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Abstract 

This study focusses on a two objective type-2 simple assembly line balancing problem. Its 

primary objective is minimizing the cycle time, or equivalently, maximizing the production rate 

of the line. Minimization of the workload imbalance among workstations is considered as the 

secondary objective. Since the problem is known to be intractable, a reactive tabu search 

algorithm is proposed for the solution. Although tabu search is a well-known meta-heuristic 

search procedure, based on the detailed literature survey, there is not a reactive tabu search 

algorithm to solve the investigated problem. Furthermore, the algorithm utilizes a sequence 

oriented solution representation which is usually applied by population heuristics such as genetic 

algorithms and differential evolution algorithms. The performance of the algorithm is tested on 

several benchmark problems taken from the open literature by comparing both objective values 

with those of previously developed four particle swarm optimization (PSO) algorithms and two 

multi-objective genetic algorithms (MOGA). The computational results show that the proposed 

approach presents a quite encouraging success over the existing meta-heuristics.   
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1. INTRODUCTION 

 

Assembly lines, which were first introduced by Henry Ford in automobile production, are common 

manufacturing processes used in high-volume mass production. An assembly line stands for a flow type 

production system in which the workstations, where tasks are performed, are aligned in series. As the 

workpieces move along the line, they visit the workstations successively by means of a material handling 

system, such as a belt conveyor [1]. A well-known  principal problem concerning assembly lines is the 

assembly line balancing problem (ALBP) which is defined as the assignment of tasks that compose the 

final product, to the workstations to optimize a certain performance criterion. These tasks have to satisfy 

some constraints when assigned to workstations. The first constraint is the necessity that the work content, 

i.e. total time of the assigned tasks, of each workstation should not surpass the cycle time. The cycle time 

is determined by the production rate of the line, which expresses how many products are to be produced 

within a certain time period. In order to maintain the desired production speed, one product must have been 

produced at the end of each cycle. The second constraint is that the assignment should not violate the 

precedence order of tasks. To assign a task to a workstation, its predecessors must have previously been 

assigned. Another constraint is that each task have to be allocated to a single workstation. 

 

Simple assembly line balancing problem (SALBP), which is classified as NP-hard, is usually categorized 

into two main subclasses: (i) SALBP-1 (type-1) aims to minimize the number of workstations for a 

predetermined cycle time, and (ii) SALBP-2 (type-2) tries to minimize the cycle time for a predetermined 
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number of workstations [2]. Simple assembly line balancing problems may be complemented with a 

secondary objective such as workload smoothing to avoid an unbalanced task assignment between the 

workstations. It is a frequent practice to assign approximately same workloads to workstations in order to 

assure equivalent work, hence free time, to each worker. Otherwise, causing unfair working conditions 

among the workers cannot be avoided [3]. Here, SALBP-2 version of the problem, which takes workload 

smoothing as a secondary objective into account, is addressed. Nowadays, it still holds the attention of 

researchers and can be accepted as a valid starting point to solve the re-balancing problem [4].  

 

When the SALBP-2 literature is examined, it can be realized  that many researchers first deal with the type 

2 assembly line balancing problem using the methods based on repetitive solution of the type 1 problem. 

In these methods, several cycle times are considered consecutively to check whether it is possible to assign 

all tasks to a certain number of workstations or not. When such a technique is used, the lower and/or upper 

limit values for cycle time are computed and the solution is obtained usually with strategies that solve the 

type-1 problem in a sequential manner, by increasing the cycle time at a certain rate starting from the lower 

limit [5, 6] or by updating the lower limit and upper limit values in respect of particular rules [7]. Later, 

approaches that directly solve the type-2 assembly line balancing problems are also suggested. Klein and 

Scholl [8] developed the branch-and-bound method, SALOME-2, which is an adaptation of SALOME-I 

and uses a novel enumaration method called Local Lower Bound Method. Uğurdağ et al. [9] proposed a 

two-phase heuristic based on integer programming for the type-2 assembly line balancing problem. In the 

first phase, a starting feasible solution is found by the heuristic procedure developed, while in the next 

phase this starting solution is enhanced using a simplexlike algorithm. Liu et al. [10] proposed two heuristic 

algorithms which first produce an initial solution using a bi-directional assignment technique, next further 

improve the acquired initial solution by interchanging tasks among workstations. Kılınçcı [11] presented a 

petri nets based heuristic, Blum [12] proposed an iterative beam search algorithm. La Scalia et al. [4] 

suggested a fuzzy binary linear programming model and solution algorithm that can be used when the 

problem has fuzzy job processing times. Azizoğlu and İmat [13] proposed a branch and bound algorithm 

to deal with the workload smoothing problem for single model assembly lines in which the workstation 

number is fixed and the cycle time is pre-specified. Kılınçcı [14] presented a new Petri-nets based algorithm 

to tackle the type-2 simple assembly line balancing problem in which the firing order is used as a priority 

rule by implementing backward procedure for task assignment. 

