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Highlights 
• A new robust PLSR method: PLS-ARWMVV is introduced. 
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Abstract 

Partial Least Squares Regression (PLSR), which is developed as partial type of the least squares 

estimator of regression in case of multicollinearity existence among independent variables, is a 
linear regression method. If there are outliers in data set, robust methods can be applied for 
diminishing or getting rid of the negative impacts of them. Past studies have shown that if the 
covariance matrix is appropriately robustified, PLS1 algorithm (PLSR for one dependent 
variable) becomes robust against outliers. In this study, an adaptive reweighted estimator of 
covariance based on Minimum Vector Variance as the first estimator is used and a new robust 
PLSR method: “PLS-ARWMVV“ is introduced. PLS-ARWMVV is compared with ordinary 
PLSR and four popular robust PLSR methods. The simulation and real data application are 

revealed that if there are contaminated observations, proposed robust PLS-ARWMVV is robust 
and efficient. It generally performs better than robust PRM and good alternative for other robust 
PLS-KurSD, RSIMPLS and PLS-SD methods. 
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1. INTRODUCTION 

 
PLSR is a well-known method for multivariate analysis. The linear relationship between a group of 

independent variables and a group of dependent variables could be modeled by using it. The target of PLS 

is constituting latent variables (components) explaining most of the information (variability) in the 
explanatory variables that is beneficial for predicting dependent variables as diminishing the dimension by 

using less components than the number of explanatory variables [1]. These are constructed through the use 

of latent variables which maximize the covariance between the explanatory variables and dependent 

variables. This structure following an iterative process to satisfy the components’ orthogonality [2]. 
Because knowing that the existence of outliers or deviations from normal data seriously affects ordinary 

PLSR, many PLSR methods have been proposed that demonstrate robustness against data contamination 

[3, 4]. The commonly used NIPALS and SIMPLS algorithms of PLSR are affected by existence of outliers. 
Various robust types of these algorithms have introduced for one or more dependent variable [5]. 

 

Usually robust versions of PLSR have been derived in literature by two strategies: one of them the reduction 
of the weights of outliers and the other one robustly estimating the covariance matrix. The first method is 

seen as semi-robust: for example, because of they got non-robust beginning weights or weights’ 

nonresistance towards to leverage points [3]. Wakeling and Macfie [6] studied on PLS with multivariate 
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dependent variables (PLS2) and they changed the regression steps in PLS2 algorithm with M estimations 

having basis on weighted regressions. An iterative reweighted least squares, Siegel’s repeated median and 
least median of squares for one dependent variable PLS (PLS1) were compared by Griep et al. [7], however, 

they were unresisting to high leverage outliers [5]. Robust PLSR methods obtained by estimation of 

covariance robustly, however, overcome to all versions of outliers containing leverage points [3]. For 

example, by using Stahel-Donoho estimator (SDE) in order to robustly estimate covariance matrix in PLS1 
algorithm, Gil and Romera [8] introduced a robust PLSR method [8]. The results of SIMPLS algorithm are 

influenced by outliers’ existence, as the algorithm established on linear least squares regression and on 

empirical covariance matrix between y and x variables. A robust version of SIMPLS, RSIMPLS, was 
proposed by Hubert and Vanden Branden [3] used for both one or several dependent variables. In robust 

RSIMPLS, firstly ROBPCA was applied to x and y variables to obtain robust estimations of Sxy and Sx 

later that continues in a similar manner to the SIMPLS algorithm. In the second step, a robust regression 

method (ROBPCA regression) is applied. ROBPCA, a robust PCA technique, associates projection 
following opinions with Minimum Covariance Determinant (MCD) covariance estimates for low 

dimensions [3, 9]. A technique named as Partial Robust M (PRM) regression was suggested by Serneels et 

al. [10] that differed from other robust PLSR methods: robust regression’s partial estimator was suggested 
in place of robust PLS. PRM generated for only univariate dependent variable from SIMPLS algorithm. 

PRM has provided that giving low weights for both leverage points and vertical outliers using properly 

selected weighing scheme [10]. Since the name implies, PRM is a partial type of robust M-regression. 
Weights ranging from zero to one are computed in an iterative system for diminishing outliers’ effects in 

both x and y space. PRM is significantly effective in terms of calculation cost and statistical characteristics 

[4]. González et al. [5] dealt with PLS with one dependent variable (PLS1) and indicated that in case of 

appropriately sample covariance matrix robustification, also PLS1 algorithm can becomes robust. Hence, 
additional robustification of the linear regression stages of PLS1 is unneeded [5]. 

 

Here, we are interested on PLS1 and by integrating robust covariance estimators into the classical PLS1 
algorithm using the similar approaches as in previous studies of González et al. [5] and Gil and Romera 

[8]. For our robust approach, the covariance matrix is robustly estimated by using the Minimum Vector 

Variance (MVV) estimators as first robust estimators of mean and covariance for an adaptive reweighted 
estimator of covariance. 

 

2. PLS1 ALGORITHM 

 

 z y,X   is assumed to be vector of a p+1 dimension with sample size of n that it is separated as a group 

of p dimensional explanatory variables, x and one dependent variable y. 

2

y y,X

z

y,X X

s s
S

s S

 
   
 

, the sample 

covariance matrix of z, here y,Xs  denotes the p 1  dimensional vector of covariances. Estimation of linear 

regression model ˆŷ x   and the linearly explanation of the dependent variable could be done by using a 

set of a components  1 kt , , t  (k<<p). These components are linear functions of explanatory variables. 

Therefore, linear models can be obtained as Equations (1) and (2). Here, X denotes the n p  dimensional 

matrix of explanatory variables and 
ix  shows its ith row [5] 

 

i i ix Pt                                                                                                                                                                                     (1) 

 

i i iy q t   .                                                                                                                                                                 (2) 
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P shows the p k  dimensional loadings matrix of the vector  i i1 ikt t , , t


 ; q denotes vector of the y-

loadings with k-dimension. Error vectors 
i  and 

i  show normal distributions with zero means and they 

are not correlated.  1 kT t , , t   component matrix can not be directly observed and could be estimated 

by using the maximum likelihood estimation as denoted in Equation (3) [5] 
 

kT XW  .                                                                                                                                                                             (3) 

 

 k 1 2 kW w , w , , w  is the p k  matrix of loadings and 
iw , 1 i k   vectors are the solutions of 

Equation (4) considering the constraint given in Equation (5) with 1 y,Xw s . As a result it is observed that 

components  1 kt , , t  are orthogonal. iw  vectors are obtained as the eigenvectors related to the greatest 

eigenvalues of the matrix demonstrated by Equation (6) [5] 
 

 2

i
w

w arg max cov Xw, y                                                                                                                                         (4) 

