Marker-assisted introgression of myostatin from Texel to Ramlıç sheep: Growth and real-time ultrasound carcass traits in F₁ and BC₁ lambs

Koray ÇELİKELOĞLU^{1,a,⊠}, Mustafa TEKERLİ^{1,b}, Metin ERDOĞAN^{2,c}, Serdar KOÇAK^{1,d}, Ebubekir YAZICI^{3,e}, Özlem HACAN^{1,f}, Zehra BOZKURT^{1,g}, Samet ÇİNKAYA^{1,h}, Mustafa DEMİRTAŞ^{1,i}

¹Department of Animal Science, Faculty of Veterinary Medicine, Afyonkarahisar, TURKEY; ²Department of Veterinary Biology and Genetics, Faculty of Veterinary Medicine, Afyonkarahisar, TURKEY; ³Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Afyonkarahisar, TURKEY.

> ^aORCID: 0000-0002-1610-2226; ^bORCID: 0000-0002-8634-1193; ^cORCID: 0000-0003-0975-1989; ^dORCID: 0000-0002-7832-887X; ^eORCID: 0000-0002-1219-4370; ^fORCID: 0000-0001-6340-1117; ^gORCID: 0000-0001-8272-7817; ^hORCID: 0000-0003-0736-4571; ⁱORCID: 0000-0002-8349-9649

[⊠]Corresponding author: kcelikeloglu@aku.edu.tr Received date: 15.09.2020 - Accepted date: 16.02.2021

Abstract: The aim of the study was to evaluate live weights, body measurements, and real-time ultrasound carcass traits of F_1 and BC_1 genotypes in a marker assisted introgression (MAI) process. Effects of some factors on live weight and body measurements including ultrasonographic assessments in *Musculus longissimus dorsi* (MLD) were investigated at the F_1 (n=51) and BC_1 (n=99) cross lambs born in 2015 – 2017 period. Variance analysis showed that genotype had significant (P < 0.001) effect on pre- and post-weaning growth characteristics. The birth type had significant (P < 0.05) effect on pre- and post-weaning growth traits. Live weights at twelve months of age were higher in heavier born lambs. The growth performance of F_1 lambs was between Texel and Ramlıç. Myostatin heterozygous BC₁ lambs had been potentially heavier than the non-carriers and pure Texel. MLD depth and area were also statistically higher (P < 0.05) in BC₁ lambs carrying myostatin than non - carriers. As a result, the beginning phase of introgression processes implemented was found to be successful.

Keywords: Crossing, introgression, myostatin, Ramlıç, Texel.

Miyostatin mutasyonunun Teksellerden Ramlıçlara belirteç yardımlı aktarımı: F₁ ve G₁ kuzularda büyüme ve gerçek zamanlı ultrasonografik karkas özellikleri

Özet: Bu çalışma, miyostatin mutasyonunun belirteç yardımlı aktarım yöntemi ile Teksellerden Ramlıç koyunlarına geçirilmesi sırasında F₁ ve G₁ kuzularda büyüme ve ultrasonografik karkas özelliklerindeki değişimi belirlemek amacıyla yapılmıştır. 2015 - 2017 sezonlarında doğan F₁ (n = 51) ve G₁ (n = 99) kuzularda canlı ağırlık, vücut ölçümleri ve belgözü kasının (*Musculus longissimus dorsi*) ultrasonografik değerlendirmeleri üzerine kimi faktörlerin etkileri araştırılmıştır. Varyans analizi sonuçları, genotipin sütten kesim öncesi ve sonrası büyüme özellikleri üzerinde önemli (P<0,001) bir etkiye sahip olduğunu göstermiştir. Sütten kesim öncesi ve sonrası büyüme özellikleri üzerinde önemli (P<0,05) olduğu saptanmıştır. Doğum ağırlığı yüksek olan kuzuların 12. ay canlı ağırlığı da yüksek olmuştur. F₁ kuzularda büyüme performansı bulguları Teksel ve Ramlıç kuzular için belirlenen değerler arasında bulunmuştur. Tek kopya miyostatin mutasyonu taşıyan G₁ kuzuların taşıyıcı olmayan G₁ ve saf Teksel kuzulardan ağır olma kapasitesi bulunduğu görülmüştür. MLD derinliği ve alanı bakımından mutasyonu taşıyan G₁ kuzular, taşımayanlara göre önemli (P<0,05) düzeyde üstün bulunmuştur. Sonuç olarak uygulanan introgresyon programının başlangıç aşamasının başarılı olduğu görülmüştür.

Anahtar sözcükler: İntrogresyon, melezleme, miyostatin, Ramlıç, Teksel.

Introduction

The Ramlıç sheep carrying 65% American Rambouillet and 35% indigenous Dağlıç genotypes has

become a native breed in the ancient Phrygian region of Anatolia for the last decades. Birth weight, daily live weight gain, weights at weaning and six months of age for 26 Koray Çelikeloğlu - Mustafa Tekerli - Metin Erdoğan - Serdar Koçak - Ebubekir Yazıcı - Özlem Hacan - Zehra Bozkurt -Samet Çinkaya - Mustafa Demirtaş

