Journal **Cellular Neuroscience** and Oxidative Stress

http://dergipark.gov.tr/jcnos

Former name; Cell Membranes and Free Radical Research

Editor in Chief Prof.Dr. Mustafa NAZIROĞLU

Volume 15, Number 1, 2023

Journal of Cellular Neuroscience and Oxidative Stress

http://dergipark.gov.tr/jcnos

BSN Health Analyses, Innovation, Consultancy, Organization, Industry

and Trade Limited Company

http://www.bsnsaglik.com.tr/

info@bsnsaglik.com.tr

Formerly known as:

Cell Membranes and Free Radical Research (2008 - 2014)

Volume 15, Number 1, 2023

[CONTENTS]

- 1113 The treatment of thymoquinone increased expression levels of apoptotic and oxidative genes in the NRK-52E rat kidney epithelial cell line *Rabia Sima Karaman, Semiha Dede, Veysel Yuksek*
- 1122 The treatment of exosome and recombinant tissue plasminogen activator reduces neuronal cell death in the middle cerebral artery occlusion stroke model of rats *Mohsen Safakheil, Mina Ramezani, Azadeh Mohammadgholi*

Volume 15, Number 1, 2023 E-ISSN Number: 2149-7222 (Online) Indexing: Scopus (Elsevier), CAS (Chemical Abstracts Service), Citation Index Database, EBSCOhost Research Database, Google Scholar, Index Copernicus,

EDITOR IN CHIEF

Prof. Dr. Mustafa Nazıroğlu, Department of Biophysics and Neurosciences, Medical Faculty, Suleyman Demirel University, Isparta, Turkey. Phone: +90 246 211 36 41, Fax:+90 246 237 11 65 E-mail: mustafanaziroglu@sdu.edu.tr

Managing Editors

Assist. Prof. Dr. Yener Yazğan Department of Biophysics, Medical Faculty, Kastamonu University, Kastamonu, Turkey. E-mail: yyazgan@kastamonu.edu.tr

Editorial Board

Neuronal Membranes, Calcium Signaling and TRP Channels

Alexei Tepikin, University of Liverpool, UK. Jose A. Pariente, University of Extremadura, Badajoz, Spain. James W. Putney, Jr. NIEHS, NC, USA. Laszlo Pecze, University of Fribourg, Switzerland. Stephan M. Huber, Eberhard-Karls University, Tubingen, Germany.

Neuroscience and Cell Signaling

Denis Rousseau, Joseph Fourier, University, Grenoble, France. Makoto Tominaga, National Institute for Physiological Sciences (NIPS) Okazaki, Japan. Ömer Çelik, Süleyman Demirel University, Turkey. Ramazan Bal, Gaziantep University, Turkey. Saeed Semnanian, Tarbiat Modares University, Tehran, Iran. Yasuo Mori, Kyoto University, Kyoto, Japan.

Antioxidant and Neuronal Diseases

Suresh Yenugu, Osmania University, Hyderabad, India. Süleyman Kaplan, Ondokuz Mayıs Univesity, Samsun, Turkey. Özcan Erel, Yıldırım Beyazıt University, Ankara, Turkey. Xingen G. Lei, Cornell University, Ithaca, NY, USA. Valerian E. Kagan, University of Pittsburg, USA.

Antioxidant Nutrition, Melatonin and Neuroscience

Ana B. Rodriguez Moratinos, University of Extremadura, Badajoz, Spain. Cem Ekmekcioglu, University of Vienna, Austria. Peter J. Butterworth, King's College London, UK. Sergio Paredes Department of Physiology, Madrid Complutense University, Spain.

AIM AND SCOPES

Journal of Cellular Neuroscience and Oxidative Stress is an online journal that publishes original research articles, reviews and short reviews on the molecular basis of biophysical, physiological and pharmacological processes that regulate cellular function, and the control or alteration of these processes by the action of receptors, neurotransmitters, second messengers, cation, anions, drugs or disease.

Areas of particular interest are four topics. They are;

A- Ion Channels (Na⁺- K⁺ Channels, Cl⁻ channels, Ca²⁺ channels, ADP-Ribose and metabolism of NAD⁺, Patch-Clamp applications)

B- Oxidative Stress (Antioxidant vitamins, antioxidant enzymes, metabolism of nitric oxide, oxidative stress, biophysics, biochemistry and physiology of free oxygen radicals)

C- Interaction Between Oxidative Stress and Ion Channels in Neuroscience

(Effects of the oxidative stress on the activation of the voltage sensitive cation channels, effect of ADP-Ribose and NAD⁺ on activation of the cation channels which are sensitive to voltage, effect of the oxidative stress on activation of the TRP channels in neurodegenerative diseases such Parkinson's and Alzheimer's diseases)

D- Gene and Oxidative Stress

(Gene abnormalities. Interaction between gene and free radicals. Gene anomalies and iron. Role of radiation and cancer on gene polymorphism)

READERSHIP

Biophysics	Biochemistry
Biology	Biomedical Engineering
Pharmacology	PhysiologyGenetics
Cardiology	Neurology
Oncology	Psychiatry
Neuroscience	Neuropharmacology

Keywords

Ion channels, cell biochemistry, biophysics, calcium signaling, cellular function, cellular physiology, metabolism, apoptosis, lipid peroxidation, nitric oxide, ageing, antioxidants, neuropathy, traumatic brain injury, pain, spinal cord injury, Alzheimer's Disease, Parkinson's Disease.