 

Apart from these studies, with the appreciation of the success of the meta-heuristic approaches in the 

solution of NP-hard problems, they have also been started to be used to solve assembly line balancing 

problems of type-2.  Heinrici [15] presented two algorithms,  one simulated annealing (SA) and one tabu 

search (TS), for the type-2 problem and compared their performance on some test problems from the open 

literature. Scholl and Voß [16] presented a TS algorithm with several optional elements and showed that 

the procedure they developed yields much better results than the available constructive methods. Kim et al. 

[17] adressed various types of simple assembly line balancing problems including of type-2 and suggested 

a genetic algorithm (GA) for the solution. Nearchou presented differential evolution algorithms (DEA) with 

objectives, cycle time minimization [18], cycle time and balance delay time/workload smoothness index 

minimization [19] and compared their performances with two previously developed GAs. Nearchou [20] 

introduced a new method based on Particle Swarm Optimization (PSO). In the method, two criteria such as 

cycle time minimization and maximization of workload smoothing are considered simultaneously. 

Comparisons between the algorithm and two existing multi-objective population heuristics have shown that 

the proposed approach has a promising high performance. Zacharia and Nearchou [21] proposed a multi-

objective genetic algorithm for another version of simple assembly line balancing problem of type-2 with 

fuzzy task operation times. Zheng et al. [2] developed an advanced ant colony optimization algorithm, 

called station ant colony optimization, to solve the problem. They confirm the efficiency and stability of 

the algorithm by comparing it with the literature in 23 samples included in nine examples. Mozdgir et al. 

[22] proposed a DEA that aims to minimize the workload smoothness index. Zacharia et al. [23] introduced 

a GA for solving the SALBP-2 for the assembly line of a robotic arm. Triki et al. [24] presented a GA 

which is hybridised with a local search procedure to solve an extension of SALBP-2 named  ‘Task 

Restrictions Assembly Line Balancing Problem’ of type 2. Güden and Meral [25] proposed an adaptive SA 

approach which can be used to solve any deteriministic ALBP including SALBP-2. Their computational 

experiments on several SALB test problems from the literature showed that for most of the intances optimal 
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solutions are obtained. Zhang et al. [26] developed a novel version of the DEA that directly deals  with 

integer variables to tackle the problem and compared its performance with the DEA and GA algorithms 

available in the literature. Nearchou and Omirou [27] investigated ten versions of differential evolution 

approach which differ in the way they explore the search space, on type-1 and type-2 simple assembly line 

balancing problems. They executed an extensive computational study over a large set of test instances from 

the literature. Arıkan [28] developed a TS algorithm which uses a diversification strategy based on 

residence frequencies to solve the type-2 simple assembly line balancing problem with a workload 

smoothing objective. Akpınar [29] developed a large neighbourhood search algorithm to solve SALBP-2 

and evaluated the achievement of the algorithm on a set of test problems. Researchers looking for a more 

detailed information about the assembly line balancing problems and related studies can refer to 

Sivasankaran and Shahabudeen [30] and Boysen et al. [31]. 

 

Here, a reactive tabu search (RTS) algorithm is suggested for the simple assembly line balancing problem 

of type-2 with a secondary objective as workload smoothing. Although there are several TS algorithms 

developed to address assembly line balancing problems in the literature [15, 16, 28, 32, 33], as far as we 

know, there is not a tabu search algorithm based on reactive tabu search. Another difference of the presented 

algorithm from the TS algorithms developed in the literature for the same problem (except for [28])  is that 

it utilizes a sequence oriented solution representation which is usually applied by population heuristics such 

as GA [17] and DEA [18, 19]. The success of the RTS algorithm is evaluated on several benchmarking 

instances by comparing cycle time and workload smoothing objective values with those of previously 

developed four particle swarm optimization (PSO) algorithms and two multi-objective genetic algorithms 

(MOGA).  

 

The remainder of the paper is structured as follows: Section 2 gives the problem description and 

formulation.  In Section 3, details of the solution methodology are explained. Section 4 discusses results of 

the computational study performed over test instances taken from the literature. Lastly, conclusions and 

directions for future research are presented in Section 5. 

 

2. PROBLEM DESCRIPTION AND FORMULATION 

 

The simple assembly line balancing problem deals with a production of a single model and there is a set of 

tasks belonging to that model whose priorities with respect to each other are determined by a precedence 

graph. The precedence graph given in Figure 1 (Bowman 1960) consists of 8 tasks. While the  numbers 

inside nodes indicate the task numbers, outside ones refer the task times. According to the precedence 

graph, task 3, and 4 must be accomplished prior to task 6 can start, task 2 has to be finished in order to 

perform tasks 3, and 4. The problem investigated in this study addresses the problem of assigning the tasks 

to workstations by minimizing first, the cycle time, then the workload imbalance. In other words, it is the 

simple assembly line balancing problem of type-2 with workload smoothing objective. Although there are 

several functions defined for workload smoothness in the literature [3, 34], we use the total absolute 

difference of workstation loads from the average workload (TAD) as given below [3]: 

 

 TAD= ∑ |Wj-
∑ ti

n
i=1

m
|  𝑚

j=1 .                                                                                                                                                              (1) 

 

Here, m, ti, Wj, and ∑ ti
n
i=1  represent the number of workstations, processing time for task i, workload at 

workstation j, and total work content, respectively. 
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Figure 1. Precedence graph of Bowman (1960) problem [35] 

 

The average workload per worker is calculated as ∑ ti
n
i=1 3=25,00⁄  for an assembly line with 3 workstations 

associated with the precedence graph in Figure 1. In order to make a fair assignment to each worker, it is 

aimed to minimize the total absolute deviation of workstation loads from the average work content. In Table 

1, two altenative task assignments are given and the associated total workload imbalances are calculated. 

