Research Article
BibTex RIS Cite

Effect of nigella sativa oil on bisphenol a-induced hepatotoxicity in wistar albino rats: histopathological and biochemical investigation

Year 2022, Volume: 6 Issue: 3, 402 - 409, 23.09.2022
https://doi.org/10.31015/jaefs.2022.3.9

Abstract

Bisphenol A (or BPA) is a toxic endocrine disruptor that is emitted into the environment as a result of industrial manufacturing methods. In this research, we focused on investigating the protective effects of Nigella sativa oil (NSO) on the liver in rats treated with hepatotoxic BPA. For this purpose, 30 Wistar Albino rats were divided into 4 groups: Control (1 ml olive oil); NSO (5 ml/kg NSO); BPA (100mg/kg); BPA+ NSO (100 mg/kg BPA + 5 ml/kg NSO). All applications were done by oral gavage. At the end of the 30-day study period, blood samples of the anesthetized rats were collected and euthanized under appropriate conditions. After removing the serum of the collected blood samples, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and gamma glutamyl transferase (GGT) levels, which have a key role in liver toxicity, were measured. At the same time, liver samples that were dissected and removed from the cadaver were fixed in 10% formaldehyde solution for histopathological examination and scoring, and hematoxylin - eosin staining were performed. BPA caused degeneration and necrosis in hepatocytes, Kuffper activation, bile duct hyperplasia, congestion, and hepatic cord dissociation, causing serious increases in total liver lesion scores. In parallel, BPA-induced increases were detected in ALT, AST, ALP, and GGT levels. The histological architecture and liver function tests were significantly improved with the addition of NSO to the diet. These findings provided that NSO has a hepatoprotective effect by improving BPA-induced liver damage.

