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 Abstract  

In this study, we solve a Sturm-Liouville problem on time scales with constant graininess by 

using Laplace transform which is one of the finest representatives of integral transformation 

used in applied mathematics. Eigenfunctions on the time scale were obtained in different cases 

with the Laplace transform. Thus, it was seen that the Laplace transform is an effective method 

on time scales. The results that will contribute to the spectral theory were obtained on the time 

scale with the examples discussed. It is very interesting that the results obtained differ as the 

time scale changes and this transformation can be applied to other types of problems. The 

problems that were established and solved enabled the subject to be understood on the time 

scale. 
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1. Introduction  

Laplace transform is a valuable tool to solve linear 

differential equations which include constant 

coefficients and integral equations. It plays a crucial 

role in mathematics and engineering. Laplace 

transform from time domain to frequency domain 

converts differential equations into algebraic equations 

and convolution into product. Detailed information on 

the general structure of the Laplace transform in the 

classical situation can be found in Schiff's study [1]. 

Discrete version of Laplace transform is known as Z-

transform. It is convenient for linear recurrence 

relations and summation equations. Laplace transform 

on time scale was firstly considered by Hilger [2] to 

unify continuous Laplace transform and discrete Z-

transform in one theory in 1999. For arbitrary time 

scales, Laplace 

transform was investigated by Bohner and Peterson [3] 

in 2002. The various forms of Laplace transform on 

time scale were studied in detail by many authors in 

literature [4, 5-9, 10-14]. 

For a better understanding for readers, we provide 

some principle notions related to delta calculus on time 

scales. By the time scale 𝕋, we understand any non-

empty, closed, arbitrary subset of ℝ with ordering 

inherited from reals. This theory was first put forward 

by Hilger [15, 16] in 1988, and in the following years, 

numerous studies were conducted on this subject in 

various fields. Since a time scale is not necessarily 

connected, forward and backward jump operators 

𝜎, 𝜌: 𝕋 → 𝕋 are defined as  

𝜎(𝑡) = inf{𝑠 ∈ 𝕋: 𝑠 > 𝑡} and 𝜌(𝑡) = sup{𝑠 ∈ 𝕋: 𝑠 <
𝑡}, 

respectively for 𝑡 ∈ 𝕋 such that 𝑎 < 𝑡 < 𝑏, 𝑡 <
sup𝕋, inf𝜙 = sup𝕋, sup𝜙 = inf𝕋 where 𝜙 is empty 

set;𝑎 = inf𝕋 and 𝑏 = sup𝕋. Corresponding forward-

step function 𝜇 is defined by 

𝜇:𝕋𝜅 → [0,∞), 𝜇(𝑡) = 𝜎(𝑡) − 𝑡. 

However, 𝑡 ∈ 𝕋 is left dense, left scattered, right dense, 

right scattered, isolated and dense iff 𝜌(𝑡) = 𝑡, 𝜌(𝑡) <
𝑡, 𝜎(𝑡) = 𝑡, 𝜎(𝑡) > 𝑡, 𝜌(𝑡) < 𝑡 < 𝜎(𝑡) and 𝜌(𝑡) =
𝑡 = 𝜎(𝑡), respectively. We also should remind delta 

differentiability region 𝕋𝜅 along with 𝕋 to define delta 

derivative of any function.  𝕋𝜅 = 𝕋 − {𝑏} if 𝕋 is 

bounded above and b is left-scattered; otherwise 𝕋𝜅 =
𝕋. 𝑓:𝕋 → ℝ is right side continuous at 𝑡 ∈ 𝕋 if there is 

some 𝛿 > 0 such that |𝑓(𝑡) − 𝑓(𝑠)| < 𝜀 for all 𝑠 ∈
[𝑡, 𝑡 + 𝛿) and 𝜀 > 0. 𝐶𝑟𝑑(𝕋) indicates the set of all 

right continuous functions on 𝕋. One can define 𝑓𝛥(𝑡) 

to be the value for 𝑡 ∈  𝕋𝜅, if one exists, such that for 

all 𝜀 > 0, there is a neighborhood 𝑈 of t such that for 

all 𝑠 ∈ 𝑈 
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|[𝑓𝜎(𝑡) − 𝑓(𝑠)] − 𝑓𝛥(𝑡)[𝜎(𝑡) − 𝑠]| < 𝜀|𝜎(𝑡) − 𝑠|. 