Ramlıç lambs were reported in the ranges of 4.04 - 4.63, 0.270 - 0.300, 22.44 - 30.92 and 29.04 - 37.40 kg, respectively (1, 7, 11, 12, 15, 21, 34). Same traits except for weight at six-months of age for Texel and its crosses in different conditions were found between 3.04 - 5.03, 0.17 - 0.32 and 14.86 - 34.42 kg, respectively (2, 9, 10, 13, 22, 23, 26 - 28, 33). Meanwhile, the live weight in this breed has reached to 45.2 - 46.7 kg at the age of 12 months according to McMillan et al. (28). The depth of Musculus longissimus dorsi in British Texel was reported to be 27.5 mm at 140 days of age according to ultrasonographic measurements by Wolf and Jones (32). Additionally, same researchers observed that the body length, wither height, chest circumference and rump width measurements as 58.0, 55.8, 80.9 and 24.6 cm respectively. The mean live weight obtained in the study was expressed as 43.6 kg. The chest circumference in weaning lambs carrying 50% Texel genotype was also 61.56 cm according to Koritiaki et al. (23). Above mentioned growth characteristics were reported to be affected by different environmental factors such as sex, birth type, month of birth, year, and weaning age (15).

Texels are known as homozygous carriers of myostatin (Mstn +/+) mutation leading to the double muscling phenotype in sheep market throughout the World, while Ramlıç is one of the meat - wool sheep breeds in Turkey. Breeding of leaner and fast-growing lambs and the production of high - quality carcasses are key components to compensate for the meat production deficiency in Turkey. Genetic progress can be accelerated by identifying and using the Quantitative Trait Loci (QTL) or Nucleotides (QTN) in marker - assisted selection (19). Myostatin mutation (g+6723G>A) reported in Texel sheep is located in 3'untranslated regions of Growth differentiation factor 8 gene (GDF8 or Myostatin) (8, 24). Valuable alleles such as myostatin are transferred from foreign breeds to natives by introgression which is the procedure whereby a marker gene is swapped. Thus, a new allele will have been added to the gene pool of indigenous breed (25, 31). This method has been used to pass the Myostatin allele to Lacaune breed successfully Grasset et al. (16). This mutation can be used to increase muscle development and growth of lambs in the selection programs of developing countries.

The aim of the study was to evaluate the growth characteristics of F_1 and BC_1 genotypes during the transfer of myostatin mutation (g+6723G>A) from Texel into the Ramlıç by introgression.

Materials and Methods

In this study, animals were treated following the guidelines of the experimental animal ethics committee of the Afyon Kocatepe University (Decision no.49533702-26). This research was carried out in Afyonkarahisar

province Sheep and Goat Breeders Association's Stud Animals Breeding and Test Station situated at 39°02'59.3"N 31°20'23.9"E.

Eight myostatin homozygous pure Texel rams were mated with pure Ramlıç ewes to produce F_1 (Mstn +/-) (Texel X Ramlıç) lambs (n = 51) in the summer of 2015. Then, a total of 100 pure Ramlıç ewes were bred with F_1 ram lambs (n = 20) carrying single - copy myostatin. BC₁ (F_1 X Ramlıç) lambs (n = 99) were born in 2016 - 2017 lambing season.

Eighty-eight BC_1 lambs were genotyped to detect carriers or non - carriers for the aspect of myostatin mutation. The weaning was realized after the overwhelming majority of lambs arriving the age of 120 days. The non carrier BC_1 lambs were culled after weaning according to the selection program conducted on the farm. Daily live weight gain was estimated using the birth and weaning weights. Also, the weights at six and 12 months of age were calculated by interpolation from the weights recorded periodically.

Records at the time of weaning for some body measurements (wither height, body length, rump width and heart girth) and ultrasonographic values (area and depth) of *Musculus longissimus dorsi* (MLD) and backfat thickness (BF) in F_1 and BC₁ lambs were also used to evaluate the progress in the project.

The ultrasonographic inspections (Mindray DP10, China) were carried out from the midst of 12 and 13th ribs with a 5 MHz convex probe (23). The images were recorded with the MP4 player (Orite® PMP500, Australia) connected to the USG via cable and transferred to a computer. These images were monitored with GOM Player (Gretech Corporation, South Korea) and frozen at the most appropriate time and measured using ImageJ software (National Institute of Health, Bethesda, USA). ImageJ values were calibrated before measurements as described by Bracken et al. (5).

Blood samples for genetic analyses were collected from the *Vena jugularis* of the animals to vacuum tubes with EDTA and were brought to the laboratory in the cold chain and kept at + 4°C until the DNA isolation stage. DNA extraction was made with a modified method described by Boom et al. (4). DNA samples were checked for their integrity on the agarose gel and their amounts were measured using a spectrophotometer. DNA quantity and quality were controlled and stored at -20 ° C.

g+6723_F_5'-GGT TCG TGA TGG CTG TAT AAT GTG A-3' and g+6723_R_5'-GAT TTC AGA TAA TAG AGT TAA ATC ATT TTG GTT TGC TT-3' primers designed with FastPCR 6.1.2 program (20) were used to determine the SNP (g+6723G>A) in the 3'UTR region of GDF8 gene according to NC_019459.2 reference sequence of NCBI (National Center for Biotechnology Information). A region of 136 bp is amplified with PCR. Then, a band of 136 bp for AA genotype, 136 and 68 bp bands for AG genotype and 68 bp band for GG genotype were obtained by cutting the PCR product with Tail Restriction Enzyme. For this purpose, a total of 10 µl PCR mixture including 1 µl genomic DNA, 0.8 µl MgCl₂ (50 mM), 0.25 µl dNTP, 0.25 µl for each primer (10 pmol each), and 0.0625 µl Platinium Taq Polymerase (Thermo) were prepared. Reactions were performed on the ABI Veriti PCR instrument. Amplification was carried out by using denaturation for 120 seconds at 95 °C and 40 cycles of 95 °C for 30 seconds, 60 °C for 30 seconds and 72 °C for 60 seconds. PCR samples were confirmed with 2% agarose gel electrophoresis. For RFLP, a mix consisted of 5 µl PCR product, 1 µl 10x FastDigest Green buffer, 0.5 µl FastDigest Tail restriction enzyme (Thermo, FD1144) and 3.5 µl ddH₂O incubated for 15 minutes at 65 °C and monitored on 2% agarose gel electrophoresis for genotyping.