References

  • Abdel-Zaher, A. O., Abdel-Rahman, M. S., & Elwasei, F. M. (2010). Blockade of Nitric Oxide Overproduction and Oxidative Stress by Nigella sativa Oil Attenuates Morphine-Induced Tolerance and Dependence in Mice. Neurochemical Research, 35(10), 1557-1565. DOI: https://doi.org/10.1007/s11064-010-0215-2
  • Abdel Samie, H. A., Nassar, S. A., & Hussein, Y. (2018). Ameliorative Potential of Selenium against Bisphenol A- Induced Hepatotoxicity in Rats. The Egyptian Journal of Hospital Medicine, 67(1), 444-454. DOI: https://ejhm.journals.ekb.eg/article_14019_29af1d727d495f06df34b02417c02d81.pdf
  • Al-Seeni, M. N., El Rabey, H. A., Zamzami, M. A., & Alnefayee, A. M. (2016). The hepatoprotective activity of olive oil and Nigella sativa oil against CCl4 induced hepatotoxicity in male rats. BMC Complementary and Alternative Medicine, 16(1), 438. DOI: https://doi.org/10.1186/s12906-016-1422-4
  • Ates, M. B., & Ortatatli, M. (2021a). The effects of Nigella sativa seeds and thymoquinone on aflatoxin phase-2 detoxification through glutathione and glutathione-S-transferase alpha-3, and the relationship between aflatoxin B1-DNA adducts in broilers. Toxicon, 193, 86-92. DOI: https://doi.org/10.1016/j.toxicon.2021.01.020
  • Ates, M. B., & Ortatatli, M. (2021b). Phase-1 bioactivation mechanisms of aflatoxin through AhR, CAR and PXR nuclear receptors and the interactions with Nigella sativa seeds and thymoquinone in broilers. Ecotoxicology and Environmental Safety, 208, 111774. DOI: https://doi.org/10.1016/j.ecoenv.2020.111774
  • Ates, M. B., Ortatatli, M., Oguz, H., Ozdemir, O., Terzi, F., Ciftci, M. K., & Hatipoglu, F. (2022). The ameliorative effects of Nigella sativa, thymoquinone, and bentonite against aflatoxicosis in broilers via AFAR and Nrf2 signalling pathways, and down-regulation of caspase-3. British Poultry Science, 63(3), 332-339. DOI: https://doi.org/10.1080/00071668.2021.1998366
  • Bindhumol, V., Chitra, K. C., & Mathur, P. P. (2003). Bisphenol A induces reactive oxygen species generation in the liver of male rats. Toxicology, 188(2-3), 117-124. DOI: https://doi.org/10.1016/s0300-483x(03)00056-8
  • Bordbar, H., Soleymani, F., Nadimi, E., Yahyavi, S. S., & Fazelian-Dehkordi, K. (2021). A Quantitative Study on the Protective Effects of Resveratrol against Bisphenol A-induced Hepatotoxicity in Rats: A Stereological Study. Iranian journal of medical sciences, 46(3), 218-227. DOI: https://doi.org/10.30476/ijms.2020.83308.1233
  • Center, S. A. (2007). Interpretation of Liver Enzymes. Veterinary Clinics of North America: Small Animal Practice, 37(2), 297-333. DOI: https://doi.org/https://doi.org/10.1016/j.cvsm.2006.11.009
  • Diamante, G., Cely, I., Zamora, Z., Ding, J., Blencowe, M., Lang, J., . . . Yang, X. (2021). Systems toxicogenomics of prenatal low-dose BPA exposure on liver metabolic pathways, gut microbiota, and metabolic health in mice. Environment International, 146, 106260. DOI: https://doi.org/https://doi.org/10.1016/j.envint.2020.106260
  • Doherty, L. F., Bromer, J. G., Zhou, Y., Aldad, T. S., & Taylor, H. S. (2010). In utero exposure to diethylstilbestrol (DES) or bisphenol-A (BPA) increases EZH2 expression in the mammary gland: an epigenetic mechanism linking endocrine disruptors to breast cancer. Hormones and Cancer, 1(3), 146-155. DOI: https://doi.org/10.1007/s12672-010-0015-9
  • Geens, T., Roosens, L., Neels, H., & Covaci, A. (2009). Assessment of human exposure to Bisphenol-A, Triclosan and Tetrabromobisphenol-A through indoor dust intake in Belgium. Chemosphere, 76(6), 755-760. DOI: https://doi.org/10.1016/j.chemosphere.2009.05.024
  • Goorden, S. M. I., Buffart, T. E., Bakker, A., & Buijs, M. M. (2013). [Liver disorders in adults: ALT and AST]. Nederlands tijdschrift voor geneeskunde, 157(43), A6443. Retrieved from http://europepmc.org/abstract/MED/24152362
  • Greaves, P. (2007). Liver and Pancreas. In P. Greaves (Ed.), Histopathology of Preclinical Toxicity Studies (pp. 457-569). Academic Press. DOI: https://doi.org/10.1016/b978-044452771-4/50010-9
  • Gupta, C., & Prakash, D. (2015). Nutraceuticals for geriatrics. Journal of Traditional and Complementary Medicine, 5(1), 5-14. DOI: https://doi.org/https://doi.org/10.1016/j.jtcme.2014.10.004
  • Hamza, R. Z., & Al-Harbi, M. S. (2015). Amelioration of paracetamol hepatotoxicity and oxidative stress on mice liver with silymarin and Nigella sativa extract supplements. Asian Pacific Journal of Tropical Biomedicine, 5(7), 521-531. DOI: https://doi.org/https://doi.org/10.1016/j.apjtb.2015.03.011
  • Han, C., & Hong, Y. C. (2016). Bisphenol A, Hypertension, and Cardiovascular Diseases: Epidemiological, Laboratory, and Clinical Trial Evidence. Current Hypertension Reports, 18(2), 11. DOI: https://doi.org/10.1007/s11906-015-0617-2