 

i x jw S w 0   and w w 1   for 1 j i                                                                                                                      (5) 

 

  X y,X y,XI P i s s .                                                                                                                                                                 (6) 

 

The space spanned by 
x iS W  is showed by the projection matrix: 

         
1

X X i X i X i X iP i S W S W S W S W


  
  

. These results are showed that iw  vectors could be 

calculated iteratively as in following 

 

1 y,Xw s                                                                                                                                                                                 (7) 

 

 
1

i 1 y,X X i i X i i y,Xw s S W W S W W s , 1 i k



     .                                                                                  (8) 

 

Since Equation  (7) and Equation (8) are obtained, the calculation of PLS components 
it  is unneeded. 

i 1w 
 

merely is based on the value of the i former vectors 1 2 iw ,w , ,w , on XS  and y,Xs  for each stage 

of algorithm. Furthermore, as 1w  is merely based on y,Xs , the computation of W is exactly stabilized by 

y,Xs  and XS  values. At last, since the regression coefficients in Equation (2) are not correlated, because 

of the uncorrelation of the t components, 
PLS

k̂  PLSR coefficients are computed as shown by Equation (9) 

[5] 

 

 
1PLS

k k k X k k y,X
ˆ W W S W W s


   .                                                                                                                               (9) 

 

The practice of algorithm could be considered as a two stage process: (1) 
iw  weights, identifying the new 

orthogonal 
it  vectors, are calculated using Equations (7) and (8) by the usage of the covariance matrix; (2) 
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the 
iq  ,the y-loadings, are calculated by regressing y on single component 

it  [5]. Equation (9) clears that 

these two stages are based merely on the covariance matrix of the samples and replacing these covariance 

matrices with their robust counterparts will also cause the process becomes robust. Hence, following this 
idea we have suggested a robust PLSR technique. In the next section, robust covariance estimation method 

that we used for our approach is given. 

 

3.  THE NEW INTRODUCED ROBUST PLSR: PLS-ARWMVV 

 

MVV estimators are used for robustly estimating the covariance used in ordinary PLSR. Our suggested 

robust PLSR technique will be introduced in this section. The covariance matrix of zS  in PLS1 algorithm 

will be robustly estimated by using an adaptive reweighted estimator that uses MVV estimators in the initial 

stage as robust beginning estimators of   and  . Therefore, here equations are applied on 

  p

i i iz y ,X ,i 1, , n


   , in where p p 1   . First of all, MVV estimator and functioning of the 

MVV algorithm is expressed. 

 

3.1. Minimum Vector Variance (MVV) Estimator  

 

One of the latest contributions in the study of robust estimators of   and   is the MVV proposed by 

Herwindiati [11]. In this study, it was proven that MVV estimators show three main features of well robust 

estimators: high breakdown point (BP=0.5), affine equivariance and efficiency in terms of computation. 

Although this estimator appears similar with the popular MCD for its robustness, it has the advantage over 
MCD in terms of computational efficiency [12, 13]. In addition, MVV estimators are more effective in 

detecting outliers and in controlling Type I error compared with MCD [14]. 

 

The fundamental technique used for estimation of MVV is the Mahalanobis Squared Distances (MSD) that 
is given as in Equation (10) [14]: 

 

   2 1

i i id z z , i 1,2, ,n                                                                                                            (10) 

 

where n represents number of observations. Since  i i iz y ,X ,i 1, ,n
    consider a data set 

 n 1 nZ z , , z  of p p 1    random variable and be H X . The ideal value of the number of 

observations concerned in the calculation of MVV estimators ( MVV̂ , MVV̂ ) is 
n p 1

h
2

  
  
 

 that 

creates a covariance matrix MVV̂  possessing minimal  2

MVV
ˆTr   from whole probable groups of h data. 

However, it is no guarantee that the iteration process for sets of h data from only one initial h-set can 

generate the final value of  MVV
ˆTr 2

 as an extensive minimum of the MVV objective function. The 

approximation of MVV estimators could be held by lots of beginning selections of h-subsets. We calculated 
MVV estimators by MVV algorithm suggested in Yahaya et al. [15] which applies concentration step (C-

step) for each initial subset, and then selects a particular number of subsets which generates the lowest 

vector variance. From the algorithm, the location and covariance estimators are given in Equation (11) [14] 
 

h

MVV i

i 1

1
ˆ z

h 

        and         
MVV MVV

h

MVV i i

i 1

1ˆ z z
h 


    .                                                                (11) 
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3.2. The MVV Algorithm 

 
To compute the MVV estimators, Yahaya et al. [15] proposed the new MVV algorithm by combination of 

C-step used in Herwindiati et al. [13]. The C-step is identical to the one in Fast MCD algorithm (used for 

calculating MCD estimator), with the only difference is the calculation of covariance determinant is 

changed with the vector variance [15]. 
 

 

Stage 1: Generating Beginning Subsets.  
This stage has to be repeated 500 times 

1.  Pull a random subset  0H  with number of sample points, h p 1  . Calculate the mean vector 

 
0H 0z average H  and covariance matrix  

0H 0S cov H . 

2. Compute the MSDs      
0 0 0

2 1

0 i H H i Hd i z z S z z for i 1, , n
    .  

3. Order these MSDs in ascending order,         2 2 2

0 0 0d 1 d 2 d n      . This sorting 

determines a permutation   on the index set. 

4. Draw a new subset     1H 1 , , h    here 
n p 1

h
2

  
  
 

, then calculate 
1Hz , 

1HS ,  
1

2

HTr S  

and compute MSD, where      
1 1 1

2 1

1 i H H i Hd i z z S z z
    for i 1, ,n .  

5. Repeat step 3 and 4 for 
2H . 

6. Put in order the 500 values of  
2

2

HTr S  in increasing rank, later choose 10 subsets of 
2H  having the 

lowest  
2

2

HTr S . These subsets are handled as beginning subsets and their mean vectors, 
2Hz  and 

covariance matrices, 
2HS  are used in Stage 2. 

 

Stage 2: Concentration Steps (C-Step) 
This procedure will be duplicated until the convergence for each of the 10 subsets is executed. The 

convergence is obtained when    2 2

k 1 kTr S Tr S  , here k is the number of iterations.  

1. Calculate the MSDs by using 
2Hz  and 

2HS :      
2 2 2

2 1

2 i H H i Hd i z z S z z
    for i 1, ,n   

2. Repeat step 3 and 4 in Stage 1 till    2 2

k 1 kTr S Tr S  . If    2 2

k 1 kTr S Tr S   the procedure is 

proceeded. This procedure will be repeated until convergence is executed.  