Here, 𝑓 is delta differentiable on  𝕋𝜅 if 𝑓𝛥(𝑡) exists for 

all 𝑡 ∈  𝕋𝜅. Let 𝑓 ∈ 𝐶𝑟𝑑(𝕋), then there exists a 

function F such that 𝐹𝛥(𝑡) = 𝑓(𝑡), and delta integral 

is constructed by ∫ 𝑓(𝑡)𝛥𝑡 = 𝐹(𝑏) − 𝐹(𝑎)
𝑏

𝑎
. 

Additionally, if 𝑎 ∈ 𝕋, sup𝕋 = ∞ and 𝑓 is rd-

continuous on [0,∞), improper integral is defined by  

∫ 𝑓(𝑡)𝛥𝑡

∞

𝑎

= lim
𝑏→∞

∫𝑓(𝑡)𝛥𝑡,

𝑏

𝑎

 

when right side limit exists and finite [17, 18]. 

As far as we concerned, the application of Laplace 

transform to spectral theory on time scales has not been 

studied. In this study, the eigenfunction of a Sturm-

Liouville problem will be constructed by using Laplace 

transform on time scale with a constant forward-step 

function. 

When Sturm and Liouville investigated the heat 

conduction problem by the method of separating them 

into variables, the problem of searching for the 

solutions of ordinary differential equations containing 

eigenvalue parameters that meet some boundary 

conditions arose. This new equation is known as the 

Sturm-Liouville equation in literature. The problems in 

which this equation is handled with various boundary 

conditions have been studied by many mathematicians 

([19-25]). The spectral properties of the Sturm-

Liouville equation are given by Levitan et. al [26] from 

different angles for usual case. 

Because of its iportance, the main goal of this study is 

to solve below Sturm- Liouville problem on 𝕋 by using 

Laplace transform: 

−𝑦𝛥𝛥(𝑡) + 𝑐𝑦𝜎(𝑡) = 𝜆𝑦𝜎(𝑡), 𝑡 ∈ (0,∞)𝕋,            (1) 

𝑦(0, 𝜆) = 0, 𝑦𝛥(0, 𝜆) = 1,         (2) 

where 𝜇(𝑡) ≡ ℎ ≥ 0, 𝑐 ∈ ℝ,  𝜆 is a spectral 

parameter. Here, 𝑦:𝕋 → ℂ is the solution 

(eigenfunction) of (1)-(2) where y is second-order 

delta differentiable on (0,∞)𝕋.  

Our study will be organized as follows: In section 2, 

we recall some fundamental notions and theorems 

related to Laplace transform on 𝕋. We construct a 

Sturm-Liouville problem on 𝕋 to solve it by using 

Laplace transform in section 3. Proof of the main 

theorem was made in three cases. 

2. Preliminaries 

Here, we remind some principle notions and theorems related to Laplace transform on 𝕋. 

 

Definition 1 [17]. 𝑓: 𝕋 → ℝ is a regulated function if its right-sided limits exist (finite) at all right-dense points 

in 𝕋 and its left-sided limits exist (finite) at all  left-dense points in 𝕋. 

Definition 2 [17]. 𝑝:𝕋 → ℝ is a regressive function if 1 + 𝜇(𝑡)𝑝(𝑡) ≠ 0 holds for all 𝑡 ∈ 𝕋𝜅.  ℛ = ℛ(𝕋) =
ℛ(𝕋,ℝ) indicates the set of all regressive and rd-continuous functions on 𝕋. ℛ forms an Abelian group with the 

addition operation ⊕ defined by (𝑝 ⊕ 𝑞)(𝑡) = 𝑝(𝑡) + 𝑞(𝑡) + 𝜇(𝑡)𝑝(𝑡)𝑞(𝑡) for all 𝑡 ∈ 𝕋𝜅, 𝑝, 𝑞 ∈ ℛ . In 

addition, the additive inverse of 𝑝 for this group is denoted by 

(⊖ 𝑝)(𝑡) = −
𝑝(𝑡)

1 + 𝜇(𝑡)𝑝(𝑡)
, 

for all 𝑡 ∈ 𝕋𝜅, 𝑝 ∈ ℛ. 