  • Hannan, M. A., Rahman, M. A., Sohag, A. A. M., Uddin, M. J., Dash, R., Sikder, M. H., . . . Kim, B. (2021). Black Cumin (Nigella sativa L.): A Comprehensive Review on Phytochemistry, Health Benefits, Molecular Pharmacology, and Safety. Nutrients, 13(6), 1784. Retrieved from https://www.mdpi.com/2072-6643/13/6/1784
  • Hassan, Z. K., Elobeid, M. A., Virk, P., Omer, S. A., ElAmin, M., Daghestani, M. H., & AlOlayan, E. M. (2012). Bisphenol A induces hepatotoxicity through oxidative stress in rat model. Oxidative Medicine and Cellular Longevity, 2012, 194829. DOI: https://doi.org/10.1155/2012/194829
  • Hatipoglu, D., & Keskin, E. (2022a). The effect of curcumin on some cytokines, antioxidants and liver function tests in rats induced by Aflatoxin B1. Heliyon, e09890. DOI: https://doi.org/10.1016/j.heliyon.2022.e09890
  • Hatipoğlu, D., & Keskin, E. (2022b). Ameliorative Effects of Curcumin on Aflatoxin B1-Induced Nephrotoxicity in Wistar-Albino Rats. Harran University Journal of The Faculty of Veterinary Medicine. 11, 2, 139-140. DOI: https://doi.org/https://dergipark.org.tr/tr/pub/huvfd/issue/70449/1093603
  • Hoekstra, E. J., & Simoneau, C. (2013). Release of bisphenol A from polycarbonate—a review. Critical Reviews in Food Science and Nutrition, 53(4), 386-402. DOI: https://doi.org/10.1080/10408398.2010.536919
  • Huang, Y. Q., Wong, C. K., Zheng, J. S., Bouwman, H., Barra, R., Wahlstrom, B., . . . Wong, M. H. (2012). Bisphenol A (BPA) in China: a review of sources, environmental levels, and potential human health impacts. Environment International, 42, 91-99. DOI: https://doi.org/10.1016/j.envint.2011.04.010
  • İnan, A. O., Durgun, Z., Koca, O., & Hatipoğlu, D. (2021). Effect of Coenzyme Q10 on Plasma Parameters in Hypothyroıd Rats. Harran University Journal of The Faculty of Veterinary Medicine, 10, 66-72. Retrieved from https://dergipark.org.tr/en/pub/huvfd/issue/62942/884704
  • Iwakiri, Y. (2015). Nitric oxide in liver fibrosis: The role of inducible nitric oxide synthase. Clinical and Molecular Hepatology, 21(4), 319-325. DOI: https://doi.org/10.3350/cmh.2015.21.4.319
  • Kazmi, S. T. B., Majid, M., Maryam, S., Rahat, A., Ahmed, M., Khan, M. R., & Haq, I. U. (2018). Quercus dilatata Lindl. ex Royle ameliorates BPA induced hepatotoxicity in Sprague Dawley rats. Biomedicine Pharmacotherapy, 102, 728-738. DOI: https://doi.org/10.1016/j.biopha.2018.03.097
  • Kısadere, İ., Faruk Aydın, M., Usta, M., & Donmez, N. (2021). Protective effects of oral melatonin against cadmiuminduced neurotoxicity in Wistar rats. Arhiv za higijenu rada i toksikologiju, 72(2), 157-163. DOI: https://doi.org/https://doi.org/10.2478/aiht-2021-72-3513
  • Kısadere, İ., Karaman, M., Aydın, M. F., Donmez, N., & Usta, M. (2021). The protective effects of chitosan oligosaccharide (COS) on cadmium-induced neurotoxicity in Wistar rats. Archives of Environmental & Occupational Health, 1-9. DOI: https://doi.org/10.1080/19338244.2021.2008852
  • Knaak, J. B., & Sullivan, L. J. (1966). Metabolism of bisphenol A in the rat. Toxicology and Applied Pharmacology, 8(2), 175-184. DOI: https://doi.org/10.1016/s0041-008x(66)80001-7
  • Kooti, W., Hasanzadeh-Noohi, Z., Sharafi-Ahvazi, N., Asadi-Samani, M., & Ashtary-Larky, D. (2016). Phytochemistry, pharmacology, and therapeutic uses of black seed (Nigella sativa). Chinese Journal of Natural Medicines, 14(10), 732-745. DOI: https://doi.org/10.1016/S1875-5364(16)30088-7
  • Korkmaz, A., Ahbab, M. A., Kolankaya, D., & Barlas, N. (2010). Influence of vitamin C on bisphenol A, nonylphenol and octylphenol induced oxidative damages in liver of male rats. Food and Chemical Toxicology, 48(10), 2865-2871. DOI: https://doi.org/10.1016/j.fct.2010.07.019
  • Laws, S. C., Carey, S. A., Ferrell, J. M., Bodman, G. J., & Cooper, R. L. (2000). Estrogenic Activity of Octylphenol, Nonylphenol, Bisphenol A and Methoxychlor in Rats. Toxicological Sciences, 54(1), 154-167. DOI: https://doi.org/10.1093/toxsci/54.1.154
  • Makris, K., Andra, S., Jia, A., Herrick, L., Christophi, C., Snyder, S. A., & Hauser, R. (2013). Association between water consumption from polycarbonate containers and bisphenol A intake during harsh environmental conditions in summer. Environmental science & technology, 47(7), 3333-3343. DOI: https://doi.org/10.1021/es304038k
  • Meeker, J. D., Calafat, A. M., & Hauser, R. (2010). Urinary bisphenol A concentrations in relation to serum thyroid and reproductive hormone levels in men from an infertility clinic. Environmental Science & Technology, 44(4), 1458-1463. DOI: https://doi.org/10.1021/es9028292
  • Meng, Z., Tian, S., Yan, J., Jia, M., Yan, S., Li, R., . . . Zhou, Z. (2019). Effects of perinatal exposure to BPA, BPF and BPAF on liver function in male mouse offspring involving in oxidative damage and metabolic disorder. Environmental Pollution, 247, 935-943. DOI: https://doi.org/10.1016/j.envpol.2019.01.116
  • Michalowicz, J. (2014). Bisphenol A--sources, toxicity and biotransformation. Environmental Toxicology and Pharmacology, 37(2), 738-758. DOI: https://doi.org/10.1016/j.etap.2014.02.003
