

www.dergipark.org.tr/en/pub/mediterranean

Characterization of powdery mildew (*Leveillula taurica*) in globe artichoke (*Cynara scolymus*)

Enginarda (Cynara scolymus) külleme (Leveillula taurica) karakterizasyonu

Mehmet AYDOĞDU[®], Görkem SÜLÜ[®], İlker KURBETLİ[®]

Department of Plant Health, Batı Akdeniz Agricultural Research Institute, 07100, Antalya, Turkey

Corresponding author (*Sorumlu yazar*): M. Aydoğdu, e-mail (*e-posta*): mehmet9498@yahoo.com Author(s) e-mail (*Yazar*(*lar*) *e-posta*): gorkemsulu@gmail.com, kurbetli@gmail.com

ARTICLE INFO

Received 16 July 2020 Received in revised form 13 November 2020 Accepted 25 November 2020

Keywords:

Cyanara scolymus Leveillula taurica Characterization

ABSTRACT

Globe artichoke (Cynara scolymus L.) is an economically important plant that is mostly grown in Mediterranean Basin in the world. In 2016 and 2017, chlorotic spots on adaxial surface but white fungal patches abaxial surface of leaves of globe artichoke were observed in the Western Mediterranean Region of Turkey. To determine causal agent of these symptoms, leaf samples were taken sporadically in 2016, 2017 and 2020. Based on morphological and ITS sequence data, the causal agent was determined to be powdery mildew fungus Leveillula taurica (Lév.) G. Arnaud. Pathogenicity test was conducted using seedlings of globe artichoke in a greenhouse. Additionally, infections caused by the fungus were examined in a two-year field study. Several surveys were carried out according to simple random sampling method and a total of 79 farmer fields (570 da) were screened in the region. Disease incidence and prevalence of the powdery mildew in 2016 were 14.2 and 36.1%, while they were 30.1 and 53.4% in 2017, respectively. Mean disease incidence and prevalence in the both years were 22.1 and 45.5%, respectively. The disease was previously reported on globe artichoke in Italy, U.S.A., Spain and Egypt. To our knowledge, this is the first record of L. taurica causing powdery mildew on globe artichoke in Turkey and globe artichoke is a new host for L. taurica in Turkey.

MAKALE BİLGİSİ

Alınış tarihi 16 Temmuz 2020 Düzeltilme tarihi 13 Kasım 2020 Kabul tarihi 25 Kasım 2020

Anahtar Kelimeler:

Cynara scolymus Leveillula taurica Karakterizasyon

ÖZ

Enginar dünyada çoğunlukla Akdeniz havzasında yetiştirilen ekonomik olarak önemli bir bitkidir. 2016 ve 2017 yıllarında Türkiye'de Batı Akdeniz Bölgesinde enginar bitkilerinin yapraklarının üst yüzeylerinde klorotik fakat alt yüzeylerinde beyaz fungal alanlar gözlenmiştir. Bu belirtilere neden olan etmeni tespit etmek amacıyla 2016, 2017 ve 2020 yıllarında belirli aralıklarla yaprak örnekleri alınmıştır. Morfolojik ve ITS sekans verilerine dayanarak etmenin külleme fungusu *Leveillula taurica* (Lév.) G. Arnaud olduğu belirlenmiştir. Patojenisite testleri enginar fideleri kullanılarak serada yürütülmüştür. Ayrıca, fungusun neden olduğu enfeksiyonlar iki yıllık bir arazi çalışması ile araştırılmıştır. Hastalık surveyleri basit tesadüfi örnekleme yöntemine göre yapılmış olup toplam 79 üretici tarlası (570 dekar) bölgede incelenmiştir. 2016 yılında hastalık oranı ve yaygınlığı sırasıyla %14.2 ve %36.1 olurken 2017 yılında bunlar sırasıyla %30.1 ve %53.4 olmuştur. Her iki yılda ortalama hastalık oranı ve yaygınlığı sırasıyla %14.2 ne %45.5 olmuştur. Hastalık daha önce İtalya, A.B.D., İspanya ve Mısır'da enginarda rapor edilmiştir. Bildiğimiz kadarıyla bu, Türkiye' de *L. taurica*'nın enginarda külleme hastalığının etmeni olduğuna dair ilk kayıt ve enginar *L. taurica* için Türkiye'de yeni bir konukçudur.

1. Introduction

Globe artichoke (*Cyanara scolymus*), belongs to *Asteraceae*, is an herbaceous plant domesticated in Roman times (Sonnante et al. 2007). It contains bioactive phenolic compounds, inulin, fibre, minerals and cynarin (1,3-O-dicaffeoylquinic acid). Therefore, it is a functional food source and one of the essential components of the Mediterranean

cuisine (Lattanzio et al. 2009). Italy, Egypt and Spain are top producers of the crop with 389813, 323866 and 208463 t artichoke productions, respectively. With an annual 39477 t production, Turkey is 11th ranking place in the world (FAO 2020). However, the main threats to the production of globe artichoke are fungal diseases. In this regard, powdery mildews cause considerable yield and quality losses in globe artichoke (Elsisi and Shams 2019).

