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Abstract 
An R-module M is said to be (quasi) 𝜏-discrete if M is 𝜏-lifting and has the property (𝐷!) (respectively, has the 
property (𝐷")), where 𝜏 is a preradical in 𝑅 −𝑚𝑜𝑑. It is shown that: (1) direct summands of a (quasi) 𝜏-discrete 
module are (quasi) 𝜏-discrete; (2) a projective module M is 𝜏-discrete if and only if #

$(#)
 is semisimple and 𝜏(𝑀) 

is 𝑄𝑆𝐿; (3)  if a projective module M is Soc-lifting, then #
'()(#)

 is Soc-discrete and 𝑅𝑎𝑑( #
'()(#)

) is semisimple. 

 
Keywords: preradical, 𝜏-lifting module, (quasi) 𝜏-discrete module. 

 

𝝉 -Ayrık Modüller Üzerine  

Öz 
𝜏 tüm sol R-modüllerin kategorisinde öncül radikal olmak üzere 𝜏-yükseltilebilir ve (𝐷!) özelliğini sağlayan 
(sırasıyla, (𝐷") özelliğini sağlayan) bir R-modülü M’e (ayrık) 𝜏-ayrık denir. Şu gösterilmiştir: (1) Bir (quasi) 𝜏-
ayrık modülün her direkt toplam terimi (quasi) 𝜏-ayrıktır; (2) bir projektif M modülünün 𝜏-ayrık olması için 
gerek ve yeter koşul #

$(#)
 nin yarıbasit ve 𝜏(𝑀) nin QSL olmasıdır; (3) bir projektif M modülü Soc-

yükseltilebilirse, #
'()(#)

 Soc-ayrıktır ve 𝑅𝑎𝑑( #
'()(#)

) yarıbasittir. 

 
Anahtar Kelimeler:  öncül radikal, 𝜏-yükseltilebilir modül, (yarı) 𝜏-ayrık modül. 
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1. Introduction 

In our article, all rings are associative with identity and all modules are unity left modules over 
these rings. For a ring R, 𝑅 −𝑚𝑜𝑑 denotes the category of all left 𝑅-modules. A submodule 𝑁 
of a module 𝑀 will be denoted by 𝑁 ≤ 𝑀. A nonzero 𝐸 ≤ 𝑀 is called essential in 𝑀 and written 
by 𝐸 ⊴ 𝑀 if 𝐸 ∩ 𝐹 ≠ 0 for every nonzero submodule 𝐹 of 𝑀. We call a module 𝑀 extending 
if it satisfies (𝐶!), that is, its submodules are essential in a direct summand of 𝑀 as in [5]. 

We call an extending module 𝑀 continuous if it satisfies (𝐶"), that is, every submodule 
isomorphic to a direct summand of 𝑀 is a direct summand as in [5]. 

We call an extending module 𝑀 quasi continuous if it satisfies (𝐶#), that is, whenever 𝑀 =
𝐴⨁𝐵=𝐶⨁𝐷 and 𝐴 ∩ 𝐶 = 0, M has a decomposition 𝑀 = (𝐴⨁𝐶)⨁𝐸 as in [5] Since a module 
M with (𝐶") has the property (𝐶#) every continuous module is quasi continuous. Injective 
modules are an example of a continuous module.  

As a dual notation of an essential submodule of A, one call a proper submodule S of A small in 
M and denoted by 𝑆 ≪ 𝑀 if S+X is not M for every proper submodule X<M. With the notation 
of immediately extending modules, lifting modules are defined as: M is lifting if it satisfies  

 (𝐷!) For any A≤M, we can write 𝑀 = 𝐴!⨁𝐿, 𝐴! ≤ 𝐴 and 𝐴 ∩ 𝐿 ≪ 𝐿 for submodules 
𝐴!, 𝐿 of M.  

We call a lifting module M quasi-discrete if it satisfies 

 (𝐷") If 𝐴 ≤ 𝑀 with $
%
≅ 𝐵 and 𝑀 = 𝐵⨁𝐶, we can write 𝑀 =A⨁𝐴&.  