Although the cycle times of two assignments are 28, the smaller total imbalance of the second indicates the 

workstation loads are closer to each other. 

 

Table 1. Two alternative task assignments and their corresponding objective values in three workstationed 

Bowman problem 

 Assignment 1 Assignment 2 

Workstations Assig. 

tasks 

Worksta. 

load (Wj) 
|Wj-

∑ ti
n
i=1

m
| 

(|Wj-25|) 

Assig. 

Tasks 

Worksta. 

load (Wj) 
|Wj-

∑ ti
n
i=1

m
| 

(|Wj-25|) 

1 1, 2 28 3,00 1, 2 28 3,00 

2 3, 4, 6 26 1,00 3, 4, 5 22 3,00 

3 5, 7, 8 21 5,00 6, 7, 8 25 0,00 

Cycle time  28   28  

Total Imbalance 

(∑ |Wj-
∑ ti

n
i=1

m
|  m

j=1 ) 

   

8,00 

   

6,00 

 

Mathematical representation of the problem and related notation are given below [28]: 

 

Notation 

 

n  task number (i=1,…,n) 

m  workstation number (j=1,…,m) 

ti  processing time of task i 

T  total work content  (∑ ti
n
i=1 ) 

CTmin  a lower bound for cycle time 

CTmax  an upper bound for cycle time 

PTi  set of tasks which precede task i 

STi  set of tasks which succeed task i 

Ei(CTmax) earliest possible workstation for task i, given a value of CTmax 

(Ei(CTmax)= ⌈
ti+ ∑ tkkPTi

CTmax
⌉, (Pastor and Ferrer [36])) 

Li(CTmax) Latest possible workstation for task i, given a value of CTmax 

  (Li(CTmax)=m+1- ⌈
ti+ ∑ tkkSTi

CTmax
⌉, (Pastor and Ferrer [36]) 

FSi  set of workstations which task i can be assigned (determined by the [Ei, Li]  
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                          calculations for each task) 

FTj  set of tasks which can be assigned to workstation j (determined by the [Ei, Li] 

                          calculations  for each task) 

PR  Set of pairs of tasks such that there is an  immediate precedence between them 

xij  1, if and only if task i is assigned to workstation j; 0, otherwise 

CT  cycle time 

Oj  positive deviation amount from the average workload on workstation j 

Uj  negative deviation amount from the average workload on workstation j 

 

Formulation 

 

Min  Z1=CT                                                                                                                                                 (2) 

 

Min Z2= ∑ (Oj+Uj)
m
j=1                                                                                                                                   (3) 

 

Subject to 

 
∑ xij=1                                  ∀ij∈FSi

                                                                                                               (4) 

 
∑ ti.xij≤CT                            ∀ji∈FTj

                                                                                                               (5) 

 
∑ j.xij≤ ∑ j.xkj               ∀(i, k)∈PRk∈FTjj∈FTj

                                                                                                 (6) 

 

∑ ti.xij+Uj-Oj=
T

m⁄                ∀ji∈FTj
                                                                                                             (7) 

 

CT≤Z1                                                                                                                                                          (8) 

 

xij∈{0,1}                                       ∀i, ∀j∈FSi                                                                                                (9) 

 

CT≥0                                                                                                                                                          (10) 

 

Uj, Oj≥0                                       ∀j.                                                                                                           (11) 

 

Objective (2) is used to minimize the cycle time, while objective (3) helps to smooth workloads among 

workstations as defined in Equation (1). Constraint (4) ensures that each task is assigned to a unique station. 

Constraint (5) guarantees that workloads of each workstation do not exceed the cycle time.  Constraint (6) 

assures that the precedence relationships between tasks are not violated. Constraint (7) specifies the 

deviations from the average workload for each workstation. Constraint (8) restrains the cycle time with the 

outcome of objective (2). Constraints (9), (10), and (11) define the variable types and non-negativity 

conditions. 

 

First, the problem is composed of the constraints (4), (5), (6), (7), (9), (10), (11) and solved under the 

objective (2) to obtain the minimum cycle time for the assembly line. Then, this obtained cycle time is 

added as constraint (8) below the model and solved again using the workload smoothing objective (3). 

Consequently, the most balanced task allocation is attained while cycle time is minimized or synonymously 

production speed is maximized. 