  • Moshtaghie, A. A., Javadi, I., & Feghhi, G. (2003). Changes in the Level of Mitochondrial and Cytosolic Aspartate Aminotransferase Activities in Aluminium Intoxified Rat. Iranian Biomedical Journal, 7(4), 167-171. Retrieved from http://ibj.pasteur.ac.ir/article-1-524-en.html
  • Mukherjee, U., Samanta, A., Biswas, S., Das, S., Ghosh, S., Mandal, D. K., & Maitra, S. (2020). Bisphenol A-induced oxidative stress, hepatotoxicity and altered estrogen receptor expression in Labeo bata: impact on metabolic homeostasis and inflammatory response. Ecotoxicology and Environmental Safety, 202, 110944. DOI: https://doi.org/10.1016/j.ecoenv.2020.110944
  • Murata, M., & Kang, J. H. (2018). Bisphenol A (BPA) and cell signaling pathways. Biotechnology Advances, 36(1), 311-327. DOI: https://doi.org/10.1016/j.biotechadv.2017.12.002
  • Nangia, P., & Yadav, V. (2021). Acute Toxicity and Effect of Bisphenol-A Exposure on Serum Alkaline Phosphatase in Channa punctatus. The Scıentıfıc Temper, 24. Retrieved from https://connectjournals.com/03960.2021.12.23
  • Olukole, S. G., Lanipekun, D. O., Ola-Davies, E. O., & Oke, B. O. (2019). Melatonin attenuates bisphenol A-induced toxicity of the adrenal gland of Wistar rats. Environmental Science and Pollution Research, 26(6), 5971-5982. DOI: https://doi.org/10.1007/s11356-018-4024-5
  • Reitman, S., & Frankel, S. (1957). A Colorimetric Method for the Determination of Serum Glutamic Oxalacetic and Glutamic Pyruvic Transaminases. American Journal of Clinical Pathology, 28(1), 56-63. DOI: https://doi.org/10.1093/ajcp/28.1.56
  • Rej, R. (1989). Aminotransferases in Disease. Clinics in Laboratory Medicine, 9(4), 667-687. DOI: https://doi.org/10.1016/S0272-2712(18)30598-5
  • Salem, M. L. (2005). Immunomodulatory and therapeutic properties of the Nigella sativa L. seed. International Immunopharmacology, 5(13-14), 1749-1770. DOI: https://doi.org/10.1016/j.intimp.2005.06.008
  • Schug, T. T., Janesick, A., Blumberg, B., & Heindel, J. J. (2011). Endocrine disrupting chemicals and disease susceptibility. The Journal of Steroid Biochemistry and Molecular Biology, 127(3-5), 204-215. DOI: https://doi.org/10.1016/j.jsbmb.2011.08.007
  • Sharma, U., Pal, D., & Prasad, R. (2014). Alkaline Phosphatase: An Overview. Indian Journal of Clinical Biochemistry, 29(3), 269-278. DOI: https://doi.org/10.1007/s12291-013-0408-y
  • Sun, Y., Wang, X., Zhou, Y., Zhang, J., Cui, W., Wang, E., . . . Xu, X. (2021). Protective effect of metformin on BPA-induced liver toxicity in rats through upregulation of cystathionine β synthase and cystathionine γ lyase expression. Science of the Total Environment, 750, 141685. DOI: https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.141685
  • Tarafdar, A., Sirohi, R., Balakumaran, P. A., Reshmy, R., Madhavan, A., Sindhu, R., . . . Sim, S. J. (2022). The hazardous threat of Bisphenol A: Toxicity, detection and remediation. Journal of Hazardous Materials, 423(Pt A), 127097. DOI: https://doi.org/10.1016/j.jhazmat.2021.127097
  • Tian, X., Liu, Y., Liu, X., Gao, S., & Sun, X. (2019). Glycyrrhizic acid ammonium salt alleviates Concanavalin A-induced immunological liver injury in mice through the regulation of the balance of immune cells and the inhibition of hepatocyte apoptosis. Biomedicine & Pharmacotherapy, 120, 109481. DOI: https://doi.org/https://doi.org/10.1016/j.biopha.2019.109481
  • Uzunhisarcikli, M., & Aslanturk, A. (2019). Hepatoprotective effects of curcumin and taurine against bisphenol A-induced liver injury in rats. Environmental Science and Pollution Research, 26(36), 37242-37253. DOI: https://doi.org/10.1007/s11356-019-06615-8
  • Wenk, M. R., & Fernandis, A. Z. (2007). A manual for biochemistry protocols (Vol. 3). World Scientific. (World Scientific Publishing Co. Pte. Ltd). DOI: https://doi.org/10.1142/6269
  • Whitfield, J. B. (2001). Gamma Glutamyl Transferase. Critical Reviews in Clinical Laboratory Sciences, 38(4), 263-355. DOI: https://doi.org/10.1080/20014091084227
  • Zaulet, M., Kevorkian, S. E. M., Dinescu, S., Cotoraci, C., Suciu, M., Herman, H., . . . Hermenean, A. (2017). Protective effects of silymarin against bisphenol A-induced hepatotoxicity in mouse liver. Experimental and Therapeutic Medicine, 13(3), 821-828. DOI: https://doi.org/10.3892/etm.2017.4066
  • Zhang, H., Ju, Q., Pang, S., Wei, N., & Zhang, Y. (2021). Recent progress of fluorescent probes for the detection of alkaline phosphatase (ALP): A review. Dyes and Pigments, 194, 109569. DOI: https://doi.org/https://doi.org/10.1016/j.dyepig.2021.109569
  • Ziv-Gal, A., Craig, Z. R., Wang, W., & Flaws, J. A. (2013). Bisphenol A inhibits cultured mouse ovarian follicle growth partially via the aryl hydrocarbon receptor signaling pathway. Reproductive Toxicology, 42, 58-67. DOI: https://doi.org/10.1016/j.reprotox.2013.07.022
Year 2022, Volume: 6 Issue: 3, 402 - 409, 23.09.2022
https://doi.org/10.31015/jaefs.2022.3.9