J Cell Neurosci Oxid Stress 2023;15(1): 1113-1121.

The treatment of thymoquinone increased expression levels of apoptotic and oxidative genes in the NRK-52E rat kidney epithelial cell line

Rabia Sima KARAMAN¹, Semiha DEDE^{2*}, Veysel YUKSEK³

¹Institute of Health Sciences, Van Yuzuncu Yil University, Van, Türkiye ²Department of Biochemistry, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, Van, Türkiye ³Department of Medical Laboratory, Özalp Vocational High School, Van Yüzüncü Yil University, Van Türkiye

Received: 08 January 2023; Accepted: 25 March 2023

*Address for correspondence:

Prof. Dr. Semiha DEDE, Department of Biochemistry, Faculty of Veterinary Medicine, Van YuzuncuYil University, Van Türkiye E-mail: sdede@yyu.edu.tr

List of Abbreviations;

CASP3, caspase 3; CASP8, caspase 8; CASP9, caspase 9; Bax, Bcl-2 associated X; Bcl-2, Bcl-2 apoptosis regulator; GPX1, glutathione peroxidase 1; SOD1, superoxide dismutase 1; NCF1, neutrophil cytosolic factor 1; ROS, reactive oxigene species; MDA, malondialdehyde; TQ, Thymoquinone; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay; TQ_P, TQ proliferative concentration; TQ_{1C50}, TQ IC50 concentration; RTqPCR, reverse transcription quantitative real-time PCR

Abstract

This study was aimed to show the effects of Thymoquinone (TQ), the active ingredient of Nigella sativa, on apoptotic and oxidative pathways in kidney cells, depending on concentration and time. For this purpose, the NRK-52E rat kidney epithelial cell line was used.

To determine the IC50 and proliferative values of TQ, the MTT cell viability test was performed at 24 and 48 hours. The proliferative (TQP-10 μ M) and toxic (TQIC50-60 μ M) concentrations were determined. The expression of apoptotic (caspase 3 (CASP3), caspase 8 (CASP8), caspase 9 (CASP9), Bax (Bcl-2 associated X), Bcl-2 (Bcl-2 apoptosis regulator)) genes and oxidative (glutathione peroxidase 1(GPX1)), superoxide dismutase 1 (SOD1), neutrophil cytosolic factor 1 (NCF1)) genes were determined as concentration and time-dependent, in the samples taken by RT-qPCR at the concentrations and times dependent.

According to the results of this analysis, GPX1 gene was significantly up-regulated in Tp compared to the control gene at 24 hours, SOD1 gene and NCF1 gene did not change in TIC50. Apoptotic genes were found to be limited up-regulated at both concentrations at 24 hours. At 48 hours, GPX1 was up-regulated at TQP concentration and SOD1 at TQIC50 concentration. The NCF1 gene was significantly expressed at TPIC50 at only 48 hours. Apoptotic genes were limitedly upregulated at TQP concentration at 48 hours, while significant upregulation of all apoptotic genes was found at TQIC50 concentration.

In conclusion, GPx increased significantly at Tp at the 24th hour, SOD1 at TQIC50 concentration, and NCF gene increased significantly at the toxic concentration at the 48th hour. It was revealed that the effect of the apoptotic pathway on TQ-dependent cell death was limited at the 24th hour, while apoptotic cell death at toxic concentrations occurred externally at the 48th hour.

Keywords: Apoptotic gene expression; Kidney cells; Oxidative gene expression; Thymoquinone

Introduction

In addition to the many beneficial effects of thymoquinone (TQ), it is also recommended as a preventive and therapeutic in many diseases. These effects of TQ have been investigated in many experimental in vivo and in vitro studies and it is the major compound of N. sativa seeds. The molecular mechanisms of these beneficial effects of TQ are the most important subject of these studies. Signaling pathways in cellular metabolism provide important data about cellular metabolism. Apoptotic and oxidative pathways are important cellular mechanisms and their relationship with many important diseases has been demonstrated. Genes involved in apoptotic and oxidative pathways are important in cell metabolism and, accordingly, in the etiology of many diseases (Chu et al., 2014; Ayuob et al., 2020; Guo et al., 2020; Alkis et al., 2021).

TQ is known to improve the negative effects of oxidative stress and increase blood antioxidant capacity and antioxidant enzyme activity. *N. sativa* and TQ reduce oxidative stress by a mechanism that includes des upregulation of antioxidant enzymes and molecules such as glutathione peroxidase (GPX), superoxide dismutase (SOD), glutathione reductase (GR), catalase (CAT) reduced glutathione (GSH), followed by a decrease in reactive oxygen species (ROS) and malondialdehyde (MDA) levels (Rastad et al., 2016; Kuzay, 2019; Hannan et al., 2021b).

It has been reported that TQ has a dual effect in which it can act as both a pro-oxidant and an antioxidant in a concentration-dependent manner, acting as an antioxidant at low concentrations, while having pro-oxidant properties at higher concentrations (Mahmoud and Abdelrazek, 2019).