 

Definition 3 [17]. Exponential function on 𝕋 is defined by  

𝑒𝑝(𝑡, 𝑠) = exp(∫𝜉𝜇(𝜏)(𝑝(𝜏))

𝑡

𝑠

𝛥𝜏), 

for 𝑠, 𝑡 ∈ 𝕋, 𝑝 ∈ ℛ. Here, 𝜉𝜇(𝜏)(𝑧) is cylinder transformation where 𝜉ℎ(𝑧) =
1

ℎ
𝐿𝑜𝑔(1 + ℎ𝑧) where ℎ > 0. If         

ℎ = 0, 𝜉0(𝑧) = 𝑧 for all 𝑧 ∈ ℂ. For details on exponential function, we refer to the books [17, 18]. 

Let us consider a 2-nd order linear dynamic homogeneous equation with constant coefficients on 𝕋 

𝑦𝛥𝛥(𝑡) + 𝛼𝑦𝛥𝛥(𝑡) + 𝛽𝑦(𝑡) = 0, 

where 𝛼, 𝛽 ∈  ℝ. From the last equation, the hyperbolic functions (when 𝛼 = 0, 𝛽 < 0) and the trigonometric 

functions (when 𝛼 = 0, 𝛽 > 0) are defined as follows: 
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Definition 4 [17]. Let 𝑝 ∈ 𝐶𝑟𝑑. If −𝜇𝑝2 ∈ ℛ, the hyperbolic functions cosh𝑝 and sinh𝑝 are defined by  

cosh𝑝 =
𝑒𝑝 + 𝑒−𝑝

2
 and sinh𝑝 =

𝑒𝑝 − 𝑒−𝑝
2

. 

If 𝜇𝑝2 ∈ ℛ, the trigonometric functions cos𝑝 and sin𝑝 are defined by  

cos𝑝 =
𝑒𝑖𝑝 + 𝑒−𝑖𝑝

2
 and sin𝑝 =

𝑒𝑖𝑝 − 𝑒−𝑖𝑝
2𝑖

. 

 

For a constant 𝛼 ∈  ℝ, the functions 𝑒𝛼(𝑡, 0), sin𝛼(𝑡, 0) and sinh𝛼(𝑡, 0) have the below forms for common time 

scales 𝕋 =  ℝ,𝕋 =  ℤ  and 𝕋 =  ℎℤ, (ℎ > 0), respectively. 

 
Table 1. Representations of 𝑒𝛼(𝑡, 0), sin𝛼(𝑡, 0) and sinh𝛼(𝑡, 0) on 𝕋 =  ℝ, 𝕋 =  ℤ  and 𝕋 =  ℎℤ 

𝕋 𝑒𝛼(𝑡, 0) sin𝛼(𝑡, 0) sinh𝛼(𝑡, 0) 
ℝ 𝑒𝛼𝑡 sin (𝛼𝑡) sinh (𝛼𝑡) 
ℤ 

(1 + α)𝑡 
(1 + 𝑖α)𝑡 − (1 − 𝑖α)𝑡

2𝑖
 

(1 + α)𝑡 − (1 − α)𝑡

2
 

h ℤ (1 + αℎ)
𝑡

ℎ (1 + 𝑖αℎ)
𝑡

ℎ − (1 − 𝑖αℎ)
𝑡

ℎ

2𝑖
 
(1 + αℎ)

𝑡

ℎ − (1 − αℎ)
𝑡

ℎ

2
 

 

Definition 5 [17]. Suppose that 𝑦: 𝕋0 → ℝ regulated. Then, Laplace transform of y is defined by 

𝐿{𝑦}(𝑧) = ∫ 𝑦(𝑡)𝑒⊖𝑧
𝜎 (𝑡, 0)

∞

0

𝛥𝑡, 

for  𝑧 ∈ 𝐷{𝑦}, where 𝕋0 is a time scale,  0 ∈ 𝕋0 and sup𝕋0 = ∞; 𝐷{𝑦} consists of all complex numbers 𝑧 ∈ ℛ 
when the improper integral exists. 

 
It was easily seen from the Definition 5 that L is linear as follows: 

 

Theorem 6 [17]. Let x and y be regulated on 𝕋0 and 𝛼, 𝛽 be constants. Then,  

 

𝐿{𝛼𝑥 + 𝛽𝑦}(𝑧) = 𝛼𝐿{𝑥}(𝑧) + 𝛽𝐿{𝑦}(𝑧), 

for 𝑧 ∈ 𝐷{𝑥} ∩ 𝐷{𝑦}. 
 

