10.1007/s10973-024-12991-2.
  • [28] Ozbalci, O., Dogan, A., & Asilturk, M. (2023). Performance of discretely mounted metal foam heat sinks in a channel with nanofluid. Applied Thermal Engineering, 235, 121375. https://doi.org/10.1016/j.applthermaleng.2023.121375.
  • [29] Karaaslan, I., & Menlik, T. (2021). Numerical study of a photovoltaic thermal (PV/T) system using mono and hybrid nanofluid. Solar Energy, 224, 1260-1270. https://doi.org/10.1016/j.solener.2021.06.072.
  • [30] Martin, K., Sözen, A., Çiftçi, E., & Ali, H. M. (2020). An experimental investigation on aqueous Fe–CuO hybrid nanofluid usage in a plain heat pipe. International Journal of Thermophysics, 41, 1-21. https://doi.org/10.1007/s10765-020-02716-6.
  • [31] Ho, C. J., Peng, J. K., Yang, T. F., Rashidi, S., & Yan, W. M. (2023). On the assessment of the thermal performance of microchannel heat sink with nanofluid. International Journal of Heat and Mass Transfer, 201, 123572. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123572.
  • [32] Sriharan, G., Harikrishnan, S., & Oztop, H. F. (2022). Performance improvement of the mini hexagonal tube heat sink using nanofluids. Thermal Science and Engineering Progress, 34, 101390. https://doi.org/10.1016/j.tsep.2022.101390.
  • [33] Göksu, T. T. (2024). Enhancing cooling efficiency: Innovative geometric designs and mono-hybrid nanofluid applications in heat sinks. Case Studies in Thermal Engineering, 104096. https://doi.org/10.1016/j.csite.2024.104096.
  • [34] Göksu TT (2024) Numerical investigation of the cooling effect of Al2O3 nanofluid in heat sinks. All Sciences Academy, pp 1277–1284.
  • [35] Göksu, T. T. (2024). Investigation of pin and perforated heatsink cooling efficiency and temperature distribution. Journal of Thermal Analysis and Calorimetry, 1-13. https://doi.org/10.1007/s10973-024-13078-8.
There are 35 citations in total.

Details

Primary Language English
Subjects Energy, Energy Generation, Conversion and Storage (Excl. Chemical and Electrical), Numerical Methods in Mechanical Engineering
Journal Section Research Article
Authors

Taha Tuna Göksu 0000-0003-2028-3362

Early Pub Date May 10, 2024
Publication Date
Submission Date April 8, 2024
Acceptance Date May 1, 2024
Published in Issue Year 2024 Volume: 8 Issue: 2

Cite

APA Göksu, T. T. (2024). An analysis of the impact of nanofluids on the cooling effectiveness of pin and perforated heat sinks. European Mechanical Science, 8(2), 71-77. https://doi.org/10.26701/ems.1466806
AMA Göksu TT. An analysis of the impact of nanofluids on the cooling effectiveness of pin and perforated heat sinks. EMS. May 2024;8(2):71-77. doi:10.26701/ems.1466806
Chicago Göksu, Taha Tuna. “An Analysis of the Impact of Nanofluids on the Cooling Effectiveness of Pin and Perforated Heat Sinks”. European Mechanical Science 8, no. 2 (May 2024): 71-77. https://doi.org/10.26701/ems.1466806.
EndNote Göksu TT (May 1, 2024) An analysis of the impact of nanofluids on the cooling effectiveness of pin and perforated heat sinks. European Mechanical Science 8 2 71–77.
IEEE T. T. Göksu, “An analysis of the impact of nanofluids on the cooling effectiveness of pin and perforated heat sinks”, EMS, vol. 8, no. 2, pp. 71–77, 2024, doi: 10.26701/ems.1466806.
ISNAD Göksu, Taha Tuna. “An Analysis of the Impact of Nanofluids on the Cooling Effectiveness of Pin and Perforated Heat Sinks”. European Mechanical Science 8/2 (May 2024), 71-77. https://doi.org/10.26701/ems.1466806.
JAMA Göksu TT. An analysis of the impact of nanofluids on the cooling effectiveness of pin and perforated heat sinks. EMS. 2024;8:71–77.
MLA Göksu, Taha Tuna. “An Analysis of the Impact of Nanofluids on the Cooling Effectiveness of Pin and Perforated Heat Sinks”. European Mechanical Science, vol. 8, no. 2, 2024, pp. 71-77, doi:10.26701/ems.1466806.
Vancouver Göksu TT. An analysis of the impact of nanofluids on the cooling effectiveness of pin and perforated heat sinks. EMS. 2024;8(2):71-7.

Dergi TR Dizin'de Taranmaktadır.

Flag Counter