3. When convergence is executed for all the 10 subsets, select the subset  *H  that creates the lowest 

 
k

2

HTr S . From 
*H , compute * MVVH

ˆz    and * MVVH

ˆS    as the location and covariance estimators 

for MVV respectively.  

 

3.3. An Adaptive Reweighted Minimum Vector Variance Estimator of Covariance 

 

In linear regression, lots of estimators were suggested for the purpose of providing high efficiency and 
robustness. To sum up, in case of both robustness and efficiency are important, best selection appears to be 

a two-step process. Different from Rousseeuw and Van Zomeren [16], Gervini [17] suggested a reweighted 

one-step estimator using adaptive threshold values. This adaptive reweighting technique can pursue the 

outlier resistance of the beginning estimator in bias and breakdown and as well obtain 100 % efficiency for 
normal distribution. Firstly, in Gervini and Yohai [18] this type of adaptive reweighting has been introduced 

for linear regression. Gervini [17], has widened this opinion and he suggested an adaptive technique for 

multivariate location and covariance estimation. 
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For 
1 nz , ,z  observations in 

p  with p p 1    and beginning robust estimators of location and 

covariance  0n 0n
ˆˆ ,  , the Mahalanobis distances are obtained as in Equation (12) [17] 

 

      
1/2

1

i i 0n 0n i 0n 0n i 0n
ˆ ˆˆ ˆ ˆd : d z , , z z       .                                                                                      (12) 

 

As it is expected an outlier has a greater Mahalanobis distance than a ‘good’ sample. In case of normality 

assumption 
2

id  almost has the distribution of 
2

p  and the observations with 
2 2

i p ,0.975d    can be suspected 

as an outlier. Rousseeuw and Van Zomeren [16] ignore these outliers and calculate the new estimators 

 1n 1n
ˆˆ ,   using remaining observations [17].  

 
Herwindiati [11] proposed MVV as an alternative robust estimator of mean and covariance. Herwindiati et 

al. [13] showed that MVV was used as an objective function in Fast MCD algorithm [19] for substituting 

the MCD criteria. The results indicated that MVV has better performance in terms of efficiency than Fast 

MCD and has the similar efficiency with Fast MCD for labelling outliers. Since the MVV method, 
calculated by algorithm proposed by Yahaya et al. [15], is a good option to MCD and MVV estimators can 

be operated as the beginning robust estimators of   and   in the ‘adaptive reweighted’ technique. By 

following this idea, in this study, putting the MVV estimators  MVV MVV
ˆˆ ,   as beginning robust 

estimators  0n 0n
ˆˆ ,   in ‘adaptive reweighted’ technique, the robust  1n 1n

ˆˆ ,   estimators are obtained 

and they named as ‘Adaptive Reweighted Minimum Vector Variance /ARWMVV’ estimators 

 ARWMVV ARWMVV
ˆˆ ,   [15, 17]. 

 
Gervini [17] mentioned that this reweighting stage is for efficiency improvement of the beginning estimator 

while preserving majority of its robustness. Nevertheless 
2

975.0,p  is a subjective threshold value. Although 

they show the normal distribution, a significant amount of observations is had to be omitted from the 
analysis in case of large data sets. An alternative method for avoiding from this issue is raising the threshold 

value to other arbitrary fix value, but in this situation the bias of the reweighted estimator is influenced. 

Consequently, as a better option ‘an adaptive threshold value’ is used which shows an increment with n in 
case of the data is ‘clean’, however, stays bounded in case of outliers’ existence. Gervini [17] has suggested 

a technique of building up such adaptive threshold values. Let Equation (13) shows squared Mahalanobis 

distances’ empirical distribution [17] 

 

    
n

2

n i MVV MVV

i 1

1 ˆˆG u I d z , , u
n 

    .                                                                                                         (13) 

 

 pG u  is the distribution function of 
2

p . In case of the data set has a normal distribution the expectation 

is nG  converging to pG  . So that a method of detecting outliers is comparing the tails of 
nG  with the 

tails of pG  . If 
2

p ,1     for a particular low , for example =0.025, Equation (14) is defined [17] 

 

    n p n
u

sup G u G u 




   .                                                                                                                                (14) 
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Here,    shows the positive section. This n  could be considered as a measure of outliers in the data 

set. As a negative difference does not show outliers’ existence, merely positive differences in Equation (14) 

are considered. In case of  
2

id  shows the ith sort statistic of the squared Mahalanobis distances and 

  2

0 i
i max i : d   , later Equation (14) becomes as in Equation (15) [17] 

 

  
0

2

n p i
i i

i 1
max G d

n






 
   

 
 .                                                                                                                                 (15) 

 

The observations having the largest nn    distances are taken under consideration as outliers and omitted 

in the reweighting stage. a    shows the largest integer which is less than or equal to a. The cut-off value 

is given as in Equation (16) in which     1

n nG u min s : G s u   . Here  n

2

n i
c d  with 

n ni n n      and that n 0i i  as a result of the description of n . Therefore, nc   . For defining the 

reweighted estimator, weights of the styles in Equation (17) are used [17] 

 

 1

n n nc G 1                                                                                                                                              (16) 

 

 2

i MVV MVV

in

n

ˆˆd z , ,
w w

c

  
 
  
 

 .                                                                                                                     (17) 

 

The weight function that provides (W)    w : 0, 0,1   is non-increasing,  w 0 1 ,  w u 0  for 

 u 0,1  and   0uw   for   ,1u . The easiest selection between those functions fulfilling (W) is 

the hard-rejection function    w u I u 1   that is the most popular used one in application. When the 

weights in Equation (17) are calculated, the one-step reweighted estimators  ARWMVV ARWMVV
ˆˆ ,   are 

obtained as in Equation (18). Under convenient circumstances, the threshold values in Equation (16) will 
be in tendency to infinity in case of multivariate normal distribution and later Equation (18) becomes 

asymptotically equal to general sample mean and covariance, and therefore reach exact asymptotic 

efficiency [17] 
 

n n

ARWMVV in i in

i 1 i 1

ˆ w z / w
 

            
n n

ARWMVV in i ARWMVV i ARWMVV in

i 1 i 1

ˆ ˆ ˆw z z / w
 


     .                   (18) 

 

As a result, ARWMVV̂  robust covariance estimator in Equation (18) is used for computing the robust 

covariance estimator: 

2

y y,X

z

y,X X

ˆ ˆs s
Ŝ

ˆŝ S

 
  
 
 

. Then, by using zŜ  in the alternative definition of PLS1 

algorithm given between Equations (7)-(9), robust “PLS-ARWMV” is suggested by us. Our new robust 

PLS-ARWMVV algorithm can be summarized as shown in Equation (19). y,Xŝ  and XŜ are calculated by 
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decomposing the robust covariance estimation of  i i iz y ,X ,i 1, ,n
    that is computed by 

ARWMVV method.  