Data were analyzed by GLM procedure of MINITAB 18 (29) with the following statistical models: $Y_{ijklmn} = \mu + G_i + S_j + BT_k + BM_1 + DA_m + e_{ijklmn}$ for birth weight and daily live weight gain; $Y_{ijklmnop} = \mu + G_i + S_j + G_i + S_j$ $BT_k + BM_1 + DA_m + WA_n + BW_o + e_{ijklmnop}$ for weaning weight, weight at six months of age, weight at 12 months of age, morphometric measurements and ultrasonographic MLD characteristics at weaning.

Where Y = observation value (morphometric and ultrasonographic measurements), μ = overall mean, G = effect of genotype (Ramlıç, F₁, BC₁ (+/-), BC₁ (-/-) and Texel),

S = effect of sex (male and female), BT = effect of birth type (multiple or single), BM = effect of birth month (December, January and February), DA = effect of dam age (\leq 730 d, \geq 730 and \leq 1095 d and \geq 1095 d), WA = effect of weaning age (\leq 130 d, \geq 130 and \leq 145 d and \geq 145 and \leq 180 d), BW = effect of birth weight (\leq 4.5 kg and \geq 4.5 kg) and e = random error N (0, σ^2) related with each observation. The Tukey procedure provided by in Minitab 18 (29) was used for multiple comparisons.

Results

The least squares means for morphometric and ultrasonographic measurements of Ramlıç, F_1 , BC_1 and Texel lambs are presented in the Tables 1, 2, 3 and 4.

Factor		n	Birth weight (kg)	Average daily weight gain (kg)	Weaning weight (kg)	n	Weight at six mo. of age (kg)	n	Weight at twelve mo. of age (kg)
	μ	143	3.870±0.153	$0.17460 {\pm} 0.00577$	30.488±0.930	126	34.382±0.944	106	49.03±1.47
Genotype			***	***	***		***		***
••	Ramlıç	21	4.100±0.252 ^a	$0.18760{\pm}0.00950^{a}$	33.89±1.550ª	19	39.360±1.560ª	19	59.07±2.39ª
	F ₁ (+/-)	51	4.147±0.159 ^a	$0.18868{\pm}0.00600^{a}$	$30.013{\pm}0.869^{b}$	47	34.403±0.862 ^b	42	50.41±1.34 ^b
	Texel (+/+)	71	3.364±0.189 ^b	$0.14751 {\pm} 0.00712^{b}$	27.56±1.190 ^b	60	29.380±1.240°	45	37.61±2.04°
Sex			**	‡	* +		**		**
	Female	83	$3.667 {\pm} 0.171^{b}$	0.16970 ± 0.00645	29.74±1.03	75	33.12±1.04 ^b	66	44.86±1.63 ^b
	Male	60	$4.073{\pm}0.169^{a}$	0.17950±0.00635	31.24±0.98	51	35.64±1.00 ^a	40	53.20±1.59ª
Birth type			***	***	**				
	Multiple	44	$3.569{\pm}0.201^{b}$	$0.16177{\pm}0.00756^{b}$	28.93±1.18	40	32.860±1.180	33	47.83±1.85
	Single	99	$4.172{\pm}0.144^{a}$	$0.18742 {\pm} 0.00544^{a}$	32.048 ± 0.86	86	35.899 ± 0.887	73	50.23±1.40
Birth month			*	*					
	December	7	$3.236{\pm}0.347^{b}$	$0.1620{\pm}0.01310^{b}$	32.09 ± 2.270	6	$34.091 {\pm} 0.884$	6	50.02±1.36
	January	63	$4.204{\pm}0.154^{a}$	$0.17359{\pm}0.00578^{ab}$	30.296±0.896	55	33.719 ± 0.930	47	50.04±1.46
	February	73	$4.171{\pm}0.145^{a}$	$0.18818{\pm}0.00547^{\rm a}$	29.083 ± 0.892	65	35.340 ± 2.370	53	47.03±3.69
Dam age (mon	th)		‡						
	≤24	12	$3.578 {\pm} 0.291$	$0.1798 {\pm} 0.01100$	$31.51{\pm}1.600$	11	34.06 ± 1.60	10	46.15±2.51
	>24 and ≤ 36	34	4.175 ± 0.184	$0.17766 {\pm} 0.00693$	30.47±1.030	30	$34.45{\pm}1.08$	27	49.72±1.70
	>36	97	$3.857 {\pm} 0.168$	$0.16635{\pm}0.00634$	$29.48{\pm}1.070$	85	$34.63{\pm}1.08$	69	51.22±1.65
Weaning age (day)								
	≤130	46	-	-	$29.690{\pm}1.350$	44	$34.200{\pm}1.390$	36	48.24±2.21
	>130 and ≤145	51	-	-	$30.390{\pm}1.160$	44	$34.940{\pm}1.190$	38	$48.64{\pm}1.92$
	${>}145$ and ${\leq}180$	46	-	-	$31.386{\pm}0.959$	38	34.001 ± 0.986	32	50.21±1.54
Birth weight (kg)				***		‡		‡
	≤4.5	93	-	-	28.886 ± 0.892^{b}	81	$32.847 {\pm} 0.900$	69	47.78 ± 1.36
	>4.5	50	-	-	$32.090{\pm}1.150^{a}$	45	35.920±1.170	37	50.29±1.90

Table 1. Least squares means for growth traits of Ramlic, F1 and Texel lambs born in 2015 - 2016.