The causal agent (Leveillula taurica) of powdery mildew of globe artichoke is an obligate fungus infecting a wide range of economically important crops such as pepper, tomato, eggplant, onion and cotton (Zheng et al. 2013a). For example, in South and North America, yield losses from L. taurica are frequently reported in tomato and potato production areas (Glawe et al. 2004; Sepúlveda-Chavera et al. 2013). Yield losses caused by L. taurica reachs up to 40% in pepper production in Puerto Rico (Negron et al. 1991). Infection rate of the fungus can reach 100% in pepper plants in Canada (Cerkauskas et al. 2011). Infections of L. taurica begin as small chlorotic spots on lower leaves in pepper plants. At first, these symptoms might be overlooked. However, ensuing colonisation, the fungus produces its conidia and conidiophores on abaxial surface of the infected leaves. Spreading these conidia initiates new infections on other non-infected plants (Zheng et al. 2013b).

Similar infections occur in other hosts of L. taurica. With regard to globe artichoke, little is known about infections and effects of L. taurica on production of the crop. Although it is stated that L. taurica is one of the major problems in globe artichoke production in California (U.S.A.), Italy, Spain, and Egypt (Snowdon 2010; Elsisi and Shams 2019). Little is known about powdery mildew fungus of globe artichoke. Occurrence of powdery mildew on globe artichoke was just reported without elaborating infections of L. taurica (Correll et al. 1987). Likewise, in Turkey, so far, there has been no study about it. The aims of the this study are i) reporting for the first time occurrence of powdery mildew on globe artichoke in Turkey, ii) characterising the causal agent of powdery mildew, and iii) examining incidence, prevalence and effects of the disease on globe artichoke production in the Western Mediterranean Region of Turkey.

2. Materials and Methods

2.1. Surveys

Surveys were conducted in eight locations (Muratpaşa, Kepez, Döşemealtı, Aksu, Serik, Manavgat, Gazipaşa and Kumluca) in Antalya province in the Western Mediterranean Region of Turkey in 2016 and in 2017. Simple random sampling method was used in the surveys (Bora and Karaca 1970; Aktaş 2001).

2.2. Identification of powdery mildew fungus

2.2.1. Morphological identification

At least 50 conidia and conidiophores were measured from each leaf sample. Measurements were performed using an Olympus BX43 microscope with SC100 digital colour camera.

2.2.2. Molecular identification

A total of four samples, designated as Gzp-2016, Gzp-2017, Srk-2017 and Kck-2020, were studied for molecular diagnose. Conidia on abaxial surface of the leaf samples were transferred into eppendorf tubes. DNA of the samples was extracted according to DNA purification protocol of Promega. After DNA extraction, rDNA fragments were amplified using primer pairs ITS-1 (5' TCC GTA GGT GAA CCT GCGG 3') and ITS-4 (5' TCC TCC GCT TAT TGA TATGC 3') (White et al. 1990). Amplifications were conducted in a SimpliAmp Thermocycler (Applied Biosystems, USA) and consisted of 1 cycle at 94°C for 3 min, followed by 35 cycles at 94°C for 30 s, annealing temperature at 58.5°C for 1 min, 72°C for 1 min, with a final extension at 72°C for 7 min. PCR products were separated in 2% agarose gels, stained with safe DNA dye and visualized under UV light. Sequence analysis was performed by GENOKS (Çankaya-Ankara). The ITS sequences of the isolates, Gzp-2016, Gzp-2017, Srk-2017 and Kck-2020, were deposited at GenBank with the accession numbers of KX709873, MF327257, MF327258 and MT573880, respectively.

In addition, to compare relatedness of our isolates with the other isolates in the genbank at NCBI, a phylogenetic tree was constructed using neighbour-joining method in MEGA version 7.0 program.

2.2.3. Scanning electron microscope (SEM) visualization

Conidia of *L. taurica* were taken from newly emerging white fungal patches underside of leaves of globe artichoke via cellophane. They were put to stubs and coated with a gold-palladium layer. Afterwards, they were viewed under scanning electron microscope (SEM) (ZEISS LEO 1430, Germany). This process was done in the Medicine Faculty of Akdeniz University. Surface patterns of primary and secondary conidia were examined.

2.3. Pathogenicity test

Pathogenicity test described by Kavak (2004) was modified and used in the present study. Nine-week-old artichoke seedlings were transplanted into pots (25×25 cm) in a greenhouse. Three seedlings were inoculated by dusting diseased leaves on water-misted leaf surfaces. Afterwards, they were covered with polyethylene bags. In the controls, no inoculation was done. Seedlings were kept at 25 to 30°C with 70 to 80% relative humidity. After three days, polyethylene bags were removed. Fifteen days after inoculation, disease symptoms occurred like those observed in the field in inoculated plants, while no disease symptoms were seen in the control plants.

2.4. Determination of disease incidence and prevalence of powdery mildew

Sampling was done by proceeding in the direction of diagonal lines of the each field surveyed. A total of 100 plants were randomly selected and evaluated in terms of persence of powdery mildew. Disease incidence (DI) for each field surveyed was determined using formula below (Bora and Karaca 1970; Aktaş 2001).