 

 

 

1 y,X

1

i 1 y,X X i i X i i y,X

1
PLS ARWMVV

k k k X k k y,X

ˆw s

ˆ ˆˆ ˆw s S W W S W W s , 1 i k

ˆ ˆ ˆW W S W W s










    

  

                                                                                                      (19) 

 

4. SIMULATION STUDY 

 
Here, the comparison of robust methods; PLS-SD [8], RSIMPLS [3], PRM [10], PLS-KurSD [5] and the 

ordinary PLSR with our new method PLS-ARWMVV will be done about efficiency, fitting to data and 

prediction capability by doing simulation on clean and contaminated data sets. In regards to the first models 
denoted by Equations (1) and (2), and using a simulation design close as the one given in [5] the data sets 

are created as shown in Equation (20) 

 

     2 2 t 2,p p p p 2,1T N 0 X TI N 0 ,0.1 I y TA N 0,1     , .                                                           (20) 

 

pI  shows p p  dimensional unit matrix,  k,p i, j
I 0  and  k,p i, j

I 1  for i j .  20 0, 0


  is a vector 

of zeros, 
n 2T 

 is the component matrix,  2,1A 1,1


  denotes a vector of ones. k=2 and t

4 0

0 2

 
   

 
. 

The comparison is made between our PLS-ARWMVV technique and four well-known robust PLSR 

techniques and ordinary PLSR method for five kinds of outliers. 
 

1. Bad leverage points are sample points that are with large distance from the regression hyperplane though 

they projects on the regression hyperplane falling outside the vast bulk of the projected sample points (clean 

ones):    2 2 t 2,p p p pT N 10 , X T I N 0 ,0.1 I      . 

 

2. Vertical outliers are sample points far away from the hyperplane, however, they are projected within the 

vast bulk of the projected sample points:  2,1y TA N 10.0.1   . 

 

3. Good leverage points are in the neighborhood of the hyperplane, however, they are distant from the group 

of the vast majority of the samples:     2 2 t 2,p p 2 p 2 pT N 10 , X T I N 0 ,10 ,0.1 I       . 

 
4.Concentrated Outliers are groups of bad leverage points:  

   2 2 t 2,p p p pT N 10 , X T I N 10 ,0.001 I      . 

 

5. Orthogonal outliers lie distant from the t-space, however, they become good sample points after 
projecting in t-space. Therefore, it does not severely affect the calculation of the regression coefficients, 

however, they may affect the loadings:   2,p p 2 p 2 pX TI N 0 ,10 ,0.1 I    

 

For each of the cases, m=1000 data sets were created. The efficiency of the techniques is determined using 

Equation (21). The real coefficient vector is computed as p,1 p,2 2,1I A  . 
 l
k̂  shows parameter estimation 
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for k components in the lth simulation. MSE denotes to what extent the parameter is truly estimated. MSE 

value close to zero is preferred [9] 
 

   
2m

l

k k

l 1

1ˆ ˆMSE
m 

     .                                                                                                                                  (21) 

 

The methods’ performances in terms of fitting to the regular observations (
rG ) is considered. This measure 

is given as in Equation (22). i,kr  shows residual of the ith sample point for model with k components. Aim 

is obtaining a GOF value near to 1 [9] 
 

 

 
r

r

i
i G

k

i
i G

var r ,k
GOF 1

var y





   .                                                                                                                                                  (22) 

 

Root Mean Squared Error (RMSE) can be used for measuring the predictive capability of the techniques. 

Firstly, a test set Gt of clean observations (size of nt equals n/2) is created and later Equation (23) is 

calculated. i,kŷ  denotes the prediction for y-value of sample point i from the test set in case of the 

estimations of regression coefficient are obtained from training set (in which sample size n and number of 

components is k) [9] 
 

 
tn

2

k i i,k

i 1t

1
ˆRMSE y y

n 

    .                                                                                                                              (23) 

 

m=1000 repetitions done, the mean angle among the estimated parameter 
 y ,X ,k
ˆ

 
  and the true parameter 

 are also calculated [3, 5]. 

 
Table 1. Clean data 

n  p 
PLSR RSIMPLS PRM PLS-SD PLS-KurSD 

PLS-

ARWMVV 

100 

MSE 
6 0.0167 0.0221 0.0183 0.0203 0.0220 0.0805 

12 0.0251 0.0365 0.0263 0.0289 0.0504 0.1136 

GOF 
6 0.8301 0.8292 0.8293 0.8293 0.8291 0.8168 

12 0.8321 0.8315 0.8310 0.8315 0.8295 0.8225 

RMSE 
6 1.0993 1.1020 1.1004 1.1015 1.1018 1.1393 

12 1.1037 1.1083 1.1053 1.1059 1.1134 1.1344 

Mean(angle) 
6 0.0673 0.0801 0.0690 0.0758 0.0769 0.1480 

12 0.0944 0.1133 0.0948 0.1021 0.1256 0.1841 

200 

MSE 
6 0.0100 0.0127 0.0111 0.0115 0.0112 0.0332 

12 0.0140 0.0174 0.0147 0.0147 0.0154 0.0381 

GOF 
6 0.8295 0.8291 0.8291 0.8292 0.8292 0.8244 

12 0.8317 0.8314 0.8311 0.8315 0.8314 0.8283 

RMSE 
6 1.0962 1.0978 1.0968 1.0971 1.0969 1.1123 

12 1.0999 1.1015 1.1008 1.1004 1.1007 1.1108 

Mean(angle) 
6 0.0495 0.0583 0.0509 0.0538 0.0529 0.0938 

12 0.0673 0.0778 0.0674 0.0699 0.0716 0.1139 



881 Esra POLAT, Hazlina ALI/ GU J Sci, 33(4): 873-890 (2020) 

 

 
The results for clean data is given in Table 1. Table 1 shows that in case of no contamination, when the 
sample size increases all of methods’ performances getting better in terms of efficiency, however, the 

increase in n value has no significant impact on fitting to data and prediction capability performances of 

methods. Moreover, it could be mentioned that proposed PLS-ARWMVV method’s both of efficiency and 
prediction performance is affected positively from sample size increment. When p increases, GOFs and 

RMSE values are not significantly affected, while, MSE and mean (angle) values are affected badly, 

especially for smaller sample size. If the data set is clean classical method come to forefront regardless of 

the n, ε and p, which is the expected case.  

 
The simulation settings in Table 2, by changing first 10 % and 20 % of the observations with below 
mentioned kinds of outliers, are used.  
 