TQ antioxidant property can be converted to thymohydroquinone, which has cytoprotective properties inside the cell. In cancer cells, the pro-oxidant property of TQ occurs in the presence of metal ions, including copper and iron, which induce the conversion of TQ to semiquinone. This leads to the generation of reactive oxygen species (ROS), which causes DNA damage and induction of cellular apoptosis (Mahmoud and Abdelrazek, 2019; Chae et al., 2020).

This study was planned with the aim of demonstrating the effects of TQ on apoptotic and oxidative pathways in kidney cells, depending on concentration and time, of which many beneficial effects have been revealed by scientific studies in recent years, and its effect on the main genes related to apoptotic and oxidative pathways was investigated.

Materials and methods Cell culture

NRK-52E (ATCC[®] CRL-1571TM) rat kidney epithelial cell line was used as material in the study. NRK-52E cells obtained from our cell culture unit were systematically passaged in an appropriate medium *in vitro* condition (RPMI 1640 medium containing 10% FBS, 1% L-Glutamine, 1% penicillin/streptomycin, 5%CO₂, and 95% humidity, incubation at 37°C).

The determination of toxic concentration and incubation time of TQ by using the cell viability (MTT) test

It was aimed to create TQ-integrated cytotoxicity with TQ incubation at different intensities and different times in the NRK-52E cell line. TQ master stock concentration dissolved in DMSO (DMSO ≤ 0.05) for MTT cell viability test for detection of TQ_{IC50} other at 24- and 48-hours final concentrations 1 µM, 5 µM, 10 µM, 20 µM, 30 µM, 40 µM, 50µM, 60 µM, 70 µM, 80 µM, 90µM, 100 μM were prepared by diluting in 12 different concentrations of cell medium.

In 96-well culture plates, 4 wells for each different concentration and 7,000 cells were seeded in each well.

The optical densities of the cells were determined in the ELISA device at a wavelength of 570 nm. According to the detected absorbance values, the IC50 and proliferation concentrations of TQ were determined and the percentages of viability were determined (Figure 1).750000 cells were seeded in each flask in the study groups. Study groups were set up to cross between control and experimental groups and these groups.

RNA extraction

The procedures after this step continued on a cold medium. The cells belonging to the groups were lifted with trypsin and collected. After washing the cells with cold PBS, mRNA was obtained using the TRIzol reagent protocol (Chomczynski and Mackey 1995). Measurement was made in a nanodrop to determine purity and quantity.

Complementary DNA (cDNA) Isolation

For using the obtained mRNAs in expression analysis in RT-qPCR, cDNA synthesis was carried out. cDNA was obtained by using the protocol recommended by the Wizbio brand kit (WizScript, cat. no: W2211).

Quantitative Real-time Polymerase Chain Reaction (RT-qPCR) Analysis

In this study, the expression of oxidative stress pathway (GPX1, SOD1, NCF1) and apoptotic pathway (CASP3, CASP8, CASP9, Bax, Bcl-2) genes were investigated.

GPX1 belongs to the glutathione peroxidase family, which catalyzes the reduction of hydroperoxides and hydrogen peroxide (H_2O_2) by glutathione, thereby protecting cells against oxidative damage (Anonymous 1). SOD1 (superoxide dismutase 1) is responsible for destroying free superoxide radicals (Anonymous 2). NCF1 (neutrophil cytosolic factor 1), this oxidase is a multicomponent enzyme that is activated to produce superoxide anion (Anonymous 3).

CASP3 plays a central role in the executive phase of apoptosis (Anonymous 4). CASP8, CASP9, sequential activation of caspases plays a central role in the executive phase of cell apoptosis (Anonymous 5, Anonymous 6). Bax functions as anti- or pro-apoptotic regulators involved in cellular activities. The relationship and ratio of Bax to Bcl-2 also determine the survival or death of a cell following an apoptotic stimulus (Anonymous 7). Bcl-2 blocks the apoptotic death of some cells (Anonymous 8).

GAPDH (glyceraldehyde-3-phosphate dehydro genase) was used as the control gene. One Ct (cycle threshold) was determined as the beginning of the logarithmic phase of the amplifications.

The forward (F) and reverse (R) primers of the target genes were obtained from NCBI (www.ncbi.nlm.nih.gov/refseq/) and Primer3web version 4.1.0 (http://primer3.ut.ee/). The RT-qPCR reactions of target genes were optimized before the study. The primary gene sequences for each gene are given in *Table 1*. The genes were designed and purchased (Atlas Biyoteknoloji, Ankara, Turkiye).