DI (%)= Number of diseased plants \div Total number of the plants $\times\,100$

Disease prevalence (DP) in each field was detected according to formula below (Bora and Karaca 1970).

DP (%)= \sum DI \times Field area (da) \div Total field area investigated \times 100

3. Results

3.1. Characterization of L. taurica

Morphological features of the fungus were described as: conidiophores were 177.3-271.1 \times 4.7-7.0 $\mu m,$ developing from

internal mycelium and emerging through stomata singly or in groups of one to five with dimorphic conidia (Figure 1).

Primary conidia were lanceolate, 43.3 to 67.0×17.6 to 27.1 µm, length/width ratio, 2.6-2.5; secondary conidia were ellipsoid to cylindrical, and measured 45.2 to 75.7×15.8 to 23.5 µm, length/width ratio, 3.2-3.0 (Table 1). These morphological features were very similar to *L. taurica* on globe artichoke identified by Correll et al. (1987).

The ITS sequences of the isolates, Gzp-2016, Gzp-2017, Srk-2017 and Kck-2020, were deposited at GenBank with the accession numbers of KX709873, MF327257, MF327258 and MT573880, respectively. The sequences of the isolates displayed a 99% homology with the isolates (e.g. KF703447, MT125857, GQ860947 and KU886148) of *Leveillula taurica* in the genbank (http://www.ncbi.nlm.nih.gov). Eventually, based on the morphological and molecular data, the fungus was identified as *Leveillula taurica* (Lev.) Arn. (Khodaparast et al. 2001; George and Fox 2014). One example showing alignment of the isolate Gzp-2016 (KX709873) with other *Leveillula taurica* isolates at NCBI was given in Figure 2.

Surface of primary conidium was outcropping with wart like points. However, surface of secondary conidium was wrinkled with a net of oblong meshes covering almost all the surface area (Figure 3). These micromorphological features were pertained to *L. taurica* (Braun and Cook 2012).

The isolate (AB044991) of *L. taurica* was the closest match with our isolates in the phylogenetic tree (Figure 4).

3.2. Disease symptoms on globe artichoke in the field

Symptoms of powdery mildew on globe artichoke were as follows: yellowish spots with irregular margins were observed on the upper surfaces of the infected leaves, while grayish-white fungal masses were detected on the lower surface of those leaves (Figure 5).

These symptoms were initially observed on lower old leaves in globe artichoke plants. As the disease progressed, the similar symptoms were seen upper young leaves of the plants. Powdery mildew fungus (*L. taurica*) mostly caused leaf infections in globe artichoke. These symptoms are typical for the disease. However, apart from the leaves, in severe infections, disease symptoms occurred as white fungal patches on flower bracts of head of globe artichoke plants (Figure 6).

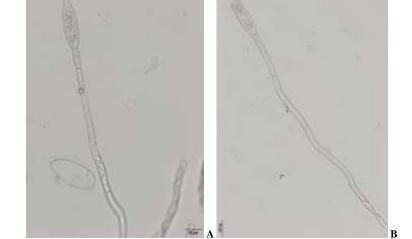


Figure 1. Conidiophores bearing immature primary conidium (A) and secondary conidium (B) of L. taurica (scale bar= 50 µm).

Isolate code/ (accession numbers)	Conidiophores (length \times width) (μ m)	Mean	Primary conidia (length × width) (µm)	Mean	Length/ width ratio (µm)	Secondary conidia (length × width) (µm)	Mean	Length/ width ratio (µm)
Gzp-2016 (KX709873)	185.9 - 270.0 × 4.8 - 6.3	220.1 × 5.4	43.8 - 66.1 × 18.0 - 26.0	54.8 × 21.9	2.6	46.7 - 74.2 × 16.4 - 22.4	59.9 × 19.1	3.1
Gzp-2017 (MF327257)	192.7 - 259.4 × 5.1 - 6.5	225.6 × 5.8	44.0 - 65.5 × 17.6 - 26.6	55.2 × 22.5	2.5	47.0 - 75.7 × 17.2 - 22.6	60.8 × 19.8	3.0
Srk-2017 (MF327258)	197.4 - 271.1 × 5.0 - 6.7	234.3 × 5.9	43.3 - 66.7 × 17.8 - 27.0	55.7 × 22.0	2.6	46.4 - 75.1 × 17.8 - 23.0	60.5 × 19.4	3.1
Kck-2020 (MT573880)	177.3 - 264.9 × 4.7 - 7.0	237.9 × 5.2	43.9 - 67.0 × 17.7 - 27.1	54.9 × 22.2	2.5	45.2 - 74.4 × 15.8 - 23.5	59.6 × 19.0	3.2

Table 1. Morphological features of the isolates from different locations and years in globe artichoke growing felds of Antalya province