Table 2. The simulation settings  

Variables Values 

Number of sample sizes (n) 100 and 200 

Number of independent variables (p) 6 and 12 

Proportion of contamination (ε) 0.1 and 0.2  

Kinds of outliers bad leverage points, vertical outliers, good 

leverage points, concentrated outliers, orthogonal 
outliers 

 

The results for each types of outliers are given in separate tables across Tables 3-7. Hence, the performances 

of the existing robust methods and new proposed one is observed for each outliers’ types.  
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Table 3. Bad leverage points 

n  p ε 
PLSR RSIMPLS PRM PLS-SD PLS-KurSD 

PLS-

ARWMVV 

100 

MSE 

6 0.1 1.7414 0.0238 0.0879 0.1290 0.0243 0.0669 

0.2 1.9109 0.0258 1.7915 0.5601 0.0287 0.0578 

12 0.1 1.7533 0.0380 0.1073 0.2709 0.0546 0.0952 

0.2 1.9805 0.0398 1.8153 1.1518 0.0849 0.0772 

GOF 

6 0.1 0.2651 0.8285 0.8136 0.8029 0.8284 0.8197 

0.2 0.1879 0.8296 0.2413 0.6919 0.8285 0.8236 

12 0.1 0.2663 0.8339 0.8143 0.7755 0.8313 0.8271 

0.2 0.1911 0.8322 0.2446 0.5647 0.8239 0.8274 

RMSE 

6 0.1 2.2825 1.1008 1.1497 1.1836 1.1010 1.1279 

0.2 2.4006 1.1052 2.3216 1.4930 1.1076 1.1254 

12 0.1 2.2788 1.0991 1.1554 1.2727 1.1048 1.1180 

0.2 2.3958 1.0991 2.3134 1.7810 1.1188 1.1137 

Mean(angle) 

6 0.1 1.1403 0.0839 0.1076 0.1291 0.0824 0.1334 

0.2 1.3049 0.0852 1.1784 0.3422 0.0883 0.1251 

12 0.1 1.1700 0.1159 0.1345 0.2119 0.1354 0.1755 

0.2 1.3511 0.1212 1.2208 0.6931 0.1519 0.1572 

200 

MSE 

6 0.1 1.7093 0.0130 0.0697 0.1150 0.0121 0.0270 

0.2 1.8979 0.0135 1.7712 0.5041 0.0133 0.0238 

12 0.1 1.7193 0.0174 0.0708 0.2370 0.0161 0.0337 

0.2 1.8998 0.0191 1.7802 0.9312 0.0479 0.0308 

GOF 

6 0.1 0.2613 0.8290 0.8159 0.8029 0.8291 0.8257 

0.2 0.1836 0.8296 0.2391 0.6918 0.8298 0.8274 

12 0.1 0.2625 0.8319 0.8186 0.7685 0.8318 0.8293 

0.2 0.1850 0.8320 0.2380 0.5579 0.8239 0.8302 

RMSE 

6 0.1 2.2833 1.0994 1.1422 1.1818 1.0987 1.1088 

0.2 2.3959 1.0981 2.3145 1.4789 1.0977 1.1053 

12 0.1 2.2800 1.0946 1.1367 1.2838 1.0945 1.1030 

0.2 2.3930 1.0957 2.3148 1.7692 1.1153 1.1012 

Mean(angle) 

6 0.1 1.1289 0.0587 0.0837 0.1068 0.0562 0.0851 

0.2 1.3084 0.0585 1.1826 0.3044 0.0593 0.0811 

12 0.1 1.1465 0.0779 0.0941 0.1676 0.0740 0.1079 

0.2 1.3178 0.0813 1.1995 0.5710 0.0968 0.1048 

 

The results when the data set is contaminated by bad leverage points is presented in Table 3. In this case, 
as it is expected for all of conditions robust methods (included the new proposed robust PLS-ARWMVV) 

outperform the traditional PLSR particularly in terms of predictive capability and efficiency. If the 

proportion of bad leverage points is 0.1, when p increases, PLS-ARWMVV outperforms classical PLSR, 

robust PLS-SD and PRM in terms of fitting, efficiency and prediction abilities. Moreover, if n increases, 
for both of dimensions PLS-ARWMVV outperforms classical PLSR, robust PLS-SD and PRM in terms of 

efficiency and prediction abilities that in higher dimension performance of PLS-ARWMVV is getting better 

against these two robust methods. If the proportion of bad leverage points, getting higher as 0.2, regardless 
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of dimension and sample size, the new proposed robust PLS-ARWMVV, PLS-KurSD and RSIMPLS 

techniques become prominent techniques with better fitting, efficiency and prediction properties, 
additionally, they have lower mean angle values compared with robust PLS-SD and PRM. In case of high 

proportion of bad leverage points existence, the new robust PLS-ARWMVV come to forefront as a second 

one following RSIMPLS with its better efficiency and prediction performances for high dimension of p=12 

regardless of sample size. Overall, in case of bad leverage points existence RSIMPLS, PLS-KurSD and 
PLS-ARWMVV come to forefronts methods.  

 

Table 4. Vertical outliers 

n  p ε 
PLSR RSIMPLS PRM PLS-SD PLS-KurSD 

PLS-

ARWMVV 

100 

MSE 

6 0.1 0.1107 0.0228 0.0232 0.0266 0.0241 0.0630 

0.2 0.1987 0.0221 0.0340 0.0397 0.0282 0.0567 

12 0.1 0.1655 0.0321 0.0321 0.0399 0.0482 0.0740 

0.2 0.3826 0.0299 0.0446 0.1237 0.1908 0.2543 

GOF 

6 0.1 0.8040 0.8287 0.8283 0.8288 0.8289 0.8216 

0.2 0.7859 0.8293 0.8268 0.8262 0.8295 0.8242 

12 0.1 0.8062 0.8322 0.8315 0.8309 0.8306 0.8279 

0.2 0.7821 0.8309 0.8288 0.8153 0.8143 0.8145 

RMSE 

6 0.1 1.1768 1.1042 1.1066 1.1058 1.1047 1.1292 

0.2 1.2287 1.1031 1.1142 1.1189 1.1054 1.1214 

12 0.1 1.1796 1.1028 1.1042 1.1090 1.1078 1.1178 

0.2 1.2425 1.1046 1.1138 1.1592 1.1557 1.1532 

Mean(angle) 