Theorem 7 [3]. If 𝑦:𝕋0 → ℂ is a function whose first order delta derivative is regulated, then 

 𝐿{𝑦𝛥}(𝑧) = 𝑧𝐿{𝑦}(𝑧) − 𝑦(0),                  (3) 

for all regressive 𝑧 ∈ ℂ when lim
𝑡→∞

{𝑦(𝑡)𝑒⊖𝑧(𝑡, 0)} = 0. 

 

One of the consequences of this theorem is as follows: 

 

Corollary 8 [3]. If 𝑦: 𝕋0 → ℂ is a function where 𝑦𝛥𝛥 is regulated, then 

𝐿{𝑦𝛥𝛥}(𝑧) = 𝑧2𝐿{𝑦}(𝑧) − 𝑧𝑦(0) − 𝑦𝛥(0),                                                               (4) 

for all regressive 𝑧 ∈ ℂ when lim
𝑡→∞

{𝑦(𝑡)𝑒⊖𝑧(𝑡, 0)} = lim
𝑡→∞

{𝑦𝛥(𝑡)𝑒⊖𝑧(𝑡, 0)} = 0. 

 

Lemma 9 [17]. If 𝕋0 has constant forward-step function 𝜇(𝑡) ≡ ℎ ≥ 0, then 

              𝐿{𝑦𝜎}(𝑧) = (1 + ℎ𝑧)𝐿{𝑦}(𝑧) − ℎ𝑦(0).                        (5) 

Proof. Considering 𝑦𝜎(𝑡) = 𝑦(𝑡) + ℎ𝑦𝛥(𝑡) (see [17, Theorem 1.16]), we get  
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𝐿{𝑦𝜎}(𝑧) = ∫ 𝑦𝜎(𝑡)𝑒⊖𝑧
𝜎 (𝑡, 0)

∞

0

𝛥𝑡 = ∫ y(𝑡)𝑒⊖𝑧
𝜎 (𝑡, 0)

∞

0

𝛥𝑡 + ℎ∫ 𝑦𝛥(𝑡)𝑒⊖𝑧
𝜎 (𝑡, 0)

∞

0

𝛥𝑡 

                =  𝐿{𝑦}(𝑧) + ℎ𝐿{𝑦𝛥}(𝑧) 
 

If the formula (3) is taken into consideration in the last equation, the proof is completed. 

 

Theorem 10 [9]. Suppose that 𝕋 has constant forward-step function and 𝑦 ∈ 𝐶𝑟𝑑([𝑠,∞)𝕋, ℂ) is a function of 

exponential order 𝜂. Then,  

𝐿{𝑦}(𝑧 ⊖ 𝑤; 𝑠) = 𝐿{𝑦𝑒𝑤
𝜎(. , 𝑠)}(𝑧; 𝑠) 

for all 𝑧 ∈ ℂℎ(𝜂 ⊕ |𝑤|), where 𝑤 ∈  ℝ([𝑠,∞)𝕋, ℂ). This theorem is called "First Translation Theorem" in 

literature. 

 

The following table gives Laplace transforms of some basic functions for usage in Section 3. 

 

Table 2. Laplace transforms of Some Common Functions on 𝕋 

𝑦(𝑡) 1 t 𝑒𝛼(𝑡, 0)   sin𝛼(𝑡, 0) sinh𝛼(𝑡, 0) 𝑒𝛼(𝑡, 0)sin 𝛽

1+𝜇𝛼

(𝑡, 0) 𝑒𝛼(𝑡, 0)sinh 𝛽

1+𝜇𝛼

(𝑡, 0) 

𝐿{𝑦}(𝑧) 
1

𝑧
 
1

𝑧2
 

1

𝑧 − α
 

  α

𝑧2 + 𝛼2
 

α

𝑧2 − 𝛼2
 

β

(𝑧 − 𝛼)2 + β2
 

β

(𝑧 − 𝛼)2 − β2
 

 

 

First, we solve Sturm-Liouville problem for classical situation 𝕋 =  ℝ by Laplace transform. 