21	select all (10) requirers selected	Gen	illan#	Grant	m (listance in	tance have of results.	
	Description			Gamy Court		(Pas Atore	Assessor	
	Levelade burks website GZP internal transmitted spacer 1, partial sequence, 5.85 chanceral IRM game, cangidate sequence, and internal tran	1005	1066	100%	0.0	100.00%	KKZENET3.4	
	Levelbin busing youther KUS-F28536 small subwritelikersend FNA gern, period sequence internal transmised sugger 1, 5.05 ricesonal Hit		1058	100%	9.0	75 675	MHHOREST.1	
	Levellula taurica tudate PNFLT16001 155 chanomal RNA peris partial sequence internal basicrified spacer 1.5.85 channel RNA peris a	1058	1050	102%	0.0	99.40%	KLIDOGTAB.3	
	Levellula taorica resolver BPI 252677 193 ribssomal RNA yere, partial seguence, internal harmolited spaces 1, 3,85 ribssomal RNA yere, a	1050	1050	100%	0.0		KF. PROMAT. 1	
2	Leventhale teaction involves FM/TU099074 105 observed RNA genes, worked sequence. Internal transcribed spaces 3, 5,85 observed RNA genes, and		1050	300%	8.0		JUREAT DAY	
	Levellula taurius vescher Long group 180 chesonial RNA enne partial sessiones, internal transmitted spacer 1, 5,30 chesonial RNA pene a	1098	1050	100%	0.0		JOHIGANS.	
2	Lengthdy laurice shale WSP71133 185 (bosonal ENA your partial sessence internet transcribed spaces 1. § 85 (bosonal HNA your and		1050	100%	0.0	99.45%	AV912077	
2	Localitate tensors protection: TMM / 9013030 small advant observal ENA gene, partial sequence: internal transcribed spaces 1, 5, 03 riborated	10.46	1046	100%	0.0	99.31%	M14/2006	
	Levelikide taurius vouches HMUT (191155-2-183 observeral (INA gene, surfail sequence, internal transcribed spacer, 1, 5,85 observeral RNA ge	1546	1545	103%		9531%	MGR012M	
2	Levellinis Source voucher HMUT DR1155-1 185 chassenal FINA gene methal sequence: Internal transcribed spacer 1, 5 05 discussed RNA on			100%	0.0	99.31%		
2	Levellike Jource routher TMM F0533664 unal schweit absormal RNA game, auflief sequence, internal transcribed seasor 1, 5, 55 absormat			100%		99.31%	1	
2	Lensifieta Jaurica Instana DAGEGE 10.1.105: chronomat RNA parts. partial servence. Internal Statuctional spacer 1. 5.05: chronomat RNA parts. an			98%	0.0	99,66%		
	Levellula Sector sporter KUTI F29221 185 record RNA pres. partial second a second statements internal second apacer 1. 5.85 record RNA pres.			100%	- 88	99.14%	KYDDD30	
	Levelbile teams indete LICAPS-Aux internet transcribed seasor 3, partial properties, 5,85 (brownal RNA gene and internet transcribed sea	1037	1037	50%	8.0	99.65%	MT12685	
	Levellors tourica todate LIGAPS Hill Internal transcribed spacer 1, partial sequence 1,83 (becomal RNA gene and internal transcribed spacer 1	1037	1037	50%	0.0	99.65%	MILIZIER	
	Levelhola lactorian samples smoother CL 25552 anali subset stansmal RNA game partial sequence internal transmitted spacer 1 5.03 char	1 1533	1033	1009	6 0.0	56.96%	MERINA	
	Levelbyte because periodise emphase OL35501 emet suburit (Becomal PNA series period associate accord transcribed spaces 1.5.85 obs-	1035	103	1. 1001	0.0	98.96%	MGRIDA	
	Levellus touries youther Kill same 115 recorned RNA press and al sequence internal instructional spaces 3-5. IS characterial RNA open, and	1 1031	103	1 1.001	6 00	98,795	A 3088544	
	Levelbia tautha synches BRP 58343 internal transcribed specer 3 metal sequence 5 85 ritoternal RNA owner correlate sequence and b	103	103	1 975	0.0	99.651	MT174E	
	eventuals barries which we dollar sample internet manacritical posters 1 mential sequences 6.00 returning BBIA menti consiste sequences and a	105	1 103	1 979	6 0.0	.09.653	MT1742	
	Level Rule Service vencher BRM 63342 internet naturalited spaces 1. social sequence 5.850 dissonal RMA more consolets sequence, and a	11 153	1 103	1 975	6 0.0	99.657	s MT1142	
	eventual particul sectors (DACH) 190 small suburit microanal BNA gene partial sequence. Isturnal transcribed space: 1 and 5 d5 elevanual	g 102	6 192	6 581	6. 0.5	0 99.121	MOLTH	
	remains partical leaders under a state resolution and the second state and a second state and the second state and the second SNA per-	152	6 103	001 0	N 0.0	90.79	S REPRES	

Figure 2. The picture showing alignment of the isolate Gzp-2016 (KX709873) with other Leveillula taurica isolates at NCBI.

Figure 3. Surface patterns of primary (A) and secondary (B) conidia of L. taurica.

3.3. Incidence and prevalence of powdery mildew

Surveys of powdery mildew were carried out in eight locations (Muratpaşa, Kepez, Döşemealtı, Aksu, Serik, Manavgat, Gazipaşa and Kumluca) in Antalya province. In 2016, a 245 da artichoke growing area was surveyed, whereas in 2017 surveyed area was 325 da. Surveyed areas in both years constituted 34.8% of the total artichoke growing areas. Powdery mildew was observed in 36 farmer fields. In 2016, disease incidence was 14.2%, while it was 30.1% in 2017. Disease prevalence was 36.1% in 2016, whereas it was 53.4% in 2017. Disease incidence and prevalence were on average 22.1 and 45.5% in the both years, respectively (Table 2).