\$\$\; P<0.10; *:P<0.05; **:P<0.01; ***:P<0.001.

^{abc}: Least squares means with different superscript in each fixed effect are significantly different (P<0.05).

28 Koray Çelikeloğlu - Mustafa Tekerli - Metin Erdoğan - Serdar Koçak - Ebubekir Yazıcı - Özlem Hacan - Zehra Bozkurt -Samet Çinkaya - Mustafa Demirtaş

Factor		n	Birth weight (kg)	Average daily weight gain (kg)	Weaning weight (kg)	n	Weight at six mo. of age (kg)	n	Weight at twelve mo. of age (kg)
	μ	224	4.7943±0.0877	0.20528±0.00431	32.274±0.616	121	35.933±0.876	109	49.37±1.19
Genotype	· ·			**	**		***		***
J J J J J J J J J J J J J J J J J J J	Ramlıç	98	4.647±0.108	0.21151 ± 0.00530^{a}	33.359±0.735ª	53	38.73±1.09 ^a	53	54.86±1.41ª
	Ramlıç BC ₁ (-/-)	48	4.859±0.136	0.21019 ± 0.00667^{a}	32.569±0.941 ^{ab}	-	-	-	-
	Ramlic $BC_1(+/-)$	40	4.962±0.135	0.21301 ± 0.00664^{a}	$33.468{\pm}0.937^{a}$	40	36.91±1.04ª	34	51.40±1.44 ^a
	Texel (+/+)	38	4.708±0.156	0.18640 ± 0.00769^{b}	29.700±1.070 ^b	28	32.16±1.41 ^b	22	41.85±1.98 ^b
Sex			***	***	***		***		***
	Female	120	4.5911±0.0994 ^b	0.18969 ± 0.00489^{b}	30.472±0.687 ^b	73	33.44±1.00 ^b	66	44.13±1.36 ^b
	Male	104	4.9980±0.1060ª	$0.22087{\pm}0.00523^{a}$	34.077±0.752ª	48	38.43±1.05ª	43	54.61±1.44 ^a
Birth type			***	***	**		*		‡
	Multiple	66	4.4040±0.1290 ^b	$0.19332{\pm}0.00634^{b}$	31.005±0.876 ^b	36	34.75±1.23	32	47.89±1.63
	Single	158	5.1851±0.0798 ^a	0.21723±0.00392ª	33.543±0.602ª	85	37.12±0.86	77	50.85±1.20
Birth month	U U			‡	**				
	December	67	4.8280±0.1240	0.21106 ± 0.00609	33.786±0.903ª	39	36.15±1.24	36	48.06±1.66
	January	157	4.7611±0.0859	0.19949±0.00423	30.762±0.751b	82	35.72±1.06	73	50.68±1.45
Dam age (mo	onth)		*						
e .	24	65	4.9010±0.1260 ^{ab}	0.20798±0.00621	32.536±0.873	42	36.230±1.100	40	49.43±1.47
	>24 and ≤ 36	21	4.4750±0.1870 ^b	0.20005 ± 0.00922	32.00±1.260	11	36.260±1.930	9	49.09±2.61
	>36	138	5.0064±0.0732ª	$0.20781 {\pm} 0.00360$	32.283±0.552	68	35.306±0.770	60	49.59±1.08
Weaning age	(dav)				***				
00	≤130	65	-	-	29.430±0.960b	34	33.750±1.330	29	46.74±1.87
	>130 and ≤145	123	-	-	33.209±0.718ª	67	36.056±0.980	60	48.48±1.30
	>145 and ≤ 180	36	-	-	34.180±1.180 ^a	20	38.000±1.650	20	52.88±2.17
Birth weight	(kg)				***		***		*
8	≤4.5	63	-	-	29.824±0.818 ^b	35	33.490±1.170 ^b	29	47.22±1.64 ^b
	>4.5	161	-	-	34.725±0.671ª	86	38.376±0.916ª	80	51.52±1.21ª

Table 2. Least squares means	for growth traits of Ramlic	g, BC ₁ and Texel lambs born in $2016 - 201$	7
Lable 2. Deast squares means	for growin nano or Ranniy	201 and rever lamos born in 2010 201	<i>'</i> •

:: P<0.10; *:P<0.05; **:P<0.01; ***:P<0.001.

^{abc}: Least squares means with different superscript in each fixed effect are significantly different (P<0.05).

Table 3. Least squares means for bod	y and real-time ultrasonographic measurements	at weaning in F ₁ lambs born in 2015 - 2016.