 

Theorem 11. The eigenfunction of the problem  

−𝑦′′(𝑡) + 𝑐𝑦(𝑡) = λ𝑦(𝑡), 𝑡 ∈ (0,∞)ℝ,                       (6) 

    𝑦(0, 𝜆) = 0, 𝑦′(0, 𝜆) = 1,          (7) 

 has following form 

 

𝑦(𝑡) =

{
 

 
1

√𝜆−𝑐
sin(√𝜆 − 𝑐𝑡), 𝑖𝑓 𝑐 < 𝜆

𝑡, 𝑖𝑓 𝑐 = 𝜆
1

√𝑐−𝜆
sinh(√𝑐 − 𝜆𝑡), 𝑖𝑓 𝑐 > 𝜆

.                                                              (8) 

 

 

Proof. Let us reorganize the equation (6) as  

𝑦′′(𝑡) + (𝜆 − 𝑐)𝑦(𝑡) = 0,                                                                                          (9) 

 

The "usual" Laplace transform is known as 

𝐿{𝑦}(𝑧) = ∫ 𝑦(𝑡)𝑒−𝑧𝑡𝑑𝑡

∞

0

, 

whenever the right side integral is convergent. It can be easily shown that, 

𝐿{𝑦′}(𝑧) = 𝑧𝐿{𝑦}(𝑧) − 𝑦(0), 

holds by integration by parts formula. Moreover, 

𝐿{𝑦′′}(𝑧) = 𝑧2𝐿{𝑦}(𝑧) − 𝑧𝑦(0) − 𝑦′(0), 

is one consequence of the last formula. 

Let y be the solution of (6)-(7). Then, applying Laplace transform to both sides of (9) yields 

(𝑧2 + 𝜆 − 𝑐)𝐿{𝑦}(𝑧) − 𝑧𝑦(0) − 𝑦′(0) = 0. 



Yılmaz, Göktaş  / Cumhuriyet Sci. J., 42(1) (2021) 132-140 

 

136 

 

Considering the initial conditions (7) on the last equation, we get 

𝐿{𝑦}(𝑧) =
1

𝑧2+𝜆−𝑐
.                 (10) 

After applying the "usual" inverse Laplace transform on the last equality, considering the known table of the 

"usual" Laplace transform, the solution (8) is obtained. 

3. Main Results  

Here, we obtain eigenfunction expansion of a Sturm-Liouville problem on 𝕋 by using Laplace transform for 

different cases. 

 

Theorem 12. The eigenfunction of the problem (1)-(2) has the below forms: 

i. If  ℎ ≥ 0 and 𝑐 − 𝜆 = 0, then 

𝑦(𝑡) = 𝑡. 
ii. If  ℎ = 0, then 

𝑦(𝑡) =
1

√𝑐 − 𝜆
sinh√𝑐−𝜆(𝑡, 0), 

and 

𝑦(𝑡) =
1

√𝜆 − 𝑐
sin√𝜆−𝑐(𝑡, 0), 

for 𝑐 − 𝜆 > 0, 𝑐 − 𝜆 < 0 , respectively. 

iii. If  ℎ > 0, then 

𝑦(𝑡) = 𝑒
−
2

ℎ

𝜎 (𝑡, 0)𝑡, 

𝑦(𝑡) =
1

√
(𝑐−𝜆)2ℎ2

4
+ (𝑐 − 𝜆)

𝑒(𝑐−𝜆)ℎ
2

(𝑡, 0)sinh
√(𝑐−𝜆)

2ℎ2

4 +(𝑐−𝜆)

1+
(𝑐−𝜆)ℎ2

2

(𝑡, 0), 

and  

𝑦(𝑡) =
1

√−
(𝑐−𝜆)2ℎ2

4
− (𝑐 − 𝜆)

𝑒(𝑐−𝜆)ℎ
2

(𝑡, 0)sin
√−

(𝑐−𝜆)2ℎ2

4 −(𝑐−𝜆)

1+
(𝑐−𝜆)ℎ2

2

(𝑡, 0), 

for 𝑐 − 𝜆 = −
4

ℎ2
, 𝑐 − 𝜆 ∈ ℝ\(−

4

ℎ2
, 0), 𝑐 − 𝜆 ∈ (−

4

ℎ2
, 0), respectively. 