Abstract

References

  • Abdel-Zaher, A. O., Abdel-Rahman, M. S., & Elwasei, F. M. (2010). Blockade of Nitric Oxide Overproduction and Oxidative Stress by Nigella sativa Oil Attenuates Morphine-Induced Tolerance and Dependence in Mice. Neurochemical Research, 35(10), 1557-1565. DOI: https://doi.org/10.1007/s11064-010-0215-2
  • Abdel Samie, H. A., Nassar, S. A., & Hussein, Y. (2018). Ameliorative Potential of Selenium against Bisphenol A- Induced Hepatotoxicity in Rats. The Egyptian Journal of Hospital Medicine, 67(1), 444-454. DOI: https://ejhm.journals.ekb.eg/article_14019_29af1d727d495f06df34b02417c02d81.pdf
  • Al-Seeni, M. N., El Rabey, H. A., Zamzami, M. A., & Alnefayee, A. M. (2016). The hepatoprotective activity of olive oil and Nigella sativa oil against CCl4 induced hepatotoxicity in male rats. BMC Complementary and Alternative Medicine, 16(1), 438. DOI: https://doi.org/10.1186/s12906-016-1422-4
  • Ates, M. B., & Ortatatli, M. (2021a). The effects of Nigella sativa seeds and thymoquinone on aflatoxin phase-2 detoxification through glutathione and glutathione-S-transferase alpha-3, and the relationship between aflatoxin B1-DNA adducts in broilers. Toxicon, 193, 86-92. DOI: https://doi.org/10.1016/j.toxicon.2021.01.020
  • Ates, M. B., & Ortatatli, M. (2021b). Phase-1 bioactivation mechanisms of aflatoxin through AhR, CAR and PXR nuclear receptors and the interactions with Nigella sativa seeds and thymoquinone in broilers. Ecotoxicology and Environmental Safety, 208, 111774. DOI: https://doi.org/10.1016/j.ecoenv.2020.111774
  • Ates, M. B., Ortatatli, M., Oguz, H., Ozdemir, O., Terzi, F., Ciftci, M. K., & Hatipoglu, F. (2022). The ameliorative effects of Nigella sativa, thymoquinone, and bentonite against aflatoxicosis in broilers via AFAR and Nrf2 signalling pathways, and down-regulation of caspase-3. British Poultry Science, 63(3), 332-339. DOI: https://doi.org/10.1080/00071668.2021.1998366
  • Bindhumol, V., Chitra, K. C., & Mathur, P. P. (2003). Bisphenol A induces reactive oxygen species generation in the liver of male rats. Toxicology, 188(2-3), 117-124. DOI: https://doi.org/10.1016/s0300-483x(03)00056-8
  • Bordbar, H., Soleymani, F., Nadimi, E., Yahyavi, S. S., & Fazelian-Dehkordi, K. (2021). A Quantitative Study on the Protective Effects of Resveratrol against Bisphenol A-induced Hepatotoxicity in Rats: A Stereological Study. Iranian journal of medical sciences, 46(3), 218-227. DOI: https://doi.org/10.30476/ijms.2020.83308.1233
  • Center, S. A. (2007). Interpretation of Liver Enzymes. Veterinary Clinics of North America: Small Animal Practice, 37(2), 297-333. DOI: https://doi.org/https://doi.org/10.1016/j.cvsm.2006.11.009
  • Diamante, G., Cely, I., Zamora, Z., Ding, J., Blencowe, M., Lang, J., . . . Yang, X. (2021). Systems toxicogenomics of prenatal low-dose BPA exposure on liver metabolic pathways, gut microbiota, and metabolic health in mice. Environment International, 146, 106260. DOI: https://doi.org/https://doi.org/10.1016/j.envint.2020.106260
  • Doherty, L. F., Bromer, J. G., Zhou, Y., Aldad, T. S., & Taylor, H. S. (2010). In utero exposure to diethylstilbestrol (DES) or bisphenol-A (BPA) increases EZH2 expression in the mammary gland: an epigenetic mechanism linking endocrine disruptors to breast cancer. Hormones and Cancer, 1(3), 146-155. DOI: https://doi.org/10.1007/s12672-010-0015-9
  • Geens, T., Roosens, L., Neels, H., & Covaci, A. (2009). Assessment of human exposure to Bisphenol-A, Triclosan and Tetrabromobisphenol-A through indoor dust intake in Belgium. Chemosphere, 76(6), 755-760. DOI: https://doi.org/10.1016/j.chemosphere.2009.05.024
  • Goorden, S. M. I., Buffart, T. E., Bakker, A., & Buijs, M. M. (2013). [Liver disorders in adults: ALT and AST]. Nederlands tijdschrift voor geneeskunde, 157(43), A6443. Retrieved from http://europepmc.org/abstract/MED/24152362
  • Greaves, P. (2007). Liver and Pancreas. In P. Greaves (Ed.), Histopathology of Preclinical Toxicity Studies (pp. 457-569). Academic Press. DOI: https://doi.org/10.1016/b978-044452771-4/50010-9
  • Gupta, C., & Prakash, D. (2015). Nutraceuticals for geriatrics. Journal of Traditional and Complementary Medicine, 5(1), 5-14. DOI: https://doi.org/https://doi.org/10.1016/j.jtcme.2014.10.004
  • Hamza, R. Z., & Al-Harbi, M. S. (2015). Amelioration of paracetamol hepatotoxicity and oxidative stress on mice liver with silymarin and Nigella sativa extract supplements. Asian Pacific Journal of Tropical Biomedicine, 5(7), 521-531. DOI: https://doi.org/https://doi.org/10.1016/j.apjtb.2015.03.011
  • Han, C., & Hong, Y. C. (2016). Bisphenol A, Hypertension, and Cardiovascular Diseases: Epidemiological, Laboratory, and Clinical Trial Evidence. Current Hypertension Reports, 18(2), 11. DOI: https://doi.org/10.1007/s11906-015-0617-2