	Table 1.	Primary	gene	sequences	for	each	gene
--	----------	---------	------	-----------	-----	------	------

GEN	FORWARD (5'-3')	REVERSE (5'-3')
CDV1	TCCACCGGTATGC	TCTCTTCATTCT
UFAI	CTTCTC	TGCCATTCTCC
SOD1	GCTTCTGTCGTCT	CATGCTCGCCTT
SODI	CCTTGCT	CAGTTAATCC
NCE1	GTCGGAGAAGGT	CGATAGGTCTG
NCFI	GGTCTACAG	AAGGATGATGG
Dov	TGCTACAGGGTTT	ATCCACATCAG
Бах	CATCCAG	CAATCATCC
Pal 2	ACCAGAATCAAG	TCTTCATCTCCA
BCI-2	TGTTCGTC	GTATCCCACTC
CASD3	CGAAACTCTTCAT	GAGCATTGACA
CASIJ	CATTCAGG	CAATACACGG
CASDS	GATGTCCTGGTGC	CCTCCTTGTCCA
CASFO	TATTTCAGAG	TGTCTTCTG
CASDO	TCTCACACCAGA	GTCGTTCTTCAC
CASF9	AACACCCA	CTCCACCA
GAPDH	AACCCATCACCAT	GCCATCCACAG
UALD11	CTTCCAG	TCTTCTGAG

At the RT-qPCR stage, SYBR green master mix (WizPure, Cat. No: w1711) was used in the study. The reaction contents were the same for both the target and control (housekeeping) genes. The stages of the method were followed based on the protocol of this kit as summarized.

The target genes' products were assessed with the method $2^{-\Delta\Delta Ct}$ (Livak and Schmittgen, 2011). Intergroup differences were assessed by comparison to the increase–decrease fold changes of the expression of the control gene.

Statistical Analysis

Descriptive statistics of the discussed properties are presented as median, mean, standard deviation, minimum, and maximum. To determine whether or not there was a significant difference among the groups based on these properties, Kruskal–Wallis test was used. Dunnet multiple comparisons test was used to determine the source of the difference. In the calculations, the level of statistical significance was taken as 5%, and the SPSS (ver. 22) statistical package software was used for the analyses.

Results MTT Results

Figure 1. MTT viability test column and slope plot obtained as a result of TQadministered at different concentrations on the NRK-52E cell line

MTT cell viability test was performed to determine the proliferative and IC50 values of TQ at the 24th and 48th hours. Proliferative (TQP-10 μ M)) and toxic (TQIC50-60 μ M) concentrations were detected (Figure 1).

Gene Expression Results

The Ct plot and melting curve results obtained in RTqPCR analyses for all target genes are given in Figure 2. These plots show that the primers specifically designed for each target gene bind appropriately and the regions are amplified (Figure 2).

Table 2. The oxidative gene expressions at 24t^h hour.

Genes	TQ _P	TQ _{IC50}	Р
GPX1	7.41±0.87	1.59±0.28	0.004
SOD1	1.31±0.34	5.87±0.43	0.000
NCF1	1.39±0.14	1.74±0.27	0.389

Figure 2. Melting curve plot of the products obtained for each target gene

Compared with the control gene, GPX1 was 7.41fold up-regulated at 24 hours at the TQ proliferative concentration, while TQIC50 was only 1.5-fold upregulated at the concentration. SOD1 was up-regulated 1.313 times at the TQ proliferative concentration and 5.873 times at the TQIC50 concentration. The NCF1 gene was up-regular 1.397 and 1.740 at 24 hours at both concentrations. In proliferative concentration-applied cells, the oxidative NCF1 gene did not change depending on the concentration at the 24th hour ($p \ge 0.05$). Gpx1 was less up-regulated and SOD1 was more up-regulated at high concentrations.

Genes	TQ _P	TQ _{IC50}	Р
Bax	1.09±0.13	1.61±0.13	0.058
Bcl-2	3.87±0.52	1.65±0.11	0.012
Bax/Bcl-2	0.28	0.98	0.000
CASP3	1.06±0.04	2.08±0.42	0.062
CASP8	0.77±0.06	1.64±0.39	0.051
CASP9	1.17±0.15	1.65 ± 0.08	0.049

Table 3. Apoptotic gene expressions at 24t^h hours

Compared with the control gene, all apoptotic genes were found to be slightly up-regulated at high concentrations The Bax/Bcl-2ratio increased significantly at the toxic concentration. CASP8 was less down-regulated at the TQ_P concentration. Apart from this, in cells treated with proliferative and IC50 concentration TQ, the apoptotic pathway gene expressions were concentrationdependent at 24 hours. It was observed that they were upregulated by 1.05-3.87 times. The concentration-related changes of the genes were found to be statistically significant (p \leq 0.05) for the Bcl-2, CAP8, and CASP9 genes.

Table 4. Oxidative gene expressions at 48th hour

Genes	TQ _P	TQ _{IC}	Р	
GPX1	7.22±0.98	1.58±0.25	0.006	
SOD1	0.03±0.01	3.62±0.63	0.002	
NCF1	1.68±0.23	5.45±0.47	0.002	

Compared to the control gene, GPX1 was 7,215-fold up-regulated at 48 hours at the TQ proliferative concentration, while TQIC50 was 1.578-fold up-regulated at the concentration. While SOD1 was 0.03-fold downregulated at the TQ proliferative concentration, it was upregulated by 3.623 at the TQIC50 concentration. The NCF1 gene was found to be up-regulated at a rate of 1.677 and 5.452 times at each TQP concentration. In proliferative and IC50-concentration TQ-treated cells, gene expressions affecting the oxidative system were concentrationdependently decreased at the 48th hour, while GPX1 decreased, while SOD and NCF1 genes were significantly up-regulated ($p \le 0.05$).