		Wither	Body	Rump	Hearth			Backfat
		height	length	width	girth	MLD depth	MLD area	thickness
Factor	n	(cm)	(cm)	(cm)	(cm)	(cm)	(cm ²)	(cm)
μ	51	58.917±0.831	59.797±0.800	18.530 ± 0.424	80.91±1.99	2.4788 ± 0.0829	9.601±0.451	0.5467±0.0268
Sex							*	
Female	29	58.617±0.940	59.306±0.905	18.763±0.479	81.72±2.25	2.5202 ± 0.0937	$10.192{\pm}0.510^{a}$	0.556 ± 0.0303
Male	22	59.218±0.947	60.288±0.912	18.297 ± 0.483	80.11±2.27	2.4375 ± 0.0944	9.010±0.514 ^b	0.5372±0.0306
Birth type		*		‡	‡	‡		
Multiple	9	57.490±1.330 ^b	59.14±1.28	17.890 ± 0.680	78.19±3.20	2.372±0.133	9.089±0.724	0.5291±0.0431
Single	42	$60.341{\pm}0.618^{a}$	$60.453 {\pm} 0.595$	19.170 ± 0.315	$83.64{\pm}1.48$	2.5854 ± 0.062	10.114 ± 0.335	0.5644±0.0199
Birth month		‡	*	‡				
December	5	64.40 ± 2.48	65.87 ± 2.39^{a}	$20.910{\pm}1.270$	90.05 ± 5.96	2.549 ± 0.248	10.22±1.35	0.6203 ± 0.0802
January	35	57.05±1.21	$58.14{\pm}1.16^{ab}$	17.940 ± 0.617	78.52 ± 2.90	2.449 ± 0.121	9.548 ± 0.656	0.5147±0.0390
February	11	55.31±1.80	55.38±1.73 ^b	16.738 ± 0.919	74.17 ± 4.32	2.438 ± 0.180	$9.038 {\pm} 0.978$	$0.5052{\pm}0.0582$
Dam age (month)								
	12	59.110±1.250	60.75±1.210	$18.863 {\pm} 0.639$	$81.60{\pm}3.00$	2.4650 ± 0.1250	10.025 ± 0.680	0.5464 ± 0.0405
>24 and \leq 36	17	59.770±1.140	60.07 ± 1.100	18.137 ± 0.581	81.64±2.73	2.5500 ± 0.1130	9.566 ± 0.618	0.5485 ± 0.0368
>36	22	57.878 ± 0.836	58.567 ± 0.805	$18.590{\pm}0.426$	$79.50{\pm}2.00$	2.4207 ± 0.0833	9.213±0.453	0.5453 ± 0.0270
Birth weight (kg)							\$	
≤4.5	26	58.672 ± 0.891	59.131±0.858	18.242 ± 0.454	79.91±2.14	$2.4254{\pm}0.0888$	$9.100{\pm}0.483$	0.5360 ± 0.0288
>4.5	25	$59.160{\pm}1.030$	$60.463 {\pm} 0.990$	18.818 ± 0.525	81.92 ± 2.47	$2.5320{\pm}0.1030$	10.102 ± 0.558	0.5575±0.0332
Weaning age (day)								
≤130	23	61.21±1.31	61.33±1.26	$19.476 {\pm} 0.666$	84.36 ± 3.13	2.459 ± 0.130	$9.538 {\pm} 0.709$	0.5587 ± 0.0422
>130 and ≤145	22	60.51±1.42	$60.67 {\pm} 1.36$	$19.170 {\pm} 0.723$	$84.10{\pm}3.40$	2.381 ± 0.141	8.995 ± 0.769	0.5852 ± 0.0458
$>145 \text{ and } \le 180$	6	55.03±2.40	57.39±2.31	16.940 ± 1.220	74.28±5.75	2.596 ± 0.239	10.270 ± 1.30	0.4963±0.0775

‡: P<0.10; *:P<0.05; **:P<0.01; ***:P<0.001.

^{abc}: Least squares means with different superscript in each fixed effect are significantly different (P<0.05).