 

Proof. Let us again reorganize the equation (1) as 

𝑦𝛥𝛥(𝑡) + (𝜆 − 𝑐)𝑦𝜎(𝑡) = 0.                                       (11) 

 

Then, applying the Laplace transform to both sides of (11) gives 

𝐿{𝑦𝛥𝛥}(𝑧) + (𝜆 − 𝑐)𝐿{𝑦𝜎}(𝑧) = 0. 

By the formulas (4) and (5) into account on the last equality, we have 

 

𝑧2𝐿{𝑦}(𝑧) − 𝑧𝑦(0) − 𝑦𝛥(0) + (𝜆 − 𝑐)((1 + ℎ𝑧)𝐿{𝑦}(𝑧) − ℎ𝑦(0)) = 0. 

Using the initial conditions (2) yields 

𝐿{𝑦}(𝑧) =
1

𝑧2+(𝜆−𝑐)ℎ𝑧+(𝜆−𝑐)
.                                                                          (12) 

i. If  ℎ ≥ 0 and 𝑐 − 𝜆 = 0, then the formula (12) turns into the form 

𝐿{𝑦}(𝑧) =
1

𝑧2
. 
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By the formula given in Table 2, it yields that 𝑦(𝑡) = 𝑡.  

Now, we can rewrite the formula (12) as follows: 

𝐿{𝑦}(𝑧) =
1

𝑧2−(𝑐−𝜆)ℎ𝑧−(𝑐−𝜆)
=

1

(𝑧−
(𝑐−𝜆)ℎ

2
)
2
−(

(𝑐−𝜆)2ℎ2

4
+(𝑐−𝜆))

.                                                         (13) 

After that, we will examine the solution of the problem (1)-(2) separately for ℎ = 0 and ℎ > 0. 

ii. If ℎ = 0, then the formula (12) is written in the form (10). If this form is rearranged to 

𝐿{𝑦}(𝑧) =
1

√𝑐 − 𝜆

√𝑐 − 𝜆

𝑧2 − (√𝑐 − 𝜆)
2, 

for 𝑐 − 𝜆 > 0 and  

𝐿{𝑦}(𝑧) =
1

√𝜆 − 𝑐

√𝜆 − 𝑐

𝑧2 + (√𝜆 − 𝑐)
2, 

for 𝑐 − 𝜆 < 0, Theorem 12 is proved using Table 2. Note that, the solution of the problem (1)-(2) coincides with 

the solution (8) in this case. 

iii. If ℎ > 0, then there are three cases relative to each other of 𝜆 and c. 

Case 1: 𝑐 − 𝜆 = −
4

ℎ2
. In this case, the formula (13) can be rewritten as: 

𝐿{𝑦}(𝑧) =
1

(𝑧 +
2

ℎ
)
2. 

By Theorem 10 and the appropriate formula given in Table 2, we obtain 

𝑦(𝑡) = 𝑒
−
2

ℎ

𝜎 (𝑡, 0)𝑡, 

as the solution of the problem (1)-(2) for Case 1. 

Case 2: 𝑐 − 𝜆 ∈ ℝ\(−
4

ℎ2
, 0). In this case, since 

(𝑐−𝜆)2ℎ2

4
+ (𝑐 − 𝜆) > 0, the formula (13) can be rewritten 

as: 

𝐿{𝑦}(𝑧) =
1

√(𝑐−𝜆)2ℎ2

4
+ (𝑐 − 𝜆)

√(𝑐−𝜆)2ℎ2

4
+ (𝑐 − 𝜆)

(𝑧 −
(𝑐−𝜆)ℎ

2
)
2

− (√
(𝑐−𝜆)2ℎ2

4
+ (𝑐 − 𝜆))

2. 

By the appropriate formula given in Table 2, we obtain  

𝑦(𝑡) =
1

√
(𝑐−𝜆)2ℎ2

4
+ (𝑐 − 𝜆)

𝑒(𝑐−𝜆)ℎ
2

(𝑡, 0)sinh
√(𝑐−𝜆)

2ℎ2

4 +(𝑐−𝜆)

1+
(𝑐−𝜆)ℎ2

2

(𝑡, 0), 

as the solution of the problem (1)-(2) for Case 2. 