 

Due to the NP-hard structure of the considered problem, it is difficult to reach an optimal solution with the 

optimal seeking techniques such as the mixed integer programming model given above when the number 

of tasks increases. In such cases, it is a common practice to use meta-heuristic techniques to achieve optimal 

or near optimal results. In this study, a reactive tabu search algorithm is developed for the solution. In the 

following section, solution methodology and the associated decisions are explained. 
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3. REACTIVE TABU SEARCH ALGORITHM 

 

TS is a meta-heuristic which directs a local search method to investigate the solution space behind local 

optimality [37]. TS makes use of the history records gathered while performing the search. The technique 

is initialized with a starting solution and iteratively tries to achieve solutions with higher quality. At each 

iteration,  a subset is searched among the neighbours of the current solution and the best neighbor is 

recorded as the current solution, even if it has a poorer objective value.  In this way,  it becomes possible 

to escape from getting caught in a local optima. However, the algorithm may cycle as described above. TS 

prohibits last few movements to restrain cycling and to conduct the search to the new spaces. These 

movements are identified as tabu and recorded in a structure known as tabu list. An appropiriate size of this 

list is called as tabu tenure and is crucial for the achievement of the algorithm [38]. RTS is an extension of 

TS and suggests a simple structure for modifying the tabu tenure according to the properties of the 

optimization problem. The solutions encountered while searching and their iteration numbers are stored in 

memory, once the solution is updated with a new move, it can be checked if it is replicated before and the 

interval between two replications can be calculated. The basic fast “reaction” mechanism augments the tabu 

tenure when solutions reoccur frequently. This is followed by a slower reduction mechanism. If the current 

search space does not need a large tabu tenure, it is decreased. These two mechanisms are complemented 

with an additional Long Term Memory diversification step, called Escape mechanism, when there is an 

evidence that  the  search path is restrained in a bounded portion of the search space. The escape phase 

comes into play when too many solutions frequently reappeared [38]. An elementary escape procedure 

involves a series of random steps which are carried out starting from the current solution. 

 

In order to implement reactive tabu search algorithm to the considered problem, a number of choises should 

be made. Those choises are detailed below: 

 

3.1. Encoding 

 

One of the fundamental decisions that affects the success of meta-heuristic techniques like tabu search is 

determining how to represent the solution. In this study, unlike the simulated annealing and tabu search 

algorithms developed before, a sequence-oriented solution representation is used which usually applied in 

evolutionary algorithms proposed for the same problem. In the sequence-oriented solution representation, 

all tasks are written in the order that the tasks are appointed to workstations. If the order of elements in a 

sequence-oriented representation does not violate the precedence restrictions, it is defined as a feasible 

solution. For instance, when the precedence graph in Figure 1 is considered, the solution represented by 

task sequence <1,2,4,3,5,7,6,8>  is feasible. Only the feasible solutions are explored by the developed RTS 

algorithm. 

 

3.2. Decoding 

 

When the number of workstations is given, the cycle time can be obtained using the technique developed 

by Kim et al. [17]. The steps of the method are as follows: 

 

1) Calculate an initial base cycle time BCT= T m⁄ , which equals to the theoretical minimum cycle time. 

2) Pack the tasks up to the (m - 1)st workstation by using the cycle time BCT. Then assign the rest to the 

mth workstation. 

3) Compute  Wj,  (j=1, 2, …,m) and Wj
+,  (j=1, 2, …, m-1). Here, Wj denotes the workload of jth 

workstation and Wj
+ stands for the potential workload of workstation j which is the sum of  Wj and 

the operation time of the first task appointed to the (j + 1)st workstation. 

4) Determine DT=max{Wj|j=1, 2, …, m} and BCT=min{Wj
+|j=1, 2,…, m-1}. If DT≤BCT then stop and 

identify DT as the minimum cycle time. Otherwise, go to Step 2. 
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3.3. Initial Solution 

 

Either heuristic or random procedure which guarantees the feasibility, can be used to form an initial 

solution. A method of creating a random and feasible sequence is given below (Kim et al., [17]). 

 

1) Compose an initial list of tasks that have no  predecessors, and form an empty array which will 

represent the initial solution at the end. 

2) If the list is empty then stop, else go to Step 3.  

3) Choose a task randomly from the list, and add it to the array. 

4) Update the current list by deleting the chosen task and by appending every immediate successor of 

the task if all the immediate predecessors of the successor are already in the array. Go to Step 2. 

 

3.4. Objective Function 

 

The mathematical model has two objectives as the minimization of cycle time and the minimization of 

workload imbalace, i.e. the sum of absolute differences between workstation contents and average 

workload. First, the objectives are expressed in a proportional manner and combined as in Equation (12). 

 

Minimize ∝. (CT
CTmin

⁄ ) + β. (
∑ (Uj+Oj)

m
j=1

tsum
⁄ )  .                                                                                   (12) 

 

Here, CTmin is the minimum possible cycle time. The first portion of the combined objective corresponds 

to cycle time and the second portion to workload imbalance. α and β correspond  to the weights of 

objectives. Preliminary experiments show that for the  weights =500 and β=100, the priority of Z1 over Z2 

is well achieved. 