The first symptoms of the disease was established in April and infections continued until at the end of June. Meteorological data of this period (April-June) was given in Table 3.

4. Discussion

In the present study, fungal structures (conidiophores, primary and secondary conidia) of anamorphic stage of Leveillula taurica (Lév.) G. Arnaud were observed on diseased plants in the surveyed fields. However, no fungal formations of teleomorphic stage of the fungus were detected. Similarly, the teleomorphic stage of L. taurica was not observed on pepper (Cerkauskas et al. 2011) and caper plants (Capparis spinosa) plants in Italy (Bubici 2014). In addition, no teleomorphic stage of L. taurica was not detected on chickpea and Cleome spinosa plants in U.S.A. and Brazil (Attanayake et al. 2008; Carlos and Soares 2012). These findings indicate that without the need to form teleomorphic stage, L. taurica can maintain its survival by infecting other potential hosts surrounding all year round. This is probable for the Mediterranean region. Because, in this region, various agricultural crops including main hosts (e.g. tomatoa, potato, eggplant, cotton) of L. taurica are cultivated

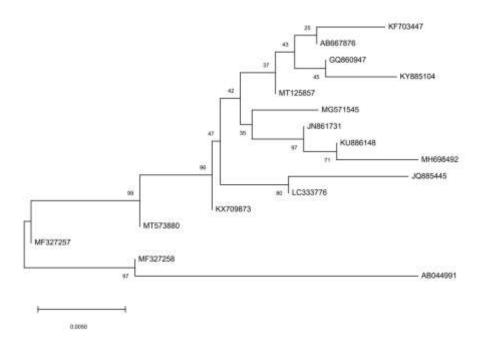


Figure 4. Phylogenetic tree constructed with *L. taurica* isolates displaying 99% homology with our isolates (KX709873, MF327257, MF327258 and MT573880).

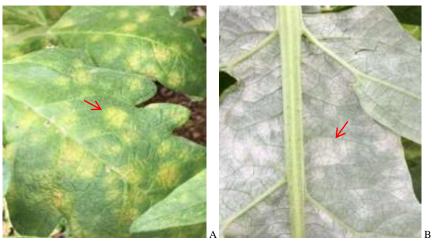


Figure 5. Yellow spots on adaxial surface (A) and white fungal masses (conidiophores and conidia) of *L. taurica* on abaxial surface of infected leaves of globe artichoke (B).



Figure 6. White powdery patches of L. taurica on flower bracts of globe artichoke.

County	ar	vation rea la)	Locations	a	veyed rea la)	surv	ber of eyed eld	incic	ease lence %)	field number	of diseased s /Total of surveyed ields	preva	ease alence %)
	2016	2017		2016	2017	2016	2017	2016	2017	2016	2017	2016	2017
Muratpaşa	10	5	Ermenek Topçular	10	5	2	2	12.4	28.0	1/2	1/2	50.0	50.0
Kepez	100	100	Gaziler	10	10	1	1	13.0	26.0	1/1	1/1	100.0	100.0
Döşemealtı	25	25	-	-	-	-	-	-	-	-	-	-	-
Aksu	255	255	Kundu Kurşunlu	10	10	2	1	12.0	26.0	1/2	1/1	50.0	100.0
Serik	600	600	Abdurrahmanlar Karadayı Yanköy Gebiz Çandır Karıncalı Tekkeköy	100	150	15	18	16.5	32.2	6/15	9/18	40.0	50.0
Manavgat	60	62	Cevizler Doğançam	-	25	-	5	-	34.5	-	2/5	-	40.0
Gazipaşa	380	345	Bakılar Ekmel Koru Pazarcı	65	75	12	12	15.4	30.2	3/12	7/12	25.0	58.3
Kumluca	50	50	Hasyurt Sarıcasu	50	50	4	4	16.0	34.0	1/4	2/4	25.0	50.0
Total	1490	1452		245 5	325 70	36 7	43 9	14.2 22	30.1 2.1	13/36 3	23/43 6/79	36.1 4	53.4 5.5

Table 2. Artichoke growing areas of Antalya province, number of fields screened and areas surveyed in 2016 and 2017.

	able 3. Meteorological data of the locations surveyed in 2016 and 2017 (MEVBIS 20	18).
--	---	------