Factor	n	Wither height (cm)	Body length (cm)	Rump width (cm)	Hearth girth (cm)	MLD depth (cm)	MLD area (cm ²)	Backfat thickness (cm)
μ	80	63.080±0.609	60.903±0.704	21.604±0.289	84.27±1.08	3.461±0.124	16.087±0.911	0.7740±0.0258
Genotype						*	*	
Ramlıç $BC_1(+/-)$	37	62.714±0.686	60.930±0.793	21.633±0.326	83.89±1.22	3.618 ± 0.140^{a}	17.16±1.03ª	0.7589±0.0290
Ramlıç $BC_1(-/-)$	43	63.445±0.684	60.876±0.791	21.574±0.325	84.64±1.21	3.304±0.139 ^b	15.01±1.02 ^b	0.7890±0.0289
Sex		*						
Female	39	62.320±0.680 ^b	60.325±0.786	21.423±0.323	83.92±1.21	3.482±0.138	16.34±1.02	0.7739±0.0287
Male	41	$63.839{\pm}0.698^{a}$	61.480±0.806	21.784±0.331	84.61±1.24	3.440±0.142	15.83±1.04	0.7741±0.0295
Birth type					*			
Multiple	24	63.086±0.837	60.405±0.968	21.708±0.398	82.55±1.49 ^b	3.326±0.170	15.26±1.25	0.7559±0.0354
Single	56	63.073±0.568	61.401±0.657	21.499±0.270	85.98±1.01ª	3.596±0.116	16.908±0.851	0.7920±0.0240
Birth month			‡				**	
December	34	63.597±0.768	61.737±0.888	21.784±0.365	84.40±1.36	3.498±0.156	17.63±1.15 ^a	0.7958±0.0325
January	46	62.562±0.692	60.069 ± 0.800	21.423±0.329	84.13±1.23	3.424±0.141	$14.54{\pm}1.04^{b}$	0.7521±0.0292
Dam age (month)		‡						
≤24	8	64.23±1.110	61.44±1.28	21.933±0.528	83.60±1.97	3.335±0.226	15.91±1.66	0.7687±0.0469
>24 and ≤ 36	14	$63.058 {\pm} 0.875$	60.790±1.01	21.718±0.416	85.18±1.55	$3.563 {\pm} 0.178$	16.04±1.31	0.8113±0.0370
>36	58	$61.951{\pm}0.460$	$60.478 {\pm} 0.532$	21.160±0.219	84.021 ± 0.817	$3.4849 {\pm} 0.0937$	16.305 ± 0.689	0.7419 ± 0.0194
Birth weight (kg)		***	*	**	*	*	**	
≤4.5	21	$61.436{\pm}0.771^{b}$	$59.883{\pm}0.892^{b}$	$21.059{\pm}0.367^{b}$	$82.67{\pm}1.37^{b}$	$3.315{\pm}0.157^{b}$	$14.29{\pm}1.15^{b}$	0.7684±0.0326
>4.5	59	$64.723{\pm}0.624^{a}$	$61.922{\pm}0.722^{a}$	$22.148{\pm}0.297^{a}$	85.86±1.11ª	3.607 ± 0.127^{a}	$17.881{\pm}0.934^{a}$	0.7796 ± 0.0264
Weaning age (day)				*	‡			
≤130	8	$63.00{\pm}1.150$	60.85±1.33	$20.694{\pm}0.548^{b}$	$81.83{\pm}2.05$	$3.578 {\pm} 0.235$	15.06 ± 1.73	0.8065 ± 0.0488
>130 and ≤145	54	$62.571 {\pm} 0.541$	$60.750{\pm}0.625$	$21.569{\pm}0.257^{ab}$	$83.576 {\pm} 0.960$	3.307 ± 0.110	16.775 ± 0.810	0.7601 ± 0.0229
>145 and ≤ 180	18	$63.665{\pm}0.932$	$61.110{\pm}1.08$	$22.548{\pm}0.443^{a}$	$87.40{\pm}1.650$	$3.498{\pm}0.190$	$16.430{\pm}1.39$	$0.7553{\pm}0.0394$

Table 4. Least squares means for body and real-time ultrasonographic measurements at weaning in BC_1 lambs born in 2016 – 2017.

\$\$\; P<0.10; *:P<0.05; **:P<0.01; ***:P<0.001.

 abc : Least squares means with different superscript in each fixed effect are significantly different (P<0.05).

Findings showed that birth weight was significantly (P<0.05) affected by genotype, sex, birth type and birth month. The birth weight was found to be highest in F_1 lambs whereas Texel lambs were lowest in this trait. The effect of genotype, birth type and birth month on average daily live weight gains were statistically significant (P<0.05) and, Ramlıç and F_1 lambs were found to be superior to Texel. Weaning weight was also significantly (P<0.05) affected by genotype, birth type and birth weight. Weaning weight of Ramlıç lambs had higher than the others, while F1 genotype was between the Ramlıç and Texel. The effects of genotype and sex on weights at the six and 12 months of age were also found to be significant (P<0.01). Ramlıç lambs had the highest values in both traits, followed by F₁ and Texel. The effects of birth type on wither height, sex on MLD area and, birth month on body length at weaning were significant (P<0.05) in F_1 lambs.

Analysis of variance showed that sex, birth type and dam age had a significant (P<0.05) effect on birth weights of all genotypes. The effect of genotypes on birth weight was not significant, but the perusal of the least-squares means revealed that BC_1 lambs carrying the mutation tend with the highest birth weight. Daily live weight gains significantly (P<0.01) affected by genotype, sex and birth type. The impact of genotype, sex, birth type, birth month, weaning age and birth weight on weaning weight were statistically significant (P<0.05). Live weights at six and 12 months of age significantly (P<0.05) affected by genotype, sex and birth weight. Differences between Ramlıç and BC₁ genotypes were not significant in these traits. The influences of sex on wither height, weaning age on rump width, birth type on chest circumference, genotype on MLD depth and genotype and birth month on MLD area were found to be statistically significant (P<0.05) in BC₁ lambs. The birth weight was also found to be significant (P<0.05) in all traits, except MLD depth (P<0.10) and backfat thickness.

Discussion and Conclusion

There was no significant difference in birth weight between pure Ramlıç and F_1 lambs in first lambing season and BC₁ lambs in second lambing season. The leastsquares means showed that crossbreds carrying myostatin mutation tended to be heavier in birth. Similar findings were reported in Romneys (17) and Iranian Makoei sheep 30 Koray Çelikeloğlu - Mustafa Tekerli - Metin Erdoğan - Serdar Koçak - Ebubekir Yazıcı - Özlem Hacan - Zehra Bozkurt -Samet Çinkaya - Mustafa Demirtaş