We call a lifting module M discrete if it satisfies  

 (𝐷#) Whenever 𝑀 = 𝐴⨁𝐵, 𝑀 = 𝐶⨁𝐷 and 𝑀 = 𝐴 + 𝐶, M has a decomposition 𝑀 =
(𝐴 ∩ 𝐶)⨁𝐸. 

The modules that provide quasi-projective and the property (𝐷") are coincide. Since  a module 
M with (𝐷") provides (𝐷#), quasi-discrete modules are a generalization of discrete modules. It 
is obvious that (quasi) discrete modules are a dual notion of (quasi) continuous modules. 
Although injective modules are continuous, a projective module usually does not have to be 
discrete. Hollow modules (that is, its proper submodules are small) are quasi-discrete. The 
family of (quasi-) discrete modules are extensively studied by researchers.  A module 	𝑀 has 
the property 𝑃∗ if for every submodule 𝐴 of 𝑀 𝑀 has the decomposition 𝑀 = 𝐴&⨁𝐵 such that 
𝐴& ≤ 𝐴 and %

%*
≤ 𝑅𝑎𝑑($

%*
) for some submodules 𝐴& and 𝐵 of 𝑀. Every lifting module has the 

property 𝑃∗. Also, a finitely generated module with the property 𝑃∗ is lifting. In general, a 
module with the property 𝑃∗ need not be lifting. For example, consider the left ℤ-module 𝑀 =
ℚℤ .	Since radical modules have the property 𝑃∗, 𝑀 has the property 𝑃∗.	On the other hand, 𝑀 

is not lifting. 
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In recent years, types of lifting modules have been defined and studied in R−𝑚𝑜𝑑 with the help 
of preradicals. A functor 𝜏 from the category 𝑅 −𝑚𝑜𝑑 to itself is said to be preradical if it 
provides the following properties: 

(1) 𝜏(𝑀) ≤M , where 𝑀 ∈ 𝑅 −𝑚𝑜𝑑; 
(2) If	𝑓:𝑀 ⟶ 𝑀& is homomorphism, then 𝑓(𝜏(𝑀)) ⊆ 𝜏(𝑀) and 𝜏(𝑓) is the restriction of 

to 𝜏(𝑀&).  
A preradical 𝜏 for 𝑅 −𝑚𝑜𝑑 is called exact if for N≤M 𝜏(𝑁) = 𝑁 ∩ 𝜏(𝑀), and it is called 
radical if 𝜏 L $

)($)
M = 0.  

Rad(M) and Soc(M) denote the radical, socle of a module M, respectively. Rad and 𝛿 are radical 
in R−𝑚𝑜𝑑, and Soc is an exact preradical in 𝑅 −𝑚𝑜𝑑.  

Let 𝜏 be a preradical in 𝑅 −𝑚𝑜𝑑. Following [1, 2.8 and 2.9], we call M 𝜏-lifting if for any 
N≤M, we can write 𝑀 = 𝐴⨁𝐵 with 𝐴 ⊆ 𝑁 and 𝑁 ∩ 𝐵 ≤ 𝜏(𝐵) for  A, B ≤	M.  In [1], for 𝜏 =
𝑅𝑎𝑑, M is Rad-lifting if and only if M has the property P*. Lifting modules are an example of 
Rad-lifting modules. It is shown in [1, 2.10 (2)] that whenever 𝑀 = 𝐴⨁𝐵 is a 𝜏-lifting module,  
so does A. 

2. Preliminaries 

Let R be a ring and 𝜏 be a preradical in 𝑅 −𝑚𝑜𝑑. In our study, we introduce the concept of 
(quasi) 𝜏-discrete modules. We obtain some properties of such modules. In particular, we show 
that direct summands of a (quasi) 𝜏-discrete module are (quasi) 𝜏-discrete. Moreover, we prove 
that a projective module M is 𝜏-discrete if and only if $

)($)
 is semisimple and 𝜏(𝑀) is 𝑄𝑆𝐿. Also, 

we show that if a projective module M is Soc-lifting, $
,-.($)

 is Soc-discrete and 𝑅𝑎𝑑( $
,-.($)

) is 

semisimple. 