6 0.1 0.1727 0.0764 0.0789 0.0843 0.0824 0.1329 

0.2 0.2257 0.0731 0.0947 0.1054 0.0893 0.1253 

12 0.1 0.2332 0.1058 0.1049 0.1198 0.1314 0.1612 

0.2 0.3120 0.0982 0.1240 0.2006 0.1923 0.1968 

200 

MSE 

6 0.1 0.0522 0.0106 0.0124 0.0123 0.0112 0.0250 

0.2 0.0835 0.0117 0.0182 0.0201 0.0134 0.0257 

12 0.1 0.0678 0.0153 0.0174 0.0200 0.0170 0.0324 

0.2 0.1149 0.0143 0.0234 0.0510 0.0369 0.0502 

GOF 

6 0.1 0.8171 0.8294 0.8294 0.8296 0.8299 0.8266 

0.2 0.8096 0.8311 0.8300 0.8298 0.8317 0.8294 

12 0.1 0.8172 0.8291 0.8293 0.8291 0.8299 0.8275 

0.2 0.8072 0.8298 0.8291 0.8230 0.8271 0.8268 

RMSE 

6 0.1 1.1359 1.0982 1.0987 1.0985 1.0974 1.1077 

0.2 1.1628 1.0992 1.1041 1.1055 1.0989 1.1066 

12 0.1 1.1362 1.1005 1.1010 1.1022 1.0996 1.1071 

0.2 1.1653 1.0971 1.1025 1.1232 1.1095 1.1092 

Mean(angle) 

6 0.1 0.1196 0.0482 0.0541 0.0560 0.0532 0.0831 

0.2 0.1520 0.0495 0.0671 0.0723 0.0584 0.0808 

12 0.1 0.1559 0.0672 0.0736 0.0823 0.0757 0.1069 

0.2 0.2010 0.0636 0.0870 0.1319 0.1021 0.1156 

 
The results when the data set is contaminated by vertical outliers is presented in Table 4. In this case, as it 

is expected for all situations robust methods (included the new proposed robust PLS-ARWMVV) are 
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superior to the ordinary PLSR particularly in terms of predictive capability and efficiency. In case of vertical 

outliers’ presence, generally robust RSIMPLS is the leading one especially in terms of efficiency and 
prediction. Especially, in case of n=100, p=12 and ε=0.2, the RSIMPLS method’s efficiency and prediction 

performance compared to other robust methods is attractive. Also it is clear that PRM shows good 

performance in case of vertical outliers that regardless of sample size in higher dimension, existence of 

higher percentage of outliers in the data, it is the second robust method especially in terms of efficiency 
and prediction. However, it must be mentioned that, when sample size increases robust methods 

performances get closer to RSIMPLS. 

 
Table 5. Good leverage points 

n  p ε 
PLSR RSIMPLS PRM PLS-SD PLS-KurSD 

PLS-

ARWMVV 

100 

MSE 

6 0.1 0.8877 0.0243 0.8529 0.0274 0.0242 0.0617 

0.2 0.8767 0.0273 0.9132 0.0652 0.0277 0.0560 

12 0.1 0.5447 0.0383 0.4965 0.0352 0.0574 0.0797 

0.2 0.5975 0.0401 0.5757 0.0969 0.0589 0.0685 

GOF 

6 0.1 0.7128 0.8286 0.7718 0.8284 0.8284 0.8204 

0.2 0.6886 0.8297 0.7047 0.8270 0.8287 0.8239 

12 0.1 0.7484 0.8339 0.7818 0.8336 0.8312 0.8284 

0.2 0.7198 0.8322 0.7409 0.8300 0.8293 0.8282 

RMSE 

6 0.1 1.4317 1.1008 1.2768 1.1008 1.1009 1.1258 

0.2 1.4885 1.1052 1.4516 1.1139 1.1071 1.1236 

12 0.1 1.3345 1.0989 1.2478 1.0980 1.1059 1.1144 

0.2 1.4007 1.0991 1.3469 1.1065 1.1062 1.1102 

Mean(angle) 

6 0.1 0.7091 0.0850 0.6501 0.0860 0.0823 0.1309 

0.2 0.7135 0.0877 0.7177 0.1462 0.0882 0.1214 

12 0.1 0.5395 0.1162 0.5079 0.1128 0.1365 0.1645 

0.2 0.5522 0.1219 0.5586 0.2005 0.1412 0.1531 

200 

 

 

MSE 

6 0.1 0.8646 0.0132 0.8424 0.0166 0.0121 0.0261 

0.2 0.8616 0.0143 0.8977 0.0433 0.0133 0.0234 

12 0.1 0.5345 0.0176 0.4767 0.0195 0.0161 0.0306 

0.2 0.5726 0.0198 0.5525 0.0682 0.0188 0.0297 

GOF 

6 0.1 0.7144 0.8291 0.7785 0.8289 0.8291 0.8260 

0.2 0.6879 0.8298 0.7040 0.8275 0.8298 0.8275 

12 0.1 0.7462 0.8319 0.7818 0.8318 0.8318 0.8296 

0.2 0.7220 0.8322 0.7433 0.8304 0.8319 0.8303 

RMSE 

6 0.1 1.4218 1.0993 1.2525 1.0992 1.0987 1.1083 

0.2 1.4831 1.0982 1.4462 1.1053 1.0977 1.1052 

12 0.1 1.3408 1.0947 1.2442 1.0946 1.0945 1.1017 

0.2 1.3963 1.0957 1.3432 1.1011 1.0955 1.1009 

Mean(angle) 

6 0.1 0.7028 0.0599 0.6438 0.0630 0.0562 0.0840 

0.2 0.7111 0.0619 0.7147 0.1208 0.0591 0.0810 

12 0.1 0.5371 0.0784 0.5014 0.0801 0.0740 0.1056 

0.2 0.5400 0.0838 0.5491 0.1726 0.0805 0.1036 
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The results when the data set is contaminated by good leverage points is presented in Table 5. If the 

proportion of good leverage points is 0.1 or 0.2, new PLS-ARWMVV and robust RSIMPLS, PLS-SD, PLS-
KurSD techniques perform better than classical one and robust PRM in terms of goodness of fit, efficiency 

and prediction capability for all cases. In Table 5, for each condition the best three methods in terms of 

efficiency and prediction performances are showed. In case of good leverage points presence, RSIMPLS 

and PLS-KurSD methods seem generally leading ones. It is obvious that sometimes PLS-ARWMVV 
performs even better than PLS-SD. Moreover, when n increases especially prediction performances get 

closer for these four methods.  