(14). The birth weight values determined for BC_1 lambs are just above the range of 4.00 to 4.95 kg reported for Ramlıç and Rambouillet in the literature (6, 7, 12, 15, 18, 21, 30, 34, 35). The birth weight values in F_1 and Texel lambs are consonant with the findings (3.7 - 5.1 kg) of literature (3, 13, 22, 23, 26, 33) for lambs carrying different level of Texel genotype. Sex, type of birth and month of birth had a significant effect (P<0.05) on birth weight in consistent with the results of various researchers (11, 15, 34, 35). The daily live weight gain of Ramlic, F_1 and BC1 lambs were found to be convenient with the literature (1, 6, 18, 19, 30) reported for Ramlıç, Rambouillet and its crossbreeds. Average daily live weight gain of Texel lambs were slightly short of the 0.190 - 0.318 kg limits reported in other studies (2, 10, 26). The differences may be due to the variations in feeding and management, weaning times, and statistical models used in various researches. The weaning weights of Ramlıç, F1 and BC₁ lambs determined in this study were found to be higher than the values amongst 24.1 and 28.6 kg reported in previous literature (11, 12, 15, 34, 35). Likewise, to Ramlic and its crosses of our study, Bromley et al. (6) notified that the weaning weights for Columbia, Polypay, Rambouillet and Targhee lambs as 36.4 kg, 33.7 kg, 32.7 kg and 33.8 kg, respectively. The weaning weights of Texel lambs in this study were in the range of 20.9 - 31.2kg reported by McEwan et al. (27) and McMillan et al. (28) for purebred and crossbred Texel lambs. It was also found just above 26.8 kg that was obtained by Wuliji et al. (33) in Texel x Romney crossbred and below the value of 34.42 kg reported by Khusro et al. (22). The weight findings at six months of age for Ramlic and BC₁ lambs were higher than that of Yalçın et al. (34) and Ceyhan et al. (7) for Ramlic and Rambouillet. The MLD depth of F_1 lambs were lower than the British Texel lambs, while higher in BC_1 lambs (32). The significant difference between myostatin carriers and non - carriers for MLD depth and MLD area may have been derived from the effect of myostatin mutation. The body length of F₁ and BC1 lambs and chest girth in BC1 lambs were also higher than the results of the same researchers. This situation suggested that repeated backcrossing has no harmful effect on body size.

It was determined that the factors such as genotype, sex, type of birth, maternal age, weaning age and birth weight may have significant effects on the pre- and postweaning growth characteristics of lambs. These factors should be taken into consideration in selection and backcrossing studies in some special situations such as detecting of myostatin mutation. The trend in leastsquares means for weaning weight showed that the myostatin heterozygous BC_1 lambs had been potentially heavier than the non-carriers and pure Texel. Their weights at six and twelve months of age were not statistically significant from Ramlıç lambs. MLD depth and area were significantly higher (P<0.05) in BC₁ lambs carrying myostatin than non – carriers. Consequently, findings revealed that the beginning phase of introgression processes practiced in this study has been succeeded.

Acknowledgements

The study's authors are thankful to Republic of Turkey Ministry of Agriculture and Forestry General Directorate of Agricultural Research and Policies for their funding and the staff of Afyonkarahisar Sheep Breeders Association for their assistance and collaboration.

Financial Support

This research was supported by Republic of Turkey Ministry of Agriculture and Forestry General Directorate of Agricultural Research and Policies (TAGEM/15/ ARGE/23).

Ethical Statement

This study was approved by the animal ethics committee of the Afyon Kocatepe University (AKUHADYEK) Decision no.49533702-26.

Conflict of interest

All authors declare there are no conflicts of interest among them and with any other people or corporations.

References

- **1. Anonymous** (2009): Türkiye Evcil Hayvan Genetik Kaynakları, TAGEM. Ankara.
- 2. Arshad A (1999): Comparing breeds of sheep in the feedlot or on pasture and in the feedlot. Iowa State University.
- Blasco M, Campo MM, Balado J, et al (2019): Effect of Texel crossbreeding on productive traits, carcass and meat quality of Segureña lambs. J Sci Food Agric, 99, 3335– 3342.
- Boom R, Sol CJA, Salimans MMM, et al (1990): Rapid and simple method for purification of nucleic acids. J Clin Microbiol, 28, 495–503.
- Bracken CJ, Radcliff RP, McCormack BL, et al (2006): Decreased follicular size during late lactation caused by treatment with charcoal-treated follicular fluid delays onset of estrus and ovulation after weaning in sows. J Anim Sci, 84, 2110–2117.
- 6. Bromley CM, Snowder GD, Van Vleck LD (2000): Genetic parameters among weight, prolificacy, and wool traits of Columbia, Polypay, Rambouillet, and Targhee sheep. J Anim Sci, 78, 846–858.
- Ceyhan A, Sezenler T, Yıldırır M, et al (2010): Reproductive Performance and Lamb Growth Characteristics of Ramlıç Sheep. Kafkas Univ Vet Fak Derg, 16, 213–216.
- Clop A, Marcq F, Takeda H, et al (2006): A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet, 38, 813–818.