Table 5. The apoptotic gene expressions at 48th hour

Genes	TQ _P	TQ _{IC}	Р
Bax	1.95±0.06	10.83±0.34	0.000
Bcl-2	2.06±0.36	5.31±0.50	0.001
Bax/Bcl-2	0.56	2.04	0.000
CASP3	1.62±0.31	11.33±0.86	0.000
CASP8	1.03±0.15	10.29±0.69	0.000
CASP9	1.46±0.31	3.01±0.12	0.005

When compared with the control gene, Bax was nearly 2 times and other genes were 1.033-2.06 times upregulated at the TQ_P concentration at the 48th hour. It was observed that all genes were significantly up-regulated at the TQ_{IC50} concentration compared to the proliferative concentration ($p \le 0.05$).

Table 6. Time dependent gene expressions at TQ_P concentration

	GPX1	SOD1	NCF1	Bcl-2	Bax	CASP3	CASP8	CASP9
TQ _P 24	7.41±0.87	1.31±0.34	1.39 ± 0.14	3.87±0.52	1.09 ± 0.13	1.06 ± 0.04	0.77±0.06	1.17 ± 0.15
TQ _P 48	7.22±0.98	0.03±0.01	1.67±0.23	2.06±0.36	1.95±0.06	1.62 ± 0.31	1.033 ± 0.15	1.46 ± 0.31
р	0.907	0.012	0.413	0.009	0.005	0.106	0.142	0.460

Table 7. Time dependent gene expressions at TQ_{IC50} concentration

	GPX1	SOD1	NCF1	Bcl-2	Bax	CASP3	CASP8	CASP9
TQIC24	1.59 ± 0.28	5.87±0.43	1.74 ± 0.27	1.65 ± 0.11	1.61 ± 0.13	2.08 ± 0.42	1.64 ± 0.39	1.65 ± 0.08
TQIC48	1.58 ± 0.25	3.62±0.63	5.45±0.47	5.31±0.50	10.83 ± 0.34	11.33±0.86	10.29±0.69	3.01 ± 0.12
Р	0.972	0.036	0.003	0.001	0.000	0.000	0.000	0.001

Figure 3. Graph of time-dependent gene expressions at TQ_P concentration

At 24 and 48 hours of proliferative TQ concentration, SOD and Bcl-2 expressions decreased significantly ($p \le 0.05$), while other gene expressions did not change depending on time (Table 6, Figure 3).

TQ_{IC50} concentration was found to be effective in all genes except GPX1. While SOD1 decreased significantly, all other genes were found to increase significantly at the 48th hour ($p \le 0.01$) (Table 7, Figure 4).

Discussion

As a phytochemical compound, TQ has a variety of biological effects, including antioxidant, antibacterial, antineoplastic, nephroprotective, hepatoprotective, gastroprotective, neuroprotective, anti-nociceptive, and anti-inflammatory activities (Guo et al., 2020; Hannan et al., 2021a; Hannan et al., 2021b; Talebi et al., 2021). In studies investigating the molecular and clinical mechanisms underlying the kidney protective potential of black seed and TQ, its regulatory roles in antioxidant defense system, NF- κ B signaling, caspase pathways and TGF- β , antioxidant, anti-inflammation, anti-apoptosis and antifibrosis. In the current study, it was aimed to investigate the mechanism of beneficial and concentration-dependent toxic effects of TQ on kidney cells. Using the NRK-52 epithelial kidney cell line and applying TQ at various concentrations and times, its effect on the genes involved in the apoptotic and oxidative pathways was determined at the gene expression stage. In addition to elucidating the mechanisms of the beneficial effects of TQ, the possibilities of the results obtained here were also investigated to provide useful information in detecting the destructive mechanisms that may occur due to TQ, especially in the kidney tissue.

Oxidative stress and inflammation play a role in the pathogenesis and progression of kidney diseases. TQ has been shown to have anti-inflammatory and antioxidant properties in animal and *in vitro* models, especially against various kidney diseases caused by inflammation and oxidative stress. It has also been documented that TQ protects kidney tissue by significantly reducing the side effect of nephrotoxicity associated with various drugs (Shaterzadeh-Yazdi et al., 2018; Oskouei et al., 2018; El-Shemi et al., 2018; Mabrouk, 2018; Abdel-Daim et al., 2020; Dera et al., 2020; Hannan et al., 2021b).

When the expression levels of the genes involved in the oxidant-antioxidant system were compared with the control gene, according to these results, it was determined that the antioxidant genes SOD and GPX genes and NCF1 gene expressions, which is a multicomponent oxidase enzyme activated to produce superoxide anion, were upregulated at different rates at both concentrations and hours, depending on concentration and time, after TQ administration. The increase in oxidative stress at the 24th hour could be prevented by the effect of concentrationdependent up-regulated antioxidant genes. At 48 hours, the result of increased oxidative stress at the toxic concentration at the 48th hour. Although the SOD gene was relatively low at this concentration compared to the TQ_P concentration, it was concluded that its up-regulation was due to the use of SOD against increased oxidative stress.