 
Table 6. Concentrated outliers 

n  p ε 
PLSR RSIMPLS PRM PLS-SD PLS-KurSD 

PLS-

ARWMVV 

100 

MSE 

6 0.1 1.8488 0.0240 1.6460 0.0446 0.0243 0.0626 

0.2 1.7327 0.0272 *1.8448 0.3145 0.0272 0.0514 

12 0.1 1.1890 0.0369 1.1751 0.0519 0.0481 0.0789 

0.2 1.1432 0.0400 *1.2337 0.9219 0.0532 0.0747 

GOF 

6 0.1 0.5653 0.8286 0.6999 0.8262 0.8284 0.8205 

0.2 0.5481 0.8297 0.5428 0.8090 0.8290 0.8240 

12 0.1 0.6824 0.8339 0.7206 0.8317 0.8316 0.8286 

0.2 0.6573 0.8322 0.6660 0.8134 0.8304 0.8270 

RMSE 

6 0.1 1.7647 1.1008 1.4527 1.1083 1.1010 1.1245 

0.2 1.7943 1.1053 *1.8072 1.1723 1.1062 1.1235 

12 0.1 1.5017 1.0988 1.4121 1.1029 1.1045 1.1133 

0.2 1.5540 1.0991 1.5349 1.1697 1.1035 1.1145 

Mean(angle) 

6 0.1 1.0411 0.0845 0.8267 0.0997 0.0823 0.1296 

0.2 1.0450 0.0878 *1.0501 0.3215 0.0877 0.1210 

12 0.1 0.8216 0.1151 0.7749 0.1334 0.1292 0.1620 

0.2 0.8309 0.1217 *0.8377 0.6048 0.1304 0.1577 

200 

MSE 

6 0.1 1.7954 0.0132 1.6880 0.0300 0.0121 0.0248 

0.2 1.6823 0.0142 *1.7812 0.1999 0.0132 0.0228 

12 0.1 1.1611 0.0176 1.1351 0.0346 0.0161 0.0303 

0.2 1.1076 0.0198 *1.2030 0.7573 0.0188 0.0315 

GOF 

6 0.1 0.5600 0.8291 0.7101 0.8267 0.8291 0.8260 

0.2 0.5391 0.8298 *0.5332 0.8108 0.8298 0.8275 

12 0.1 0.6773 0.8319 0.7159 0.8301 0.8318 0.8296 

0.2 0.6571 0.8322 0.6657 0.8149 0.8319 0.8301 

RMSE 

6 0.1 1.7649 1.0993 1.4200 1.1067 1.0987 1.1076 

0.2 1.8029 1.0982 *1.8166 1.1582 1.0977 1.1050 

12 0.1 1.5132 1.0946 1.4212 1.1006 1.0945 1.1017 

0.2 1.5520 1.0957 1.5341 1.1531 1.0955 1.1016 

Mean(angle) 

6 0.1 1.0367 0.0599 0.8332 0.0761 0.0562 0.0829 

0.2 1.0437 0.0619 1.0485 0.2728 0.0591 0.0806 

12 0.1 0.8199 0.0783 0.7718 0.1030 0.0740 0.1048 

0.2 0.8219 0.0838 0.8305 0.5578 0.0804 0.1045 
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It is very hard to handle with the concentrated outliers. The results when the data set is contaminated by 

concentrated outliers is presented in Table 6. If the proportion of concentrated outliers is 0.1, new PLS-
ARWMVV and robust RSIMPLS, PLS-SD, PLS-KurSD techniques perform better than classical one and 

robust PRM in terms of goodness of fit, efficiency and prediction capability for both of sample sizes and 

dimensions. In Table 6, for each condition the best three methods in terms of efficiency and prediction 

performances are especially showed. If the proportion of concentrated outliers is 0.2, PLS-ARWMVV is 
more efficient, fits data better and has a better prediction capability than both PRM and PLS-SD, 

additionally, PLS-ARWMVV has a smaller mean angle values than these two techniques. Overall, in the 

case of concentrated outliers’ presence, RSIMPLS and PLS-KurSD methods seem generally leading ones. 
Moreover, when the proportion of concentrated outliers increases as ε=0.2, PRM performs worse even than 

classic PLSR method.  

 

Table 7. Orthogonal outliers 

n  
p ε 

PLSR RSIMPLS PRM 
PLS- 

SD 
PLS-KurSD 

PLS-

ARWMVV 

100 

MSE 

6 0.1 0.2047 0.0297 0.1638 0.0226 0.0243 0.0616 

0.2 0.2228 0.0436 *0.2552 0.0242 0.0309 0.0586 

12 0.1 0.2269 0.0430 0.2052 0.0304 0.0529 0.0759 

0.2 0.2362 0.0689 *0.2701 0.0329 0.0505 0.0713 

GOF 

6 0.1 0.7808 0.8295 0.7930 0.8301 0.8298 0.8221 

0.2 0.7731 0.8273 *0.7652 0.8289 0.8283 0.8234 

12 0.1 0.7739 0.8304 0.7812 0.8309 0.8282 0.8253 

0.2 0.7730 0.8308 *0.7647 0.8320 0.8299 0.8285 

RMSE 

6 0.1 1.2453 1.1049 1.2110 1.1025 1.1038 1.1278 

0.2 1.2657 1.1151 *1.2883 1.1074 1.1094 1.1298 

12 0.1 1.2620 1.1020 1.2416 1.0972 1.1058 1.1161 

0.2 1.2605 1.1035 *1.2837 1.0933 1.1006 1.1077 

Mean(angle) 

6 0.1 0.2956 0.0925 0.2548 0.0799 0.0832 0.1306 

0.2 0.3108 0.1126 *0.3332 0.0813 0.0901 0.1257 

12 0.1 0.3150 0.1230 0.2930 0.1045 0.1332 0.1632 

0.2 0.3221 0.1534 *0.3461 0.1094 0.1352 0.1530 

200 

MSE 

6 0.1 0.1884 0.0147 0.1542 0.0115 0.0116 0.0280 

0.2 0.2108 0.0224 *0.2440 0.0122 0.0128 0.0259 

12 0.1 0.2177 0.0229 0.2007 0.0154 0.0168 0.0298 

0.2 0.2194 0.0361 *0.2540 0.0163 0.0183 0.0289 

GOF 

6 0.1 0.7817 0.8292 0.7922 0.8296 0.8295 0.8263 

0.2 0.7784 0.8305 *0.7701 0.8318 0.8318 0.8293 

12 0.1 0.7752 0.8300 0.7806 0.8305 0.8303 0.8281 

0.2 0.7752 0.8297 *0.7664 0.8314 0.8313 0.8295 

RMSE 

6 0.1 1.2408 1.0997 1.2115 1.0988 1.0990 1.1089 

0.2 1.2595 1.1071 *1.2841 1.1030 1.1031 1.1114 

12 0.1 1.2557 1.0989 1.2415 1.0963 1.0973 1.1032 

0.2 1.2610 1.1069 *1.2856 1.0991 1.1000 1.1055 

Mean(angle) 
6 0.1 0.2884 0.0615 0.2529 0.0533 0.0538 0.0860 

0.2 0.3087 0.0780 *0.3335 0.0555 0.0578 0.0807 
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12 0.1 0.3146 0.0869 0.2976 0.0713 0.0747 0.1032 

0.2 0.3158 0.1098 *0.3416 0.0745 0.0796 0.1025 

 

The results when the data set is contaminated by orthogonal outliers is presented in Table 7. If the proportion 
of orthogonal outliers is 0.1, RSIMPLS, PLS-SD and PLS-KurSD methods come to forefront especially in 

terms of efficiency and prediction ability. If the proportion of orthogonal outliers is 0.2, new proposed PLS-

ARWMVV and robust RSIMPLS, PLS-SD, PLS-KurSD techniques outperform both ordinary PLSR and 
robust PRM in terms of efficiency, fitting to data and prediction ability regardless of sample and dimension 

sizes. Overall, in case of orthogonal outliers’ presence all robust methods except PRM perform good. 