. .		Mean temp	erature (°C)	Mean relative	humidity (%)	Total rainfall	
Location	Months	2016	2017	2016	2017	2016	2017
Muratpaşa	April	19.1	17.7	68.1	62.3	14.4	46.8
Kepez	April	19.1	17.7	68.1	62.3	14.4	46.8
Aksu	April	18.2	16.4	68.7	69.3	10.4	28.8
Serik	April	19.3	17.0	59.6	61.0	12.0	69.0
Manavgat	April	19.3	17.2	65.1	66.3	0.0	75.7
Gazipaşa	April	18.5	16.9	62.6	61.0	12.8	48.2
Kumluca	April	17.6	15.7	69.1	70.2	31.3	27.0
Muratpaşa	May	20.4	21.3	72.9	67.7	28.2	38.
Kepez	May	20.4	21.3	72.9	67.7	28.2	38.
Aksu	May	20.3	20.5	67.1	73.9	15.6	35.2
Serik	May	20.7	21.1	63.1	64.1	26.7	86.4
Manavgat	May	20.8	21.3	68.6	69.4	0.0	60.
Gazipaşa	May	20.4	20.5	64.0	64.3	61.2	55.0
Kumluca	May	19.8	19.5	66.3	71.9	6.6	32.8
Muratpaşa	June	26.9	26.3	62.8	63.1	24.5	3.3
Kepez	June	26.9	26.3	62.8	63.1	24.5	3.3
Aksu	June	26.1	25.6	61.6	66.9	18.2	0.0
Serik	June	27.4	26.3	51.8	59.4	15.1	3.6
Manavgat	June	27.2	26.1	57.2	65.3	0.0	0.0
Gazipaşa	June	26.3	24.9	54.4	61.1	0.0	0.0
Kumluca	June	25.2	24.5	58.3	62.7	0.6	0.0

year round. Moreover, apart from the agricultural crops, weeds may serve as a host for *L. taurica* as well. For example, field bindweed (*Convolvulus arvensis* L.) might be an inoculum source of *L. taurica* (Karkanis et al. 2012). In addition, climate of the Mediterranean prevailing in the region is extremely suitable for maintaing anamophic stage of the fungus. In fact, genus *Leveillula* is distributed in warm, arid areas of Africa, Asia, South America, southern Europe, and the western parts of North America. Species within the genus are adapted to xerophytic conditions (Agrios 2005; Braun and Cook 2012). Considering all of these, it may be concluded that *L. taurica* may not form its teleomorphic stage if the conditions are favourable for the fungus.

In our study, there were variations in size of primary, secondary conidia and conidiophores of the isolates of L. taurica. Likewise, morphological variations of L. taurica were reported on various hosts (e.g. Jones et al. 2009; Glawe et al. 2010; He et al. 2012; Romberg et al. 2014; García-Gaytán et al. 2016; Choi et al. 2019). Moreover, Cerkauskas et al. (2011) reported significant morphological differences in size between L. taurica isolates from greenhouse-grown peppers and fieldgrown peppers. All of these imply that even in the same host plant, L. taurica may display morphological variations. However, in our study, morphology (primary and secondary conidia size) of our isolates was close to the measurements of L. taurica on globe artichoke reported by Correll et al. (1987). In addition, among the L. taurica isolates displaying a 99% homology with our isolates in the genbank, the closest one was the isolate (AB044991) of L. taurica from Cirsium arvense that is a perennial weed species of Asteraceae. These corroborated our finding of L. taurica isolates detected on globe artichoke (Asteraceae).

Unlike other powdery mildew fungus, L. taurica is endophytic nature advancing intercellularly and colonising mesophyll cells of leaf. As a result of this infection pattern, initially, chlorotic spots appear on adaxial surface of on leaves. But, the fungus forms its conidia and conidiophores on abaxial surface of the infected leaves. These fungal masses are seen as white fungal patches (Zheng et al. 2013b). Likewise, in our study, similar symptoms of powdery mildew occurred on leaves of globe artichoke. In addition to leaf infections, white fungal patches of L. tauica occurred on flower bracts of the globe artichoke plants in severe infections. Bratsch (2014) also reported that L. taurica could infect foliage of globe artichoke including flower bracts. In another study, L. taurica caused infections on leaves and stems of caper plant (Capparis spinosa) (Bubici 2014). In this regard, Agrios (2005) stated that apart from leaves, powdery mildew fungi could infect young shoots and stems, buds, flowers and young fruits. These may vary depending on powdery mildew fungus, host plant and environmental conditions. For example, in our study, powdery mildew symptoms aforementioned on flower bracts of globe artichoke occurred in severe infections in 2017.

Disease incidence and prevalance of powdery mildew were much higher in 2017 than 2016. This may have been related to the differences in environmental conditions of the both years. There were no distinct differences among mean temperatures of growing seasons in the both years (Table 3). However, mean relative humidity and in particular total rainfall in 2017 were considerably higher than 2016. This may have had an influence on the variations detected in disease incidence and prevalence of the both years. Because, relative humidity and wetness of foliage in plants are important environmental factors affecting infections of powdery mildew fungi. For example, in a study, relative humidity levels ranging from 20 to 40% decreased conidia germination of L. taurica. However, relative humidity levels varying from 50 to 70% increased conidia germination of the fungus (Guzman-Plazolaa et al. 2003). Favourable conditions for infection of L. taurica are mild temperatures ranging from 15 to 30°C with relative humidity (60 to 100%) (Zayan 2016). Depending on these variables, disease infections

in 2017 may have been more severe than 2016.