It has been shown that TQ treatment reduces oxidative stress markers (superoxide, hydrogen peroxide, and nitric oxide) by promoting antioxidant enzymes and therefore reduces oxidative stress. SOD, CAT, and GSH levels down-regulate pro-oxidant genes and up-regulate antioxidant genes (Hannan et al., 2021a). In a study where it was reported that TQ had beneficial effects as well as harmful effects on the kidneys depending on the concentration and duration of administration, it was determined that TQ increased cell viability up to a certain concentration and then caused cytotoxicity (Yuksek, 2021).

It has also been reported that long-term administration of TQ alone causes liver toxicity, but does not affect organ function at a tolerable concentration (Ahmad et al., 2019). In another study; it was concluded that after 60 mg/kg TQ administration, this concentration especially affects biochemical liver and kidney function parameters and may be harmful (Kurt et al. 2015). N. sativa, the main source of TQ, has been shown to reduce the development of kidney failure when given prior to the use of nephrotoxic drugs. However, a case of acute renal failure that developed after the use of N. sativa in an individual with diabetes was also presented (Arslan et al. 2013).

In a study on the toxicity of TQ, the LD50 values given in intraperitoneal injection and oral gavages in mice were 10-15 times and 100-150 times higher than the reported TQ concentrations for its anti-inflammatory, antioxidant, and anti-cancer effects, especially in experimental animals. It was reported to be a relatively safe compound when given orally (Al-Ali et al., 2008).

TQ administration increases antioxidant capacity in the liver, kidney, and brain tissues in a concentrationdependent manner. It exerts beneficial effects as an antioxidant, anti-inflammatory, anti-apoptosis, and antinecrosis agent through the inhibition of growth factors, biochemical and oxidative stress markers, and regulation of gene expression (Oskouei et al., 2018; Abdel-Daim et al., 2020). It has been reported that TQ can protect against toxicity caused by some substances excreted by the kidneys with its antioxidant and anti-apoptotic effects (Sener et al., 2016; Jalili et al., 2017; Mabrouk, 2018).

TQ has also been found to have anticancer properties and anti-proliferative effects on kidney cancer cells (Dera and Rajagopalan, 2019). TQ exerts anticancer effects by inducing apoptosis by regulating the expression of proapoptotic and anti-apoptotic genes and increasing intracellular ROS production (Chae et al., 2020; Almajali et al., 2021). It has been reported that TQ is effective in inhibiting different cancer stages, by inducing apoptosis, regulating the levels of pro- and anti-apoptotic genes, decreasing ERK1/2 activities, and thus inhibiting metastasis (Imran et al., 2018).

TQ has beneficial effects by triggering ROS and superoxide production and activation of the apoptotic and autophagic cascade (Liou et al., 2019). It is known that TQ can protect against toxicity caused by some substances excreted by the kidneys with its antioxidant and antiapoptotic effects (Jalili et al., 2017), and it shows its antiapoptotic properties against kidney damage by preventing the formation of apoptotic cells (Sener et al., 2016).

In comparison with the control gene, anti-apoptotic and apoptotic genes examined in this study were found to be affected by TQ application according to concentration and time. Significant activation of apoptotic pathways was observed at 48 hours at toxic concentrations. It was concluded that the Bax/Bcl-2 ratio increased at the toxic concentration and the CAS3 and CAS8 genes expressions were also activated, the internal pathway was not sufficiently effective, and TQ used the external pathway in cell death at toxic concentrations. Antiapoptotic Bcl-2 gene expression was also increased. According to these results, it was determined that the receptor pathway was more effective than the mitochondrial pathway at the toxic concentration at the 48th hour.

It is reported that TQ administration inhibits nephrotoxicity induced by different chemicals by reducing oxidative damage, apoptosis, and inflammation. It also has a protective effect against kidney damage caused by reperfusion by inhibiting apoptosis and cell proliferation (Hannan et al., 2021a; Hannan et al., 2021b).

As a result, it was determined that GPx at TQ_P concentration and SOD1 at TQ_{IC50} concentration were significantly upregulated at 24 hours, NCF gene did not change significantly and oxidative stress could be prevented. Oxidative stress increased at the toxic concentration at 48 hours and SOD was used as an antioxidant. It was concluded that there was generally no significant change in apoptotic genes at the 24th hour and that TQ at proliferative concentration had antiapoptotic properties. The apoptotic pathways were activated at the toxic concentration at the 48th hour, the internal apoptotic pathway was not efficient enough, and TQ used the external pathway in cell death at toxic concentrations.

It was concluded that the obtained data will be useful in determining the relationship between increasing concentration in healthy kidney cells and TQ, which decreases cell viability over time, and the oxidant and apoptotic system. For this, it was thought that gene expression analysis, post-translational, and activity levels should also be determined and this was important in elucidating the mechanism of action of TQ.

Acknowledgments

The authors would like to thank Van Yuzuncu Yil University Scientific Research Projects Directorate for supporting the project, and, Dr. Ayşe USTA for their technical assistance.

Funding

This research was supported by Van Yuzuncu Yil University Scientific Research Projects Directorate as project numbered TYL-2021-9708.

Author contribution

Conceptualization, methodology: S.D., R.S.K., Funding acquisition: S.D., Experimental procedures: R.S.K., S.D., A.U. All authors wrote, read and approved the final version of the manuscript.