Case 3:𝑐 − 𝜆 ∈ (−
4

ℎ2
, 0). In this case, since 

(𝑐−𝜆)2ℎ2

4
+ (𝑐 − 𝜆) < 0, the formula (13) can be rewritten as: 
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𝐿{𝑦}(𝑧) =
1

√−
(𝑐−𝜆)2ℎ2

4
− (𝑐 − 𝜆)

√−
(𝑐−𝜆)2ℎ2

4
− (𝑐 − 𝜆)

(𝑧 −
(𝑐−𝜆)ℎ

2
)
2

+ (√−
(𝑐−𝜆)2ℎ2

4
− (𝑐 − 𝜆))

2, 

By the appropriate formula given in Table 2, we obtain 

𝑦(𝑡) =
1

√−
(𝑐−𝜆)2ℎ2

4
− (𝑐 − 𝜆)

𝑒(𝑐−𝜆)ℎ
2

(𝑡, 0)sin
√−(𝑐−𝜆)

2ℎ2

4 −(𝑐−𝜆)

1+
(𝑐−𝜆)ℎ2

2

(𝑡, 0), 

as the solution of the problem (1)-(2) for Case 3. It completes the proof. 

Corollary 13. If 𝕋 =  ℝ, then 𝜇(𝑡) = 0 for all 𝑡 ∈ 𝕋. Therefore, the eigenfunctions of the problem (1) -(2) are 

the same as in the case (ii) of Theorem 12. 

 
Indeed, the problem (1)-(2) is written in form of the problem (6)-(7) on 𝕋 =  ℝ. It can be easily seen from 

Table 1 that this corollary is correct. 

 

Corollary 14. If 𝕋 =  ℎℤ = {ℎ𝑘:𝑘 ∈ ℤ}, then 𝜇(𝑡) = ℎ, ℎ > 0 for all 𝑡 ∈ 𝕋. Therefore, the eigenfunctions of 

the problem (1)-(2) are as in the cases (i) and (iii) of Theorem 12. 

 

On 𝕋 =  ℎℤ, it can be easily seen from Table 1 and Theorem 10 that the eigenfunctions of the problem (1)-(2) 

is in the following forms 

If 𝑐 − 𝜆 = 0,  

𝑦(𝑡) = 𝑡, 

If  𝑐 − 𝜆 = −
4

ℎ2
,  

𝑦(𝑡) = (−1)
𝑡+ℎ

ℎ 𝑡, 
 

If 𝑐 − 𝜆 ∈ ℝ\ (−
4

ℎ2
, 0),  

𝑦(𝑡) =
1

2√
(𝑐−𝜆)2ℎ2

4
+ (𝑐 − 𝜆)

{
 

 

(1 +
(𝑐 − 𝜆)ℎ2

2
+ ℎ√

(𝑐 − 𝜆)2ℎ2

4
+ (𝑐 − 𝜆))

𝑡

ℎ

−(1 +
(𝑐 − 𝜆)ℎ2

2
− ℎ√

(𝑐 − 𝜆)2ℎ2

4
+ (𝑐 − 𝜆))

𝑡

ℎ

}
 

 

, 

If 𝑐 − 𝜆 ∈ (−
4

ℎ2
, 0),  

𝑦(𝑡) =
1

2𝑖√
−(𝑐−𝜆)2ℎ2

4
− (𝑐 − 𝜆)

{
 

 

(1 +
(𝑐 − 𝜆)ℎ2

2
+ 𝑖ℎ√

−(𝑐 − 𝜆)2ℎ2

4
− (𝑐 − 𝜆))

𝑡

ℎ

−(1 +
(𝑐 − 𝜆)ℎ2

2
− 𝑖ℎ√

−(𝑐 − 𝜆)2ℎ2

4
− (𝑐 − 𝜆))

𝑡

ℎ

}
 

 

. 

 

 
 

4. Conclusion 

 

Models obtained by applying the laws of physics 

(Newton's law or Kirchoff's law) to systems are in 

the form of differential equations. However, by 

applying Laplace transformation to linear ordinary 

differential equations, the transfer function model 

of the system (frequency domain) can be obtained. 

With the transfer function representation, dynamic 

analysis of the system can be performed without 

the need of solving differential equations. Because 

of this importance of Laplace transform, the Sturm 

Liouville equation is solved with the help of 

Laplace transform on time scale when the 

potential function is constant. Although it is 

possible to find Laplace transformation of the 

basic functions in many tables in the classical 

case, it is more difficult to prepare this table on 

time scale. The results obtained in this study are 
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therefore very valuable and will bring a different 

perspective to spectral theory. 
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