 

3.5. Neighbourhood Generation Mechanism 

 

Insert and swap moves are employed to generate neighbour solutions from the current one. Insert move 

refers inserting a task to a different position in the sequence, swap move corresponds to interchanging two 

tasks. First, the move to be undertaken is decided randomly. Probabilities of insert and swap moves are 

taken as 0.5 and 0.5, respectively. When  a move type is determined, whole neighbourhood of the current 

solution is  explored by applying the same move. Afterwards, the solution part from which the move will 

be carried out, is established. The move is performed either by selecting any task from the whole sequence 

or only by considering the tasks in the sequence which are corresponding to the maximal loaded 

workstation. The related probabilities are decided to be 0.05 and 0.95, respectively. It is possible to state 

the cycle time by implementing the decoding method given in Section 3.2. Hence, the workstation with the 

maximum content and the tasks assigned to this workstation can be recognised in any sequence-oriented 

solution. For each task that is the source of the movement, all candidate positions, which can be performed 

without deteriorating the feasibility, are specified and recorded to a list. If the move to be carried out  

concerns the whole solution, only one task is determined randomly to investigate its neighbourhood and all 

candidates in the list are considered to update the current solution. Otherwise, if the move concerns the 

tasks assigned to maximal loaded workstation, current solution is updated by exploring the neighbourhood 

of each pertinent task. Furthermore, in this case, the candidate positions list for each task involves the 

positions concerning the tasks which are not assigned  to the maximal loaded workstation. Sometimes, 

because of the precedence constraints, no task can be moved to the positions corresponding to a workstation 

other than the one with the maximum work content in the sequence. In such a case, again the move is 

performed from any task in the whole sequence. Insert and swap moves are illustrated in Figure 2. 
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Figure 2. Insert and swap moves to produce neighbour solutions 

 

3.6. Tabu Lists and Tabu Tenures 

 

In order to monitor the tabu status of a move, a tabu list of size (n × n) is used which stores their starting 

iterations. When a move is performed, tabu start times of all tasks whose positions changed are updated. 

For example, considering the insert move in Figure 2(a), tabu start times of tasks 4, 3, 5, and 7 along with 

the positions 3, 4, 5, and 6, respectively, are revised. Return of those tasks to corresponding positions is 

forbidden for a number of iterations which depends on the current tabu tenure.  For this purpose, after a 

move is performed starting time of the tabu situation of the associated positions and tasks with respect to 

move type are updated as follows: 

 

1. Insert move: Task in position k1 is inserted into position k2 

              If k1<k2 then begin 

                 for k:=k1 to k2  do 

                 begin 

                 t  task in position k; 

                 tabustart[k, t]:=current iteration; 

                 end; 

              end else begin 

                 for k:=k2 to k1  do 

                 begin 

                 t  task in position k; 

                 tabustart[k, t]:=current iteration; 

                 end; 

              end; 

2. Swap move: Task in position k1 is exchanged with the task in position k2 

                 t1 task in position k1; 

                 t2  task in position k2; 

                 tabustart[k1, t1]:=current iteration; 

                 tabustart[k2, t2]:=current iteration; 

 

Additionally, a move is classified as tabu according to the move type if the conditions below are satisfied: 

 

Insert move: Task t in position k1 is inserted into position k2,  

 

current iteration≤tabustart[k2, t]+tabu tenure                                                                                           (13) 

 

Swap move: Task t1 in position k1 is exchanged with task t2 in position k2,  

 
current iteration≤tabustart[k1, t2]+tabu tenure  

current iteration≤tabustart[k2, t1]+tabu tenure.     
                                                                                    (14) 
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3.7. Aspiration Criteria 

 

The simplest form of aspiration criterion is used. A tabu move is adopted if it improves the best solution 

acquired so far. 

 

3.8. Reaction Mechanisms 

 

RTS uses two reaction mechanisms to maintain a balance between the intensification and diversification of 

the search. One of those mechanisms controls the tabu tenure, the other one manages the escape procedure. 

The interval between the revisited solutions  and their frequency are monitored to activate these 

mechanisms.  They are summarized as follows: 

 

1) Tabu tenure (tt) is dynamically adjusted. If a solution is replicated within a predetermined number 

of iterations (CYCLE_MAX), it is an indication that the search has entered a cycle. In this case, tabu 

tenure is augmented by a priorly determined factor INC where INC>1 to avoid short-term cycles that 

would result in further repetitions. This is combined with a slower reduction mechanism. If there is 

no repetitions for a adequately long time period, tt is reduced by a priorly determined factor DEC 

where 0<DEC<1. This time period corresponds to a moving average (movAvg) of observed cycles 

computed concurrent to the search procedure. Moreover, there is another case in which the tabu 

tenure is decreased. When tabu tenure increases so much that all possible moves become tabu and 

none of them meets the aspiration criterion then the tabu tenure is reduced. 

2) In case a solution occurred more than REP times (REP is an predefined parameter), then that solution 

is classified as a frequently-repeated solution. If the number of frequently-repeated solutions is 

greater than CHAOS (CHAOS is a predefined parameter), then it can be stated that the search path is 

constrained in a bounded segment of the search space. In order to skip out of this space an escape 

procedure is performed. The standard escape strategy is to execute randomly a number of moves 

depending on the average gap, in terms of iteration number, between repeated solutions. In this study, 

standard escape procedure is replaced by a controlled simulated annealing (SA) as Voß and Fink [39] 

proposes. In our SA implementation, SA parameters containing the initial and final temperatures, 

cooling factor and number of moves at each temperature level are determined as 100, 30, 0.90, and 

1, respectively. Furthermore, only insert moves are used in the escape procedure. 