Powdery mildew fungi rarely kill their hosts but use their nutrients, reduce photosynthesis, increase respiration and transpiration. As a result, they cause disruption in plant growth and consequently decrease in yield up to 20 to 40% (Agrios 2005). In our study, considering disease incidence, mean of infection rate of L. taurica was 22.1%. This implies that L. taurica could cause considerable infection rates on globe artichoke in the Western Mediterranean region of Turkey. With regard to host, in a study, L. taurica was inoculated from pepper to various plant species to detect fungus's host range. As a result, different host responses ranging from highly susceptible to partially resistant were found. For example, globe artichoke was classified as highly susceptible host to L. taurica (de Souza and Café-Filho 2003). These findings indicate that L. taurica is not only a potential threat for globe artichoke but also for other crops.

In Turkey, *L. taurica* was reported on various crops such as sainfoin (Karakaya 1998), alfalfa (Eken and Demirci 2001), leek (Kurt et al. 2004), tomato (Ozan and Maden 2006), eggplant (Ozan and Aşkın 2006), hollyhock (Kavak and Dikilitas 2006). To our knowledge, globe artichoke is a new host for *L. taurica* in Turkey. In addition, the fungus was previously reported on globe artichoke in Italy, Morocco, Egypt, Israel, Spain and U.K. (Snowdon 2010). However, to our knowledge, this is the first record of *L. taurica* causing powdery mildew on globe artichoke in Turkey.

Acknowledgements

This study was appeared as a result of the project (TAGEM-BS-15/09-10/02-10) supported by General Directorate of Agricultural Research and Policies.

References

Agrios GN (2005) Plant pathology. Elsevier Academic Press, London.

- Aktaş H (2001) Önemli hububat hastalıkları ve survey yöntemleri. Tarım ve Köy İşleri Bakanlığı Bitki Sağlığı Araştırmaları Daire Başkanlığı, Ankara (in Turkish).
- Attanayake KPRN, Glawe DA, McPhee KE, Dugan FM, Chen W (2008) First report of powdery mildew of chickpea (*Cicer* arietinum) caused by *Leveillula taurica* in Washington State. Plant Health Progress. doi: 10.1094/PHP-2008-0702-01-BR.
- Bora T, Karaca I (1970) Bitki hastalıkları sürveyi kültür bitkilerinde hastalığın ve zararın ölçülmesi. Ege Üniversitesi Ziraat Fakültesi Yardımcı Ders Kitabı, Yayın No: 167 Ege Üniversitesi Matbaası, Bornova (in Turkish).
- Bratsch A (2014) Specialty Crop Profile: Globe Artichoke. https://pubs.ext.vt.edu/content/dam/pubs_ext_vt_edu/438/438-108/438-108_pdf.pdf. Accessed 6 July, 2020.
- Braun U, Cook RTA (2012) Taxonomic manual of the erysiphales (Powdery Mildews). CBS Biodiversity Series No. 11. CBS, Utrecht, The Netherlands.
- Bubici G (2014) First report of *Leveillula taurica* on *Capparis spinosa* in Italy. Journal of Plant Pathology 96(4): S4.113-S4.131.
- Carlos AC, Soares DJ (2012) The anamorphic state of *Leveillula taurica* recorded on *Cleome spinosa* in north-eastern Brazil. Mycosphere 3(3): 289-292.
- Cerkauskas RF, Ferguson G, Banik M (2011) Powdery mildew (*Leveillula taurica*) on greenhouse and field peppers in Ontariohost range, cultivar response and disease management strategies. Canadian Journal of Plant Pathology 33(4): 485-498.

