Research Article
BibTex RIS Cite

GREEN SYNTHESIS AND CHARACTERIZATION OF ZINC OXIDE NANOPARTICLES BY USING RHODODENDRON PONTICUM L. LEAF EXTRACT

Year 2021, Volume: 4 Issue: 1, 54 - 57, 07.04.2021

Abstract

In recent years, nanotechnology studies have gained importance in modern materials science. Green synthesized nanoparticles have attracted great attention due to some properties such as eco-friendly, nontoxicity and cost effectiveness. In this paper, the synthesis of zinc oxide nanoparticles (ZnO NPs) was carried out by using Rhododendron ponticum L. leaf extract. The characterization of the green biosynthesized ZnO NPs were carried out by scanning electron microscopy (SEM) with Energy dispersive X-ray analysis (EDX) and UV-Visible spectrophotometer. UV–visible absorption of ZnO NPs showed absorption band at about 345 nm. In addition, zinc and oxygen related sharp peaks were obtained in EDX analysis.

Thanks

The author is thankful to Nilay TEZEL (Çanakkale Onsekiz Mart University, Science and Technology Application and Research Centre) for her technical assistance.

References

  • [1] K.V. Dhandapani, D. Anbumani, A.D. Gandhi, P. Annamalai, B.S. Muthuvenkatachalam, P. Kavitha, B. Ranganathan, Green route for the synthesis of zinc oxide nanoparticles from Melia azedarach leaf extract and evaluation of their antioxidant and antibacterial activities, Biocatalysis and Agricultural Biotechnology, 24 (2020) 101517.
  • [2] D.K. Vizhi, N. Supraja, A. Devipriya, N.V.K.V.P. Tollamadugu, R. Babujanarthanam, Evaluation of antibacterial activity and cytotoxic effects of green AgNPs against Breast Cancer Cells (MCF 7), Advances in nano research, 4 (2016) 129.
  • [3] S. Sabir, M. Arshad, S.K. Chaudhari, Zinc Oxide Nanoparticles for Revolutionizing Agriculture: Synthesis and Applications, The Scientific World Journal, 2014 (2014) 925494.
  • [4] Ç.A. ACAR, S. PEHLİVANOĞLU, Biosynthesis of silver nanoparticles using Rosa canina extract and its anti-cancer and anti-metastatic activity on human colon adenocarcinoma cell line HT29, Mehmet Akif Ersoy Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, 7 124-131.
  • [5] Ç.A. ACAR, S. Pehlivanoğlu, Gümüş Nanopartiküllerin Biberiye Özütü ile Biyosentezi ve MCF-7 Meme Kanseri Hücrelerinde Sitotoksik Etkisi, Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi, 10 172-176.
  • [6] S.P. Rajendran, K. Sengodan, Synthesis and Characterization of Zinc Oxide and Iron Oxide Nanoparticles Using Sesbania grandiflora Leaf Extract as Reducing Agent, Journal of Nanoscience, 2017 (2017) 8348507.
  • [7] D. Bharathi, V. Bhuvaneshwari, Synthesis of zinc oxide nanoparticles (ZnO NPs) using pure bioflavonoid rutin and their biomedical applications: antibacterial, antioxidant and cytotoxic activities, Res. Chem. Intermed., 45 (2019) 2065-2078.
  • [8] R. Yuvakkumar, J. Suresh, A.J. Nathanael, M. Sundrarajan, S.I. Hong, Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications, Mater. Sci. Eng. C, 41 (2014) 17-27.
  • [9] S. Yedurkar, C. Maurya, P. Mahanwar, Biosynthesis of zinc oxide nanoparticles using ixora coccinea leaf extract—a green approach, Open Journal of Synthesis Theory and Applications, 5 (2016) 1-14.