- 9. de Fatima Sieklicki M, Breno Pedrosa V, Gomes Rocha C, et al (2016): *Growth Curves of Texel Male Lambs. Acta Sci* Vet, 44, 1–6.
- 10. de Vargas Junior FM, Martins CF, dos Santos Pinto G, et al (2014): The effect of sex and genotype on growth performance, feed efficiency, and carcass traits of local sheep group Pantaneiro and Texel or Santa Inês crossbred finished on feedlot. Trop Anim Health Prod, 46, 869–875.
- Demir H (1995): Ramlıç ve Dağlıç Koyunlarının Melezlenmesi ile Elde Edilen Çeşitli Genotiplerin Karşılaştırılması. İstanbul Üniv Vet Fak Derg, 21, 131–141.
- Demir H (1989): Dağlıç ve Ramlıç Koyunlarının Önemli Verim Özellikleri Yönünden Karşılaştırılmaları I. Büyüme, Yaşama Gücü ve Canlı Ağırlık. İstanbul Üniv Vet Fak Derg, 15, 23–38.
- **13.** Estevá J, Picard LA (1989): Eficiencia pre-destete en corderos de la raza Ideal y sus cruzas y retrocruzas con la raza Texel. Rev Argentina Prod Anim, **9**, 457–462.
- 14. Farhadian M, Hashemi A, Mardani K, et al (2012): Polymorphisms in the ovine myostatin gene are associated with birth weight but not with weight gain in Iranian Makoei sheep. Genet Mol Res, 11, 3568–3575.
- 15. Fıçıcı A (2015): Ramlıç kuzularda sütten kesim öncesi büyüme özelliklerine etki eden çevresel faktörler ve düzeltme katsayılarının hesaplanması. Yüksek Lisans Tezi. Afyon Kocatepe Üniversitesi Sağlık Bilimleri Enstitüsü, Afyonkarahisar.
- **16.** Grasset D, Bouix J, Bibé B, et al (2009): Le gène d'hypertrophie musculaire du « Texel Belge » : identification, impact, introgression The « Belgium Texel » gene of muscular hypertrophy: identification, impact, introgression. Renc Rech Ruminants, **16**, 415–418.
- **17. Han J, Zhou H, Forrest RH, et al** (2010): Effect of Miyostatin (MSTN) g+ 6223G> A on Production and Carcass Traits in New Zealand Romney Sheep. Asian-Australas J Anim Sci, 23, 863-866.
- **18.** Hultz FS, Gorman JA, Wheeler SS (1935): Crossbreeding with Western ewes. University of Wyoming Agricultural Experiment Station, Bulletin no:210.
- Jackson SP, Miller MF, Green RD (1997): Phenotypic characterization of Rambouillet sheep expressing the callipyge gene: II. Carcass characteristics and retail yield. J Anim Sci, 75, 125–132.
- **20.** Kalendar R, Lee D, Schulman AH (2009): FastPCR Software for PCR Primer and Probe Design and Repeat Search. Genes Genomics, **3**, 1–14.
- 21. Kaymakçı M, Sönmez R, Kızılay E, et al (1999): Kasaplık kuzu üretimi için baba hatları oluşturulması üzerine araştırmalar (Birinci Aşama Projesi). Turkish J Vet Anim Sci, 23, 255–261.

- 22. Khusro M, Brown DJ, Van Der Werf JHJ, et al (2005): Breed differences and crossbreeding effects for liveweight traits in Australian meat sheep breeds. Proc Assoc Advmt Anim Breed Genet, 16, 231–234.
- 23. Koritiaki NA, Luis De Azambuja Ribeiro E, Yurika Mizubuti I, et al (2013). Influence of environmental factors on ponderal performance and morphometric characteristics of lambs of different genetic groups from birth to weaning. Rev Bras Zootec, 42, 463–470.
- 24. Ma G, Wang Y, Li Y, et al (2015): MiR-206, a key modulator of skeletal muscle development and disease. Int J Biol Sci, 11, 345–352.
- 25. Makkar HPS, Viljoen GJ (2005): Applications of Gene-Based Technologies for Improving Animal Production and Health in Developing Countries, Applications of Gene-Based Technologies for Improving Animal Production and Health in Developing Countries. Springer, Netherlands.
- **26.** Maxa J, Norberg E, Berg P, et al (2005): Genetic Parameters for Birth Weight, Growth and Litter Size for Danish Texel and Shropshire, in: Annual Meeting of the European Association for Animal Production, EAAP.
- 27. McEwan JC, Hanrahan JP, Fitzsimons JM, et al (1988): Growth and carcass traits of purebred Texel and Suffolk sheep. Proc New Zeal Soc Anim Prod, 48, 41–48.
- McMillan WH, Clarke JN, Amyj NC (1988): Early growth and reproduction of exotic preliminary report Hopu Hopu Animal Quarantine Station Ministry of Agriculture and Fisheries, Hamilton. Proc New Zeal Soc of Animal Prod, 48, 49–51.
- 29. Minitab INC (2018): MINITAB 18 statistical software.
- **30.** Omar SGJ, Glafiro TH (1992): Weight gains in lambs from Rambouillet ewes mated to Suffolk, Hampshire and Rambouillet sires in the Potosino Highland. Veterinaria Mexico, **23**, 243-247.
- **31.** Weller JI (2009): Quantitative trait loci analysis in animals. CABI Publishing. Cambridge, UK.
- **32.** Wolf BT, Jones DA (2007): Inheritance of an in vivo leg conformation score in Texel lambs and its association with growth, ultrasonic measurements and muscularity. Livest Sci, **110**, 133–140.
- **33.** Wuliji T, Dodds KG, Andrews RN, et al (1995): Breeding for a sheep with bulky wool by crossbreeding Texel sires with fleece-weight-selected Romney ewes. New Zeal J Agric Res, **38**, 399–406.
- **34.** Yalçın BC (1982): *Rambouillet x Dağlıç melezlemesiyle geliştirilmiş et-yapağı yönlü yeni bir koyun tipi: Ramlıç.* İstanbul Üniv Vet Fak Derg, **8**, 5–15.
- **35.** Yalçın BC, Ayabakan Ş, Köseoğlu H, et al (1977): Dağlıç koyunlarının et ve yapağı verimi özelliklerinin geliştirilmesinde Rambouillet ırkından yararlanılma olanakları. TÜBİTAK, VHAG-51 G. Kesin Rapor, İstanbul.