  • Hannan, M. A., Rahman, M. A., Sohag, A. A. M., Uddin, M. J., Dash, R., Sikder, M. H., . . . Kim, B. (2021). Black Cumin (Nigella sativa L.): A Comprehensive Review on Phytochemistry, Health Benefits, Molecular Pharmacology, and Safety. Nutrients, 13(6), 1784. Retrieved from https://www.mdpi.com/2072-6643/13/6/1784
  • Hassan, Z. K., Elobeid, M. A., Virk, P., Omer, S. A., ElAmin, M., Daghestani, M. H., & AlOlayan, E. M. (2012). Bisphenol A induces hepatotoxicity through oxidative stress in rat model. Oxidative Medicine and Cellular Longevity, 2012, 194829. DOI: https://doi.org/10.1155/2012/194829
  • Hatipoglu, D., & Keskin, E. (2022a). The effect of curcumin on some cytokines, antioxidants and liver function tests in rats induced by Aflatoxin B1. Heliyon, e09890. DOI: https://doi.org/10.1016/j.heliyon.2022.e09890
  • Hatipoğlu, D., & Keskin, E. (2022b). Ameliorative Effects of Curcumin on Aflatoxin B1-Induced Nephrotoxicity in Wistar-Albino Rats. Harran University Journal of The Faculty of Veterinary Medicine. 11, 2, 139-140. DOI: https://doi.org/https://dergipark.org.tr/tr/pub/huvfd/issue/70449/1093603
  • Hoekstra, E. J., & Simoneau, C. (2013). Release of bisphenol A from polycarbonate—a review. Critical Reviews in Food Science and Nutrition, 53(4), 386-402. DOI: https://doi.org/10.1080/10408398.2010.536919
  • Huang, Y. Q., Wong, C. K., Zheng, J. S., Bouwman, H., Barra, R., Wahlstrom, B., . . . Wong, M. H. (2012). Bisphenol A (BPA) in China: a review of sources, environmental levels, and potential human health impacts. Environment International, 42, 91-99. DOI: https://doi.org/10.1016/j.envint.2011.04.010
  • İnan, A. O., Durgun, Z., Koca, O., & Hatipoğlu, D. (2021). Effect of Coenzyme Q10 on Plasma Parameters in Hypothyroıd Rats. Harran University Journal of The Faculty of Veterinary Medicine, 10, 66-72. Retrieved from https://dergipark.org.tr/en/pub/huvfd/issue/62942/884704
  • Iwakiri, Y. (2015). Nitric oxide in liver fibrosis: The role of inducible nitric oxide synthase. Clinical and Molecular Hepatology, 21(4), 319-325. DOI: https://doi.org/10.3350/cmh.2015.21.4.319
  • Kazmi, S. T. B., Majid, M., Maryam, S., Rahat, A., Ahmed, M., Khan, M. R., & Haq, I. U. (2018). Quercus dilatata Lindl. ex Royle ameliorates BPA induced hepatotoxicity in Sprague Dawley rats. Biomedicine Pharmacotherapy, 102, 728-738. DOI: https://doi.org/10.1016/j.biopha.2018.03.097
  • Kısadere, İ., Faruk Aydın, M., Usta, M., & Donmez, N. (2021). Protective effects of oral melatonin against cadmiuminduced neurotoxicity in Wistar rats. Arhiv za higijenu rada i toksikologiju, 72(2), 157-163. DOI: https://doi.org/https://doi.org/10.2478/aiht-2021-72-3513
  • Kısadere, İ., Karaman, M., Aydın, M. F., Donmez, N., & Usta, M. (2021). The protective effects of chitosan oligosaccharide (COS) on cadmium-induced neurotoxicity in Wistar rats. Archives of Environmental & Occupational Health, 1-9. DOI: https://doi.org/10.1080/19338244.2021.2008852
  • Knaak, J. B., & Sullivan, L. J. (1966). Metabolism of bisphenol A in the rat. Toxicology and Applied Pharmacology, 8(2), 175-184. DOI: https://doi.org/10.1016/s0041-008x(66)80001-7
  • Kooti, W., Hasanzadeh-Noohi, Z., Sharafi-Ahvazi, N., Asadi-Samani, M., & Ashtary-Larky, D. (2016). Phytochemistry, pharmacology, and therapeutic uses of black seed (Nigella sativa). Chinese Journal of Natural Medicines, 14(10), 732-745. DOI: https://doi.org/10.1016/S1875-5364(16)30088-7
  • Korkmaz, A., Ahbab, M. A., Kolankaya, D., & Barlas, N. (2010). Influence of vitamin C on bisphenol A, nonylphenol and octylphenol induced oxidative damages in liver of male rats. Food and Chemical Toxicology, 48(10), 2865-2871. DOI: https://doi.org/10.1016/j.fct.2010.07.019
  • Laws, S. C., Carey, S. A., Ferrell, J. M., Bodman, G. J., & Cooper, R. L. (2000). Estrogenic Activity of Octylphenol, Nonylphenol, Bisphenol A and Methoxychlor in Rats. Toxicological Sciences, 54(1), 154-167. DOI: https://doi.org/10.1093/toxsci/54.1.154
  • Makris, K., Andra, S., Jia, A., Herrick, L., Christophi, C., Snyder, S. A., & Hauser, R. (2013). Association between water consumption from polycarbonate containers and bisphenol A intake during harsh environmental conditions in summer. Environmental science & technology, 47(7), 3333-3343. DOI: https://doi.org/10.1021/es304038k
  • Meeker, J. D., Calafat, A. M., & Hauser, R. (2010). Urinary bisphenol A concentrations in relation to serum thyroid and reproductive hormone levels in men from an infertility clinic. Environmental Science & Technology, 44(4), 1458-1463. DOI: https://doi.org/10.1021/es9028292
  • Meng, Z., Tian, S., Yan, J., Jia, M., Yan, S., Li, R., . . . Zhou, Z. (2019). Effects of perinatal exposure to BPA, BPF and BPAF on liver function in male mouse offspring involving in oxidative damage and metabolic disorder. Environmental Pollution, 247, 935-943. DOI: https://doi.org/10.1016/j.envpol.2019.01.116
  • Michalowicz, J. (2014). Bisphenol A--sources, toxicity and biotransformation. Environmental Toxicology and Pharmacology, 37(2), 738-758. DOI: https://doi.org/10.1016/j.etap.2014.02.003