  • [10] S. Vijayakumar, S. Mahadevan, P. Arulmozhi, S. Sriram, P.K. Praseetha, Green synthesis of zinc oxide nanoparticles using Atalantia monophylla leaf extracts: Characterization and antimicrobial analysis, Mater. Sci. Semicond. Process., 82 (2018) 39-45.
  • [11] M. Arabi, M. Ghaedi, A. Ostovan, Development of a Lower Toxic Approach Based on Green Synthesis of Water-Compatible Molecularly Imprinted Nanoparticles for the Extraction of Hydrochlorothiazide from Human Urine, ACS Sustainable Chemistry & Engineering, 5 (2017) 3775-3785.
  • [12] A.A. Barzinjy, H.H. Azeez, Green synthesis and characterization of zinc oxide nanoparticles using Eucalyptus globulus Labill. leaf extract and zinc nitrate hexahydrate salt, SN Applied Sciences, 2 (2020) 991.
  • [13] J. Liu, S.Z. Qiao, Q.H. Hu, G.Q. Lu, Magnetic Nanocomposites with Mesoporous Structures: Synthesis and Applications, Small, 7 (2011) 425-443.
  • [14] R. Dobrucka, J. Długaszewska, Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract, Saudi J. Biol. Sci., 23 (2016) 517-523.
  • [15] V. Makarov, A. Love, O. Sinitsyna, S. Makarova, I. Yaminsky, M. Taliansky, N. Kalinina, “Green” nanotechnologies: synthesis of metal nanoparticles using plants, Acta Naturae, 6 (2014).
  • [16] C.L. Keat, A. Aziz, A.M. Eid, N.A. Elmarzugi, Biosynthesis of nanoparticles and silver nanoparticles, Bioresources and Bioprocessing, 2 (2015) 47.
  • [17] E.K. BİLİR, H. Tutun, S. Sevin, G. KISMALI, E. Yarsan, Cytotoxic effects of Rhododendron ponticum L. extract on prostate carcinoma and adenocarcinoma cell line (DU145, PC3), Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 24 (2018).
  • [18] A. Meral, Ormangülleri (Rhododendron L.) ve Türkiye'deki Doğal Yayılışları, Coğrafya Dergisi, (2012).
  • [19] S. Dönmez, Green Synthesis of Zinc Oxide Nanoparticles Using Zingiber Officinale Root Extract and Their Applications in Glucose Biosensor, El-Cezeri Journal of Science and Engineering, 7 (2020) 1191-1200.
  • [20] S. Fakhari, M. Jamzad, H. Kabiri Fard, Green synthesis of zinc oxide nanoparticles: a comparison, Green chemistry letters and reviews, 12 (2019) 19-24.
  • [21] T. Safawo, B. Sandeep, S. Pola, A. Tadesse, Synthesis and characterization of zinc oxide nanoparticles using tuber extract of anchote (Coccinia abyssinica (Lam.) Cong.) for antimicrobial and antioxidant activity assessment, OpenNano, 3 (2018) 56-63.
  • [22] L. Chen, I. Batjikh, J. Hurh, Y. Han, Y. Huo, H. Ali, J.F. Li, E.J. Rupa, J.C. Ahn, R. Mathiyalagan, D.C. Yang, Green synthesis of zinc oxide nanoparticles from root extract of Scutellaria baicalensis and its photocatalytic degradation activity using methylene blue, Optik, 184 (2019) 324-329.
  • [23] K. Lingaraju, H.R. Naika, K. Manjunath, R. Basavaraj, H. Nagabhushana, G. Nagaraju, D. Suresh, Biogenic synthesis of zinc oxide nanoparticles using Ruta graveolens (L.) and their antibacterial and antioxidant activities, Applied Nanoscience, 6 (2016) 703-710.
  • [24] A.C. Janaki, E. Sailatha, S. Gunasekaran, Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles, Spectrochim. Acta A, 144 (2015) 17-22.
Year 2021, Volume: 4 Issue: 1, 54 - 57, 07.04.2021