 

After a series of preliminary experiments the parameters used in the reaction mechanisms are decided as 

given in Step 0 of the algorithm in Section 3.11. 

 

3.9. Hash Function and Hashing Structures 

 

RTS must be able to effectively identify repeated solutions. However, it is not possible for an efficient 

algorithm to save and compare all previously visited solutions. Therefore, repetitions are recognized by a 

computer science technique known as hashing. A two-level open hashing structure is used for the detection 

process [40]. An effective hash structure should minimize the possibility of collision which means that two 

different solutions have the same hash function value [41]. Hence, two non-identical task sequences should 

not be considered as if they were the same. Otherwise, RTS algorithm may work incorrectly. The utilized 

two-level hashing produces very small probability of collision and described below. 

 

In the first level of hashing, the solutions are stored in the buckets of the hash table whose locations in the 

array are obtained by a function based on their cycle times (CT(S)). The function f(S), given below, appoints 

a solution to a bucket in the hash table 

 

 f(S)=[CT(S)] mod k .                                                                                                                                   (15) 

 

Here, 0≤f(S) ≤k-1 and hash table is a k-dimensional array. In our study, we set k=1009 because it is a prime 

number and does not require excessive storage space. Since multiple solutions may have the same cycle 

time, only f(S)  value in the hash table is not sufficient to distinguish between individual solutions. To cope 

with this deficiency, the additional values associated with each solution are kept in the buckets of the hash 
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table as illustrated in Figure 3. The location of each solution in the array is determined by f(S) value. TAD, 

hv, rept no, and last found refer to the total absolute deviation of workstation loads, hashing value, repetition 

number, and iteration number where the associated solution was last encountered, respectively. 

 

 
Figure 3. Two-level open hashing structure 

 

f(S) links all the solutions with the same f(S) in one bucket. If two solutions have the same address in the 

hash table, then their TAD and hashing values (hv) are compared successively. If these two values are also 

the same, it is concluded that these two solutions are identical and the solution is revisited. Hence, rept no 

and last found values are updated. Otherwise, if TAD  is different or TAD is same but hv does not match 

they are different solutions, and the new one is linked at the end of the associated bucket. Hashing value is 

a transformation of each solution sequence into an integer. This is done by the following hash function 

where Z[i] is a random number of task i in the range [1, 4300] 

 

  hv(S)= ∑ Z[i]Z[i+1]n+1
i=0   .                                                                                                                           (16) 

 

Z[n+1] is set equal to Z[1]. Upper bound for Z[i] is determined as 4300 to avoid that the hashing value 

exceeds longint variable range in Pascal Programming language for any test problem considered. 

 

3.10. Stopping Rule 

 

Two termination criteria are used to stop the algorithm. First one is associated with the iteration number, 

second one  with the run time.  The algorithm is terminated either when a particular number of iterations 

elapsed without improving the current best solution (iterlim) or when a predetermined run time is exceeded. 

The second termination criterion is introduced to restrict run times for large sized problems.  Iterlim is set 

proportional to the problem size and achieved by multiplying the number of tasks in the associated problem 

with 200 (n×200). Run time is set equal to 900 CPU seconds. The algorithm is terminated depending on 

the stopping rule that occurs priorly. 

 

3.11. Steps of the Algorithm 

 

RTS algorithm steps are as the following. 

 

Step 0: Initialization of the parameters and the tabu list 

• tt=1; REP=2; CHAOS=3; INC=1.1; DEC=0.99; CYCLE_MAX=50; movAvg=0; 

Step 1: Find an initial solution (S), save it as the best solution and as the current solution (Sbest=S, 

C(Sbest)=C(S), Scur=S, C(Scur)=C(S)) 

Step 2: Investigate the neighbourhood of the current solution 
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• Select the move type to be performed 

• Select the solution part from which the move is executed 

• If the move is executed from any position in the sequence then 

o Select any task 

o Without deteriorating the feasibility determine all the candidate positions in the task 

sequence and assign to a list 

o Determine the best solution in the neighbourhood (S) by performing all the candidate 

moves in the list 

o Update the current solution (Scur=S, C(Scur)=C(S)) 
       Else 

• Starting from the first one, for each task  assigned to the workstation with the maximum work 

content, repeat the following. 

o Without deteriorating the feasibility determine all the candidate positions in the task 

sequence which do not correspond to the workstation with the maximum work content and 

assign to a list 

o Determine the best solution in the neighbourhood (S) by performing all the candidate 

moves in the list 

• Update the current solution (Scur=S, C(Scur)=C(S)) 
Step 3: Search the current solution (Scur) in the hash table 

• steps_since_last_change=steps_since_last_change+1 

• If Scur is found then 

o GAP=currentiter-Scur^.lastfound; 

o Scur^.reptno=Scur^.reptno+1;  

o Scur^.lastfound=currentiter; 

o If GAP<CYCLE_MAX then 

▪ movAvg=0.1*GAP+0.9*movAvg; 