  • Moshtaghie, A. A., Javadi, I., & Feghhi, G. (2003). Changes in the Level of Mitochondrial and Cytosolic Aspartate Aminotransferase Activities in Aluminium Intoxified Rat. Iranian Biomedical Journal, 7(4), 167-171. Retrieved from http://ibj.pasteur.ac.ir/article-1-524-en.html
  • Mukherjee, U., Samanta, A., Biswas, S., Das, S., Ghosh, S., Mandal, D. K., & Maitra, S. (2020). Bisphenol A-induced oxidative stress, hepatotoxicity and altered estrogen receptor expression in Labeo bata: impact on metabolic homeostasis and inflammatory response. Ecotoxicology and Environmental Safety, 202, 110944. DOI: https://doi.org/10.1016/j.ecoenv.2020.110944
  • Murata, M., & Kang, J. H. (2018). Bisphenol A (BPA) and cell signaling pathways. Biotechnology Advances, 36(1), 311-327. DOI: https://doi.org/10.1016/j.biotechadv.2017.12.002
  • Nangia, P., & Yadav, V. (2021). Acute Toxicity and Effect of Bisphenol-A Exposure on Serum Alkaline Phosphatase in Channa punctatus. The Scıentıfıc Temper, 24. Retrieved from https://connectjournals.com/03960.2021.12.23
  • Olukole, S. G., Lanipekun, D. O., Ola-Davies, E. O., & Oke, B. O. (2019). Melatonin attenuates bisphenol A-induced toxicity of the adrenal gland of Wistar rats. Environmental Science and Pollution Research, 26(6), 5971-5982. DOI: https://doi.org/10.1007/s11356-018-4024-5
  • Reitman, S., & Frankel, S. (1957). A Colorimetric Method for the Determination of Serum Glutamic Oxalacetic and Glutamic Pyruvic Transaminases. American Journal of Clinical Pathology, 28(1), 56-63. DOI: https://doi.org/10.1093/ajcp/28.1.56
  • Rej, R. (1989). Aminotransferases in Disease. Clinics in Laboratory Medicine, 9(4), 667-687. DOI: https://doi.org/10.1016/S0272-2712(18)30598-5
  • Salem, M. L. (2005). Immunomodulatory and therapeutic properties of the Nigella sativa L. seed. International Immunopharmacology, 5(13-14), 1749-1770. DOI: https://doi.org/10.1016/j.intimp.2005.06.008
  • Schug, T. T., Janesick, A., Blumberg, B., & Heindel, J. J. (2011). Endocrine disrupting chemicals and disease susceptibility. The Journal of Steroid Biochemistry and Molecular Biology, 127(3-5), 204-215. DOI: https://doi.org/10.1016/j.jsbmb.2011.08.007
  • Sharma, U., Pal, D., & Prasad, R. (2014). Alkaline Phosphatase: An Overview. Indian Journal of Clinical Biochemistry, 29(3), 269-278. DOI: https://doi.org/10.1007/s12291-013-0408-y
  • Sun, Y., Wang, X., Zhou, Y., Zhang, J., Cui, W., Wang, E., . . . Xu, X. (2021). Protective effect of metformin on BPA-induced liver toxicity in rats through upregulation of cystathionine β synthase and cystathionine γ lyase expression. Science of the Total Environment, 750, 141685. DOI: https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.141685
  • Tarafdar, A., Sirohi, R., Balakumaran, P. A., Reshmy, R., Madhavan, A., Sindhu, R., . . . Sim, S. J. (2022). The hazardous threat of Bisphenol A: Toxicity, detection and remediation. Journal of Hazardous Materials, 423(Pt A), 127097. DOI: https://doi.org/10.1016/j.jhazmat.2021.127097
  • Tian, X., Liu, Y., Liu, X., Gao, S., & Sun, X. (2019). Glycyrrhizic acid ammonium salt alleviates Concanavalin A-induced immunological liver injury in mice through the regulation of the balance of immune cells and the inhibition of hepatocyte apoptosis. Biomedicine & Pharmacotherapy, 120, 109481. DOI: https://doi.org/https://doi.org/10.1016/j.biopha.2019.109481
  • Uzunhisarcikli, M., & Aslanturk, A. (2019). Hepatoprotective effects of curcumin and taurine against bisphenol A-induced liver injury in rats. Environmental Science and Pollution Research, 26(36), 37242-37253. DOI: https://doi.org/10.1007/s11356-019-06615-8
  • Wenk, M. R., & Fernandis, A. Z. (2007). A manual for biochemistry protocols (Vol. 3). World Scientific. (World Scientific Publishing Co. Pte. Ltd). DOI: https://doi.org/10.1142/6269
  • Whitfield, J. B. (2001). Gamma Glutamyl Transferase. Critical Reviews in Clinical Laboratory Sciences, 38(4), 263-355. DOI: https://doi.org/10.1080/20014091084227
  • Zaulet, M., Kevorkian, S. E. M., Dinescu, S., Cotoraci, C., Suciu, M., Herman, H., . . . Hermenean, A. (2017). Protective effects of silymarin against bisphenol A-induced hepatotoxicity in mouse liver. Experimental and Therapeutic Medicine, 13(3), 821-828. DOI: https://doi.org/10.3892/etm.2017.4066
  • Zhang, H., Ju, Q., Pang, S., Wei, N., & Zhang, Y. (2021). Recent progress of fluorescent probes for the detection of alkaline phosphatase (ALP): A review. Dyes and Pigments, 194, 109569. DOI: https://doi.org/https://doi.org/10.1016/j.dyepig.2021.109569
  • Ziv-Gal, A., Craig, Z. R., Wang, W., & Flaws, J. A. (2013). Bisphenol A inhibits cultured mouse ovarian follicle growth partially via the aryl hydrocarbon receptor signaling pathway. Reproductive Toxicology, 42, 58-67. DOI: https://doi.org/10.1016/j.reprotox.2013.07.022
There are 55 citations in total.