Conflicts of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

References

- Abdel-Daim MM, Abo El-Ela FI, Alshahrani FK, Bin-Jumah M, Al-Zharani M, Almutairi B, Alyousif MS, Bungau S, Aleya L, Alkahtani S. (2020). Protective effects of thymoquinone against acrylamide-induced liver, kidney and brain oxidative damage in rats. Environ Sci Pollut Res Int. 27(30):37709-37717 doi: 10.1007/s11356-020-09516-3.
- Ahmad A, Mishra RK, Vyawahare A, Kumar A, Rehman MU, Qamar W, Khan AQ, Khan R. (2019). Thymoquinone (2-Isoprpyl-5-methyl-1, 4-benzoquinone) as a chemopreventive/anticancer agent: Chemistry and biological effects. Saudi Pharm J. 27(8):1113-1126. doi: 10.1016/j.jsps.2019.09.008.
- Al-Ali A, Alkhawajah AA, Randhawa MA, Shaikh NA. (2008). Oral and intraperitoneal LD50 of thymoquinone, an active principle of *Nigella sativa*, in mice and rats. J Ayub Med Coll Abbottabad. 20(2):25-7.
- Alkis H, Demir E, Taysi MR, Sagir S, Taysi S. (2021). Effects of *Nigella sativa* oil and thymoquinone on radiation-induced oxidative stress in kidney tissue of rats. Biomed Pharmacother. 139:111540. doi: 10.1016/j.biopha.2021.111540.
- Almajali B, Al-Jamal HAN, Taib WRW, Ismail I, Johan MF, Doolaanea AA, Ibrahim WN. (2021). Thymoquinone, as a novel therapeutic candidate of cancers. Pharmaceuticals (Basel). 14(4):369. doi: 10.3390/ph14040369.

Anonymous1. https://www.ncbi.nlm.nih.gov/gene/2876).

Anonymous2. https://www.ncbi.nlm.nih.gov/gene/6647.

Anonymous3. https://www.ncbi.nlm.nih.gov/gene/653361.

 $Anonymous 4.\ https://www.ncbi.nlm.nih.gov/gene/836.$

 $Anonymous 5.\ https://www.ncbi.nlm.nih.gov/gene/841.$

Anonymous6. https://www.ncbi.nlm.nih.gov/gene/842.

Anonymous7. https://www.ncbi.nlm.nih.gov/gene/581.

Anonymous8. https://www.ncbi.nlm.nih.gov/gene/596.

- Arslan E, Sayin S, Demirbas S, Cakar M, Somak NG, Yesilkaya S, Saglam K. (2013). A case study report of acute renal failure associated with *Nigella sativa* in a diabetic patient. J Integr Med. 11(1):64-6. doi: 10.3736/jintegrmed2013010.
- Ayuob N, Balgoon MJ, El-Mansy AA, Mubarak WA, Firgany AEL. (2020). Thymoquinoneupregulates catalase gene expression and preserves the structure of the renal cortex of propylthiouracilinduced hypothyroid rats. Oxid Med Cell Longev. 2020:3295831. doi: 10.1155/2020/3295831.
- Chae IG, Song NY, Kim DH, Lee MY, Park JM, Chun KS. (2020). Thymoquinone induces apoptosis of human renal carcinoma Cakilcells by inhibiting JAK2/STAT3 through pro-oxidant effect. Food ChemToxicol. 139:111253. doi: 10.1016/j.fct.2020.111253.
- Chomczynski P, Mackey K. (1995). Short technical reports. Modification of the TRI reagent procedure for isolation of RNA from polysaccharide- and proteoglycan-rich sources. Biotechniques. 19(6):942-5.
- Chu SC, Hsieh YS, Yu CC, Lai YY, Chen PN. (2014). Thymoquinone induces cell death in human squamous carcinoma cells via caspase activation-dependent apoptosis and LC3-II activation-dependent autophagy. PLoS One. 9(7):e101579. doi: 10.1371/journal.pone.0101579.
- Cybulsky AV. (2017). Endoplasmic reticulum stress, the unfolded protein response and autophagy in kidney diseases. Nat Rev Nephrol. 13(11):681-696. doi: 10.1038/nrneph.2017.129.
- Dera A, Rajagopalan P. (2019). Thymoquinone attenuates phosphorylation of AKT to inhibit kidney cancer cell proliferation. J Food Biochem. 43(4):e12793. doi: 10.1111/jfbc.12793.
- Dera AA, Rajagopalan P, Alfhili MA, Ahmed I, Chandramoorthy HC. (2020). Thymoquinone attenuates oxidative stress of kidney mitochondria and exerts nephroprotective effects in oxonic acidinduced hyperuricemia rats. Biofactors. 46(2):292-300. doi: 10.1002/biof.1590.
- El-Shemi AG, Kensara OA, Alsaegh A, Mukhtar MH. (2018). Pharmacotherapy with thymoquinone improved pancreatic β-cell integrity and functional activity, enhanced islets revascularization, and alleviated metabolic and hepato-renal disturbances in streptozotocin-induced diabetes in rats. Pharmacology. 2018;101(1-2):9-21. doi: 10.1159/000480018.
- Guo LP, Liu SX, Yang Q, Liu HY, Xu LL, Hao YH, Zhang XQ. (2020). Effect of thymoquinone on acute kidney injury induced by sepsis in BALB/c mice. Biomed Res Int. 2020:1594726. doi: 10.1155/2020/1594726.
- Hannan MA, Rahman MA, Sohag AAM, Uddin MJ, Dash R, Sikder MH, Rahman MS, Timalsina B, Munni YA, Sarker PP, Alam M, Mohibbullah M, Haque MN, Jahan I, Hossain MT, Afrin T, Rahman MM, Tahjib-Ul-Arif M, Mitra S, Oktaviani DF, Khan MK, Choi HJ, Moon IS, Kim B. (2021). Black cumin (*Nigella sativa* L.): A comprehensive review on phytochemistry, health benefits, molecular pharmacology, and safety. Nutrients. 13(6):1784. doi:10.3390/nu13061784.