Abstract

References

  • [1] K.V. Dhandapani, D. Anbumani, A.D. Gandhi, P. Annamalai, B.S. Muthuvenkatachalam, P. Kavitha, B. Ranganathan, Green route for the synthesis of zinc oxide nanoparticles from Melia azedarach leaf extract and evaluation of their antioxidant and antibacterial activities, Biocatalysis and Agricultural Biotechnology, 24 (2020) 101517.
  • [2] D.K. Vizhi, N. Supraja, A. Devipriya, N.V.K.V.P. Tollamadugu, R. Babujanarthanam, Evaluation of antibacterial activity and cytotoxic effects of green AgNPs against Breast Cancer Cells (MCF 7), Advances in nano research, 4 (2016) 129.
  • [3] S. Sabir, M. Arshad, S.K. Chaudhari, Zinc Oxide Nanoparticles for Revolutionizing Agriculture: Synthesis and Applications, The Scientific World Journal, 2014 (2014) 925494.
  • [4] Ç.A. ACAR, S. PEHLİVANOĞLU, Biosynthesis of silver nanoparticles using Rosa canina extract and its anti-cancer and anti-metastatic activity on human colon adenocarcinoma cell line HT29, Mehmet Akif Ersoy Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, 7 124-131.
  • [5] Ç.A. ACAR, S. Pehlivanoğlu, Gümüş Nanopartiküllerin Biberiye Özütü ile Biyosentezi ve MCF-7 Meme Kanseri Hücrelerinde Sitotoksik Etkisi, Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi, 10 172-176.
  • [6] S.P. Rajendran, K. Sengodan, Synthesis and Characterization of Zinc Oxide and Iron Oxide Nanoparticles Using Sesbania grandiflora Leaf Extract as Reducing Agent, Journal of Nanoscience, 2017 (2017) 8348507.
  • [7] D. Bharathi, V. Bhuvaneshwari, Synthesis of zinc oxide nanoparticles (ZnO NPs) using pure bioflavonoid rutin and their biomedical applications: antibacterial, antioxidant and cytotoxic activities, Res. Chem. Intermed., 45 (2019) 2065-2078.
  • [8] R. Yuvakkumar, J. Suresh, A.J. Nathanael, M. Sundrarajan, S.I. Hong, Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications, Mater. Sci. Eng. C, 41 (2014) 17-27.
  • [9] S. Yedurkar, C. Maurya, P. Mahanwar, Biosynthesis of zinc oxide nanoparticles using ixora coccinea leaf extract—a green approach, Open Journal of Synthesis Theory and Applications, 5 (2016) 1-14.
  • [10] S. Vijayakumar, S. Mahadevan, P. Arulmozhi, S. Sriram, P.K. Praseetha, Green synthesis of zinc oxide nanoparticles using Atalantia monophylla leaf extracts: Characterization and antimicrobial analysis, Mater. Sci. Semicond. Process., 82 (2018) 39-45.
  • [11] M. Arabi, M. Ghaedi, A. Ostovan, Development of a Lower Toxic Approach Based on Green Synthesis of Water-Compatible Molecularly Imprinted Nanoparticles for the Extraction of Hydrochlorothiazide from Human Urine, ACS Sustainable Chemistry & Engineering, 5 (2017) 3775-3785.
  • [12] A.A. Barzinjy, H.H. Azeez, Green synthesis and characterization of zinc oxide nanoparticles using Eucalyptus globulus Labill. leaf extract and zinc nitrate hexahydrate salt, SN Applied Sciences, 2 (2020) 991.
  • [13] J. Liu, S.Z. Qiao, Q.H. Hu, G.Q. Lu, Magnetic Nanocomposites with Mesoporous Structures: Synthesis and Applications, Small, 7 (2011) 425-443.
  • [14] R. Dobrucka, J. Długaszewska, Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract, Saudi J. Biol. Sci., 23 (2016) 517-523.
  • [15] V. Makarov, A. Love, O. Sinitsyna, S. Makarova, I. Yaminsky, M. Taliansky, N. Kalinina, “Green” nanotechnologies: synthesis of metal nanoparticles using plants, Acta Naturae, 6 (2014).
  • [16] C.L. Keat, A. Aziz, A.M. Eid, N.A. Elmarzugi, Biosynthesis of nanoparticles and silver nanoparticles, Bioresources and Bioprocessing, 2 (2015) 47.
  • [17] E.K. BİLİR, H. Tutun, S. Sevin, G. KISMALI, E. Yarsan, Cytotoxic effects of Rhododendron ponticum L. extract on prostate carcinoma and adenocarcinoma cell line (DU145, PC3), Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 24 (2018).
  • [18] A. Meral, Ormangülleri (Rhododendron L.) ve Türkiye'deki Doğal Yayılışları, Coğrafya Dergisi, (2012).
  • [19] S. Dönmez, Green Synthesis of Zinc Oxide Nanoparticles Using Zingiber Officinale Root Extract and Their Applications in Glucose Biosensor, El-Cezeri Journal of Science and Engineering, 7 (2020) 1191-1200.
  • [20] S. Fakhari, M. Jamzad, H. Kabiri Fard, Green synthesis of zinc oxide nanoparticles: a comparison, Green chemistry letters and reviews, 12 (2019) 19-24.
  • [21] T. Safawo, B. Sandeep, S. Pola, A. Tadesse, Synthesis and characterization of zinc oxide nanoparticles using tuber extract of anchote (Coccinia abyssinica (Lam.) Cong.) for antimicrobial and antioxidant activity assessment, OpenNano, 3 (2018) 56-63.
  • [22] L. Chen, I. Batjikh, J. Hurh, Y. Han, Y. Huo, H. Ali, J.F. Li, E.J. Rupa, J.C. Ahn, R. Mathiyalagan, D.C. Yang, Green synthesis of zinc oxide nanoparticles from root extract of Scutellaria baicalensis and its photocatalytic degradation activity using methylene blue, Optik, 184 (2019) 324-329.
  • [23] K. Lingaraju, H.R. Naika, K. Manjunath, R. Basavaraj, H. Nagabhushana, G. Nagaraju, D. Suresh, Biogenic synthesis of zinc oxide nanoparticles using Ruta graveolens (L.) and their antibacterial and antioxidant activities, Applied Nanoscience, 6 (2016) 703-710.
  • [24] A.C. Janaki, E. Sailatha, S. Gunasekaran, Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles, Spectrochim. Acta A, 144 (2015) 17-22.
There are 24 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Articles
Authors

Soner Dönmez 0000-0003-0328-6481

Publication Date April 7, 2021
Published in Issue Year 2021 Volume: 4 Issue: 1

Cite

APA Dönmez, S. (2021). GREEN SYNTHESIS AND CHARACTERIZATION OF ZINC OXIDE NANOPARTICLES BY USING RHODODENDRON PONTICUM L. LEAF EXTRACT. Turkish Journal of Health Science and Life, 4(1), 54-57.