▪ tt=tt*INC; 

▪ steps_since_last_change=0; 

o If Scur^.reptno>=REP then 

▪ chaono=chaono+1; 

▪ If chaono=CHAOS then 

- chaono=0; 

- execute_escape=true; 

o Goto Step 5; 

Step 4: Add the current solution to the hash table 

• If steps_since_last_change>movAvg then 

o tt=tt*DEC; 

o steps_since_last_change=0; 

o Goto Step 6; 

Step 5: Perform Escape procedure if required 

• If execute_escape=true then 

o Call ESCAPE Procedure; 

o execute_escape=false; 

Step 6: Update the best solution, tabu lists and current iteration 

• If C(Scur)<C(Sbest) then Sbest=Scur; C(Sbest)=C(Scur); 

• Update the tabu list; 

• currentiter=currentiter+1; 

• If stopping rule is satisfied then STOP else goto Step 2; 

 

4. EXPERIMENTAL STUDY 

 

The performance of the RTS algorithm is evaluated on a set of benchmark problems which are available 

on the Web at http://www.assembly-line-balancing.de/salbp/benchmark-data-sets-1993/, by comparing its 

results against six meta-heuristic algorithms which are previously developed for the considered problem. 
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Data set includes seven problems with task numbers differing between 29 and 111: Buxey (29,8,7,14), 

Sawyer (30,8,7,14), Gunther (35,10,6,15), Kilbridge (45,9,3,11), Tonge (70,23,3,25), Arcus1 (83,20,3,22), 

Arcus2 (111,25,3,27). The numbers in the parenthesis indicate the task numbers, the number of test 

instances contained in the relevant ALBP, minimum and maximum number of workstations of test instances 

in the relevant ALBP, respectively. This means, for example, for Buxey problem 8 different test instances 

with workstation numbers between 7 and 14, are considered. The RTS algorithm is coded in TurboPascal 

programming language and all experimentation are executed on a Pentium Intel Core2 Quad 2.67 GHz 

computer with a 4 GB RAM memory. In order to secure the impartiality of the experiments, the algorithm 

was run 10 times with different random seeds on each test instance with the parameter values given in the 

previous sections and the solution quality was averaged over all instances of each test problem. That is, 

RTS algorithm was run (8+8+10+9+23+20+23)x10=1010 times in total. 

 

Existing meta-heuristics which the achievement of the suggested RTS algoritm is compared, include four 

versions of PSO algorithm developed by Nearchou [20], a Pareto-niched GA presented by Kim et al. [17] 

to deal with multi objective (MO) SALBPs (MOGA1), and a Pareto weight-sum GA proposed by Murata 

et al. [42] to tackle MO flow-shop scheduling problems (FSSPs) (MOGA2). The results of the existing 

meta-heuristics are taken from the Nearchou [20]. Nearchou [20], who dealt with type-2 assembly line 

balancing problem considering the same secondary objective function as in our study, takes 7 test problems 

into account. Therefore, the same problems are addressed in this study. 

Table 2 gives the comparison of the RTS algorithm against the existing meta-heuristics. The first and second 

column of the table indicates the test problems and their sizes. The information provided by the remaining 

columns are explained below: 

 

best.c%dev= the average relative deviation from optimum/best in percentage; calculated by (
c-c*

c*
)×100 

where 𝑐∗ is the actual optimal or actual best cycle time known so far and c is the best cycle time attained 

by a particular meta-heuristic, 

avg.c%dev= the average relative deviation from optimum/best in percentage; calculated by (
avg.c-c*

c*
)×100 

where avg.c is the average cycle time attained by a particular meta-heuristic 

max.c%dev= the maximum relative deviation from optimum/best in percentage; calculated by 

(
max.c-c*

c*
)×100 where max.c is the worst cycle time attained by a particular meta-heuristic 

MAD= mean absolute deviation of workstation loads from the average workload which is calculated by 

dividing the total deviation given in Equation (1) to the number of workstations ( MAD=
1

m
∑ |Wj-

∑ ti
n
i=1

m
|  m

j=1 ). 

 

In Nearchou’s [20] study, avg.c%dev and max.c%dev values of the related meta-heuristics are reported. In 

addition to those values, here, we also reported average deviations of best cycle times from the optimum 

(best.c%dev) to comment about the robustness of the algorithm. In Table 2, it can be seen that the best 

performance in terms of the primary objective (cycle time) was acquired by the proposed RTS algorihm. 

Even the max.%devs of the RTS algorithm are better than the avg.c%devs of the existing meta-heuristics. 

In regard with the secondary objective (workload smoothing), RTS algorithm achieved the highest 

performance in 6 out of the 7 test problems. Only, in Arcus1, RTS came 3rd with a MAD of 76,49 behind 

PSO3 with a MAD of 63,89 and MOGA1 with a MAD of 75,26.These observations are summarized in 

Figures 4 and 5. Figure 4 illustrates the avg.c%devs obtained by each meta-heuristic. Additionally,  average 

of worst cycle times (max.c%dev) for the proposed RTS algorithm are also displayed. Figure 5 demonstrates 

the average MAD values. For each separate benchmark problem, last two columns from the right in Figure 

4 and last column from the right in Figure 5 are associated with the results of the RTS algorithm. Success 

of the RTS algorithm can be clearly seen. 