Details

Primary Language English
Subjects Veterinary Sciences, Veterinary Surgery
Journal Section Research Articles
Authors

Mehmet Burak Ateş 0000-0003-1297-426X

Durmuş Hatipoğlu 0000-0003-3790-7821

Publication Date September 23, 2022
Submission Date June 1, 2022
Acceptance Date July 15, 2022
Published in Issue Year 2022 Volume: 6 Issue: 3

Cite

APA Ateş, M. B., & Hatipoğlu, D. (2022). Effect of nigella sativa oil on bisphenol a-induced hepatotoxicity in wistar albino rats: histopathological and biochemical investigation. International Journal of Agriculture Environment and Food Sciences, 6(3), 402-409. https://doi.org/10.31015/jaefs.2022.3.9
AMA Ateş MB, Hatipoğlu D. Effect of nigella sativa oil on bisphenol a-induced hepatotoxicity in wistar albino rats: histopathological and biochemical investigation. int. j. agric. environ. food sci. September 2022;6(3):402-409. doi:10.31015/jaefs.2022.3.9
Chicago Ateş, Mehmet Burak, and Durmuş Hatipoğlu. “Effect of Nigella Sativa Oil on Bisphenol a-Induced Hepatotoxicity in Wistar Albino Rats: Histopathological and Biochemical Investigation”. International Journal of Agriculture Environment and Food Sciences 6, no. 3 (September 2022): 402-9. https://doi.org/10.31015/jaefs.2022.3.9.
EndNote Ateş MB, Hatipoğlu D (September 1, 2022) Effect of nigella sativa oil on bisphenol a-induced hepatotoxicity in wistar albino rats: histopathological and biochemical investigation. International Journal of Agriculture Environment and Food Sciences 6 3 402–409.
IEEE M. B. Ateş and D. Hatipoğlu, “Effect of nigella sativa oil on bisphenol a-induced hepatotoxicity in wistar albino rats: histopathological and biochemical investigation”, int. j. agric. environ. food sci., vol. 6, no. 3, pp. 402–409, 2022, doi: 10.31015/jaefs.2022.3.9.
ISNAD Ateş, Mehmet Burak - Hatipoğlu, Durmuş. “Effect of Nigella Sativa Oil on Bisphenol a-Induced Hepatotoxicity in Wistar Albino Rats: Histopathological and Biochemical Investigation”. International Journal of Agriculture Environment and Food Sciences 6/3 (September 2022), 402-409. https://doi.org/10.31015/jaefs.2022.3.9.
JAMA Ateş MB, Hatipoğlu D. Effect of nigella sativa oil on bisphenol a-induced hepatotoxicity in wistar albino rats: histopathological and biochemical investigation. int. j. agric. environ. food sci. 2022;6:402–409.
MLA Ateş, Mehmet Burak and Durmuş Hatipoğlu. “Effect of Nigella Sativa Oil on Bisphenol a-Induced Hepatotoxicity in Wistar Albino Rats: Histopathological and Biochemical Investigation”. International Journal of Agriculture Environment and Food Sciences, vol. 6, no. 3, 2022, pp. 402-9, doi:10.31015/jaefs.2022.3.9.
Vancouver Ateş MB, Hatipoğlu D. Effect of nigella sativa oil on bisphenol a-induced hepatotoxicity in wistar albino rats: histopathological and biochemical investigation. int. j. agric. environ. food sci. 2022;6(3):402-9.


The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences. 

Web:  dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27