Moreover, when the proportion of orthogonal outliers increases as ε=0.2, PRM performs worse even than 

classic PLSR method.  
 

Overall, in situation of moderate proportion of different kinds of outliers’ existence (ε=0.1), regardless of 

sample sizes and dimensions, the three robust PLSR techniques of literature (RSIMPLS, PLS-SD, PLS-
KurSD) and the new robust PLS-ARWMVV outperform the ordinary PLSR particularly in terms of 

prediction capability and efficiency. Although PRM also performs better than ordinary PLSR, for especially 

good leverage points, concentrated outliers and orthogonal outliers it performs badly in comparison with 
the other robust techniques. For the whole kinds of outliers (vertical outliers not included) if the percentage 

of outliers increase as ε=0.2, robust PRM loose its efficiency and prediction capability and fitting worse, 

additionally, the mean angle values get higher compared to the other robust PLSR techniques (containing 

new PLS-ARWMVV). Regardless of sample sizes, dimensions and proportions of outliers, the mean angle 
values of PLS-ARWMVV is lower than the ordinary technique, however, is lower than the PRM for only 

good leverage points, concentrated outliers and orthogonal outliers. The remarkable point that if ratio of 

orthogonal outliers is reached a high proportion as 0.2, PRM has a bad performance similar as ordinary 
PLSR that it is less efficient and has a worse predictive capability than ordinary PLSR, moreover, for 

concentrated outliers PRM has worse efficiency and sometimes worse prediction ability than it. It can be 

referred that if the percentage of outliers reaches a high ratio 0.2, proposed PLS-ARWMVV technique still 

has better efficiency, prediction capability and it fits to data better compared to ordinary PLSR for whole 
kinds of outliers. 

 

5.   REAL-LIFE FISH DATA SET APPLICATION 

 

PLS-ARWMVV and four well-known robust PLSR techniques are compared on fish data of Naes [20]. 

The performances of methods are evaluated using Equation (22) and Equation (23) with regards to fitting 
and prediction capability. The final 7 of 45 sample points of this data are outlying observations. Fat 

concentration (ratio, %) of 45 fish observations (rainbow trout) and explanatory variables of the absorbance 

at 9 Near Infrared Reflectance (NIR) wavelengths measurements were obtained after sample 

homogenization. The purpose is modelling the associations among the fat concentration (dependent 
variable) and these 9 spectrums (explanatory variables). Data set is partitioned in two pieces as the first 10 

sample points are the test data while the rest of 35 observations are the training data [7, 20-22]. 

 
RMSE is computed from training set containing 7 outlying observations (the ratio of outliers’ is 20%). 

Later, using regression parameters computed from six different models, the predictions are obtained for 

uncontaminated test data with 10 observations. The ideal numbers of components are selected as kopt=3 as 
given in [22]. From Table 8 it is clear that the new robust PLS-ARWMVV has a higher performance than 

ordinary PLSR and robust PRM both in terms of prediction and fitting abilities. It has also better prediction 

performance than robust PLS-SD, while it shows a nearly similar performance in terms of fitting. Moreover, 

PLS-ARWMVV has a close performance to the both robust RSIMPLS and PLS-KurSD. 
 

Table 8. The results for fish data 

 PLSR RSIMPLS PRM PLS-SD PLS-KurSD PLS-ARWMVV 

GOF 0.9306 0.9741 0.7045 0.9720 0.9750 0.9742 

RMSE 1.7827 1.4642 1.6713 1.5598 1.4495 1.4746 
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6. CONCLUSION 

 
In this paper, a new robust PLSR technique is proposed, named as “PLS-ARWMVV”, for the linear 

regression model with one dependent variable for obtaining robust and efficient results in case of outliers’ 

existence. Doing a simulation study, proposed robust PLSR technique is compared with ordinary PLSR and 

four robust well-known PLSR techniques of literature in terms of fitting to data, efficiency and predictive 
ability on clean and contaminated data sets. 10 % and 20 % of this data set is changed with outlying 

observations. Hence, the increase in the ratio of outliers effects on performances of techniques is examined.  

 
The real data application indicates that PLS-ARWMVV outperforms both ordinary PLSR and robust PRM 

in terms of prediction and fitting abilities. Also, it has a better predictive capability in comparison with 

robust PLS-SD but they show similar fitting performance. Moreover, PLS-ARWMVV shows nearly a 

similar performance with robust RSIMPLS and PLS-KurSD. 
 

The results of simulation conclude that in situation of 10 % or 20 % of bad leverage points’ existence, PLS-

ARWMVV performs better compared to both PLS-SD and PRM in terms of fitting, efficiency and 
prediction abilities. In case of 10 % or 20 % of vertical outliers’ existence, PLS-ARWMV is not leading 

one but still robust as compared to classical one and follows to four robust PLSR techniques in terms of 

efficiency, fitting and prediction capabilities. The situation of 10 % or 20 % of good leverage points’ 
presence, PLS-ARWMVV performs much better compared to PRM in terms of fitting, prediction and 

efficiency. If data contains 20 % of good leverage points, PLS-ARWMVV has a better efficiency than PLS-

SD. If the ratio of concentrated outliers is 10 %, PLS-ARWMVV has a better efficiency, fitting to data 

better and a higher predictive ability than PRM. Presence of 20 % of concentrated outliers indicates that 
PLS-ARWMVV is more efficient and better predictive than both PRM and PLS-SD. Presence 10 % or 20 

% of orthogonal outliers shows that PLS-ARWMVV fits better, predicts better and is more efficient than 

PRM.  
 

Overall, new robust PLS-ARWMVV could cope with various outliers efficiently and gives robust 

predictions, especially, it performs better than robust PRM (with the exception of vertical outliers that in 
this case PRM performs better than PLS-ARWMVV, however, when sample size increases their 

performances getting closer). PLS-ARWMVV also gives better results than robust PLS-SD in some cases. 

These results are also supported by real data application. Hence, PLS-ARWMVV is a good option to robust 

PLS-SD, RSIMPLS, PLS-KurSD and PRM techniques of robust PLSR literature that in some cases it 
outperforms some of them or shows a close performance with these four.  
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