 

Another criterion used when evaluating the success of meta-heuristic algorithms is the robustness of the 

algorithm. When Table 2 is examined, it is seen that the difference between the best.c%dev and max.c%dev 

values obtained by the RTS algorithm on the test problems are quite small. The largest gap belongs to 

Arcus1 with 0.32% (the corresponding max.c%dev and best.c%dev values are 0.44% and 0.12%, 

respectively). For the Kilbridge problem, this difference is 0. This means that in 9 instances dealt with for 
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the Kilbridge problem, the optimal result was achieved in all of the 10 trials with different random numbers. 

As a result, the RTS algorithm is quite robust. 

 

Table 2. Comparison of the outcomes acquired on benchmark problems (results for the existing meta-

heuristics are taken from Nearchou [20]) 
Problem N Method best.c%dev avg.c%dev max.c%dev MAD 

Buxey 29 PSO1 - 1,96 7,14 1,13 

  PSO2 - 5,88 12,00 1,72 

  PSO3 - 1,55 4,00 1,29 

  PSO4 - 5,01 12,00 1,47 

  MOGA1 - 8,79 17,86 2,71 

  MOGA2 - 7,86 22,22 2,13 

  RTS 0,00 0,19 0,27 0,87 

Sawyer 30 PSO1 - 2,24 3,85 1,14 

  PSO2 - 6,62 12,00 1,65 

  PSO3 - 1,60 3,85 1,12 

  PSO4 - 5,61 12,00 1,52 

  MOGA1 - 1,90 7,14 1,13 

  MOGA2 - 3,23 7,69 1,13 

  RTS 0,00 0,24 0,27 0,72 

 Gunther 35 PSO1 - 0,87 5,00 2,73 

  PSO2 - 3,88 7,94 3,46 

  PSO3 - 0,64 5,00 3,45 

  PSO4 - 3,92 10,00 3,11 

  MOGA1 - 8,84 20,37 5,04 

  MOGA2 - 2,64 11,11 3,74 

  RTS 0,00 0,02 0,19 2,18 

Kilbridge 45 PSO1 - 0,80 1,79 0,77 

  PSO2 - 1,64 4,35 1,11 

  PSO3 - 0,68 1,79 0,50 

  PSO4 - 1,78 4,84 1,06 

  MOGA1 - 10,47 16,13 8,30 

  MOGA2 - 0,94 1,79 0,73 

  RTS 0,00 0,00 0,00 0,30 

Tonge 70 PSO1 - 2,91 9,54 5,56 

  PSO2 - 5,99 14,69 8,69 

  PSO3 - 2,03 7,65 6,01 

  PSO4 - 5,82 14,12 7,66 

  MOGA1 - 1,60 8,02 3,25 

  MOGA2 - 4,14 10,90 4,66 

  RTS 0,04 0,09 0,14 1,06 

Arcus1 83 PSO1 - 1,42 4,22 86,03 

  PSO2 - 3,20 7,13 120,98 

  PSO3 - 0,70 2,07 63,89 

  PSO4 - 3,04 7,23 101,63 

  MOGA1 - 0,73 1,67 75,26 

  MOGA2 - 6,78 15,69 358,34 

  RTS 0,12 0,26 0,44 76,49 

Arcus2 111 PSO1 - 3,79 8,37 197,24 

  PSO2 - 6,67 15,31 308,36 

  PSO3 - 2,02 8,07 90,01 

  PSO4 - 5,77 13,21 277,12 

  MOGA1 - 1,88 6,74 76,21 

  MOGA2 - 10,85 21,29 749,35 

  RTS 0,10 0,19 0,39 22,65 
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Figure 4. Comperative results for the cycle times 

 

 
Figure 5. MAD   values obtained over the considered test problems 

 

5. CONCLUSION 

 

In this study, type-2 simple assembly line balancing problem with a secondary objective as workload 

smoothing is tackled by a RTS algorithm. The most significant differences of the suggested algorithm from 

the other TS algorithms in the literature which are proposed for the considered problem, are twofold: (1) It 

is based on reactive tabu search and (2) it employs a sequence oriented solution representation which is 

usually applied by population heuristics. The only tabu search algorithm that uses this type of solution 

representation belongs to Arıkan [28]. Proposed algorithm’s performance is demonstrated on 7 well-known 
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benchmark problems taken from the open literature by  comparing the results for both objectives with those 

of previously developed four particle swarm optimization (PSO) algorithms and two multi-objective genetic 

algorithms (MOGA). The experimental outcomes show that the proposed approach surpasses the 

performance of the existing meta-heuristics. 

 

For future research, the algorithm can be  designed to apply to other forms of ALBPs.  Moreover, the effect 

of different solution representations on tabu search and other meta-heuristic techniques can be investigated. 
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