- Choi IY, Jang SJ, Oh HT, Shin HD (2019) First report of powdery mildew caused by *Leveillula taurica* on *Cucurbita ficifolia* in Korea. Plant Disease 103(3): 586.
- Correll JC, Gordon TR, Elliott VJ (1987) Host range, specificity, and biometrical measurements of *Leveillula taurica* in California. Plant Disease 71: 248-251.
- de Souza VL, Café-Filho AC (2003) Resistance to *Leveillula taurica* in the genus capsicum. Plant Pathology 52: 613-619.
- Eken C, Demirci E (2001) The distribution and pathogenicity of the fungal pathogens determined from alfalfa plants in Erzurum province. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 32(2): 143-150.
- Elsisi AA, Shams AS (2019) Controlling of Artichoke powdery mildew and improving vegetative growth and yield productivity by using Dl- β-aminobutyric acid (BABA) with some natural essential oils. Middle East Journal of Applied Sciences 9(2): 443-455.
- FAO (2020) FAOSTAT. http://www.fao.org/faostat/en/#data/QC. Accessed 10 July, 2020.
- García-Gaytán V, García-Morales S, Silva-Rojas HV, Trejo-Téllez LI, Gómez-Merino FC (2016) First report of powdery mildew in chilhuacle chili (*Capsicum annuum*) caused by *Leveillula taurica* in Southern Mexico. Plant disease 100(11): 2325.
- George RAT, Fox RTV (2014) Diseases of Temperate Horticultural Plants. Gutenberg Press, Tarxien, Malta.
- Glawe DA, du Toit LJ, Pelter GQ (2004) First report of powdery mildew on potato caused by *Leveillula taurica* in North America. Plant Health Progress doi: 10.1094/PHP-2004-1214-01-HN.
- Glawe DA, Barlow T, Eggers JE, Hamm PB (2010) First report of powdery mildew caused by Leveillula taurica of field-grown sweet pepper (*Capsicum annuum*) in the Pacific Northwest. Plant Health Progress doi: 10.1094/PHP-2007-0708-01-BR.
- Guzman-Plazolaa RA, Davis RM, Marois JJ (2003) Effects of relative humidityand high temperature on spore germination and development of tomato powdery mildew (*Leveillula taurica*). Crop Protection 22(10): 1157-1168.
- He G, Xu B, Song JG, Zhang LL, Zhao ZY, Wang G (2012) First report of powdery mildew caused by *Leveillula taurica* on *Cynanchum kashgaricum* in China. Plant Disease 96(9): 1373.
- Jones RW, Stommel JR, Wanner LA (2009) First report of *Leveillula taurica* causing powdery mildew on pepper in Maryland. Plant Disease 93(11): 1222.
- Karakaya A (1998) Leveillula taurica on Onobrychis viciifolia in Turkey. Mycotaxon 66: 359-361.
- Karkanis A, Bilalis D, Efthimiadou A, Katsenios N (2012) Effects of field bindweed (*Convolvulus arvensis* L.) and powdery mildew [*Leveillula taurica* (Lev.) Arn.] on pepper growth and yield. Horticultural Science (Prague) 39: 135-138.
- Kavak H (2004) Epidemic outbreaks of powdery mildew caused by Leveillula taurica on Capparis spinosa in Turkey. Plant Pathology 53: 809.
- Kavak H, Dikilitas M (2006) Powdery mildew caused by *Leveillula* taurica on Alcea rosea in Turkey. Australasian Plant Disease Notes 1: 7-8.
- Khodaparast SA, Takamatsu S, Hedjaroude G (2001) Phylogenetic

structure of the genus Leveillula (Erysiphales: Erysiphaceae) inferred from the nucleotide sequences of the rDNA ITS region with special reference to the *L. taurica* species complex. Mycological Research 105: 909-918.

- Kurt S, Soylu S, Soylu EM, Tok FM (2004) First report of powdery mildew caused by *Leveillula taurica* on leek (*Allium porrum* L.) in Turkey. New Disease Reports 8: 33.
- Lattanzio V, Kroon PA, Linsalata V, Cardinali A (2009) Globe artichoke: a functional food and source of nutraceutical ingredients. Journal of Functional Foods 1: 131-144.
- MEVBİS (2018) T.C. Tarım ve Orman Bakanlığı Meteoroloji Genel Müdürlüğü meteorolojik veri bilgi sunum ve satış sistemi. https://mevbis.mgm.gov.tr/mevbis/ui/index.html#/Workspace. Accessed 5 November, 2018.
- Negron JA, Rodriguez R, Aviles L (1991) Fungicide evaluation for control of powdery mildew, *Leveillula taurica* (Lev.) Am., of peppers in Puerto Rico. The Journal of Agriculture of the University of Puerto Rico 75(2): 119-123.
- Ozan S, Maden S (2006) Powdery mildew diseases of tomato. Selçuk Üniversitesi Ziraat Fakültesi Dergisi 20(38): 126-135.
- Ozan S, Aşkın A (2006) Studies on fungal diseases of protected vegetable areas in central Anatolia region. Bitki Koruma Bülteni 46(1-4): 65-75.
- Romberg MK, Kennedy AH, Ko M (2014) First Report of the powdery mildews *Leveillula taurica* and *Podosphaera pannosa* on rose periwinkle in the United States. Plant Disease 98(6): 848.
- Sepúlveda-Chavera G, Salvatierra-Martínez R, Andía-Guardia R (2013) The alternative control of powdery mildew complex (*Leveillula taurica* and *Erysiphe* sp.) in tomato in the Azapa Valley, Chile. Ciencia e Investigacion Agraria 40(1): 119-130.
- Snowdon AL (2010) A Colour atlas of post-harvest diseases and disorders of fruits and vegetables. University of Cambridge, Manson Publishing Ltd. London, UK.
- Sonnante G, Pignone D, Hammer K (2007) The Domestication of artichoke and cardoon: from roman times to the genomic age. Annals of Botany 100: 1095-1100.
- White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: A Guide to Methods and Applications, eds. Innis MA, Gelfand DH, Sninsky JJ, White TJ Academic Press, Inc. New York, pp. 315-322.
- Zayan SA (2016) Relation between climatic cariables and tomato powdery mildew caused by *Leveillula taurica*. Egyptian Journal of Phytopathology 44(1): 1-10.
- Zheng Z, Nonomura T, Bóka K, Matsuda Y, Visser RGF, Toyoda H, Kiss L, Bai Y (2013a) Detection and quantification of *Leveillula taurica* growth in pepper leaves. Phytopathology 103: 623-632.
- Zheng Z, Nonomura T, Appiano M, Pavan S, Matsuda Y, Toyoda H, Wolters A-MA, Visser RGF, Bai Y (2013b) Loss of function in Mlo orthologs reduces susceptibility of pepper and tomato to powdery mildew disease caused by *Leveillula taurica*. PLoS One 8(7): e70723.