- Hannan MA, Zahan MS, Sarker PP, Moni A, Ha H, Uddin MJ. (2021). Protective effects of black cumin (*Nigella sativa*) and its bioactive constituent, thymoquinone against kidney injury: An aspect on pharmacological insights. Int J Mol Sci.22(16):9078. doi: 10.3390/ijms22169078.
- Imran M, Rauf A, Khan IA, Shahbaz M, Qaisrani TB, Fatmawati S, Abu-Izneid T, Imran A, Rahman KU, Gondal TA. (2018). Thymoquinone: A novel strategy to combat cancer: A review. Biomed Pharmacother. 106:390-402. doi: 10.1016/j.biopha.2018.06.159.
- Jalili C, Salahshoor MR, Hoseini M, Roshankhah S, Sohrabi M, Shabanizadeh A. (2017). Protective effect of thymoquinone against morphine injuries to kidneys of mice. Iran J Kidney Dis. 11(2):142-150.
- Kaleem M, Kirmani D, Asif M, Ahmed Q, Bano B. (2006). Biochemical effects of *Nigella sativa* L seeds in diabetic rats. Indian J Exp Biol. 44(9):745-8.
- Kurt E, Dede S, Ragbetli C. (2015). The investigations of total antioxidant status and biochemical serum profile in thymoquinone -treated rats. Afr J Trad Complement Altern Med. 12(2):68-72.doi:10.4314/ajtcam.v12i2.13
- Kuzay D. (2019). Effects of thymoquinone and citalopram on oxidative stress in gastric and duodenum tissue in reserpinized rats. Erciyes Med J.41(3):295-300 doi: 10.14744/etd.2019.77527.
- Liou YF, Chen PN, Chu SC, Kao SH, Chang YZ, Hsieh YS, Chang HR. (2019). Thymoquinone suppresses the proliferation of renal cell carcinoma cells via reactive oxygen species-induced apoptosis and reduces cell stemness. Environ Toxicol. 34(11):1208-1220. doi: 10.1002/tox.22822.
- Livak KJ, Schmittgen TD. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 25(4):402-8. doi: 10.1006/meth.2001.1262.
- Mabrouk A. (2018). Thymoquinone attenuates lead-induced nephropathy in rats. J Biochem Mol Toxicol. e22238. doi: 10.1002/jbt.22238.
- Mahmoud YK, Abdelrazek HMA. (2019). Cancer: Thymoquinone antioxidant/pro-oxidant effect as potential anticancer remedy.
 Biomed Pharmacother. 115:108783. doi: 10.1016/j.biopha.2019.108783.
- Oskouei Z, Akaberi M, Hosseinzadeh H. (2018). A glance at black cumin (*Nigella sativa*) and its active constituent, thymoquinone, in ischemia: A review. Iran J Basic Med Sci. 21(12):1200-1209. doi:10.22038/ijbms.2018.31703.7630.
- Rastad A, Sadeghi A, Chamani M, Shawrang P. (2016). Effects of thymoquinoneoncortisol level, blood antioxidant parameters and capacity in broiler chickens under oxidative stress. Kafkas Univ Vet FakDerg. 22(6):903-8. doi:10.9775/kvfd.2016.15618
- Sener U, Uygur R, Aktas C, Uygur E, Erboga M, Balkas G, Caglar V, Kumral B, Gurel A, Erdogan H. (2016). Protective effects of thymoquinone against apoptosis and oxidative stress by arsenic in rat kidney. Ren Fail. 38(1):117-23. doi: 10.3109/0886022X.2015.1103601.
- Shaterzadeh-Yazdi H, Noorbakhsh MF, Samarghandian S, Farkhondeh T. (2018). An overview on renoprotective effects of thymoquinone. Kidney Dis (Basel). 4(2):74-82. doi: 10.1159/000486829.
- Talebi M, Talebi M, Farkhondeh T, Samargh, Ian S. (2021). Biological and therapeutic activities of thymoquinone: Focus on the Nrf2 signalingpathway. PhytoTher Res. 35(4):1739-53. doi.org/10.1002/ptr.6905

Yuksek V. (2021). Activation of PI3K/AKT/mTOR pathway thymoquinone-induced in NRK-52E cell line. J InstSci Tech.11(1): 68-74.doi: 10.21597/jist.817666.