3. Main Theorem and Proof 

In this section, we study on (quasi) 𝜏-discrete modules. 

Definition 3.1 A module 𝑀 is called 𝜏-discrete (respectively, quasi 𝜏-discrete) if 𝑀 is 𝜏-lifting 
with (𝐷") (respectively, (𝐷#)). 

Theorem 3.2 Given a (quasi) τ-discrete module 𝑀 = 𝑁⨁𝑁&. Then N is (quasi) discrete. 

Proof. By [9, 2.10.(2)], we obtain that 𝑁 is τ-lifting. Hence 𝑁 is (quasi) τ-discrete by [5, Lemma 
4.6]. 

Given modules 𝑈 ≤X. In [6], U is said to be strongly lifting in X provided whenever /
0
=

%10
0
⨁ 210

0
, we can write M = Z⊕T where Z ⊆ A, %10

0
= 310

0
 and 210

0
= 410

0
. Alkan [3] 

generalizes the definition; U is called quasi strongly lifting (QSL) in X if whenever /
0
= %10

0
⨁ 5

0
, 

we can write 𝑋 = 𝑍⨁𝑇, Z ⊆ A and Z + U = A + U. Observe from [3, Lemma 3.5] that if a 
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module M is 𝜏-lifting, then 𝜏(𝑀) is QSL. Using this fact we obtain that a characterization of  
(quasi) τ-discrete modules. 

Proposition 3.3 Let 𝑀 be a module with (𝐷") (respectively, (𝐷#)). Then the following 
statements are equivalent: 

(1) it is (quasi) τ-discrete, 
(2) it is τ-supplemented and 𝜏(𝑀) is QSL. 
(3) 	 $

)($)
  is semisimple with QSL 𝜏(𝑀). 

Proof. By Lemma 3.5 and Proposition 3.6 in [3]. 

Corollary 3.4 A projective module M is τ-discrete if and only if $
)($)

  is semisimple and τ(M) 

is QSL. 

Proof. Since projective modules are (𝐷"), it follows from Proposition 3.3. 

Given a module E. We call E (quasi) Rad-discrete if E has the property P* and (D2) 
(respectively, has the property P* and (D3)) as in [7].  

Lemma 3.5 A projective 𝑀 is 𝑅𝑎𝑑-discrete if and only if 𝑀 is semilocal and 𝑅𝑎𝑑(𝑀) is QSL. 

Proof. The proof follows from Corollary 3.4. 

Theorem 3.6 The following statements are equivalent for a ring R: 

(1) 𝑅 is semiperfect; 
(2) 𝑅 is 𝑅𝑎𝑑-discrete; 
(3) 𝑅 has the property (𝑃∗); 
(4) 𝑅 is 𝑅𝑎𝑑-⨁-supplemented; 
(5) 𝑅 is semilocal and 𝑅𝑎𝑑(𝑅) is QSL. 

Proof. (1)⇒(2)⇒(3)⇒(4)⇒(1) By [7, Corollary 2.10]. 

(1)⇔(5) It follows from Corollary 3.4. 

Follows from [6, Theorem 10], the socle Soc( 𝑅)6  of a ring 𝑅 is strongly lifting. Using this fact 
we characterize Soc-discrete rings in the following. 

Proposition 3.7 A ring 𝑅 is 𝑆𝑜𝑐-discrete if and only if 6
,-.( 6+ )

  is semisimple. 

Proof.  By Corollary 3.4 and [6, Theorem 10]. 

Given a module E. We call E 𝜏-torsion free if 𝜏(𝐸) = 0. 

Proposition 3.8 Let 𝑀 be a 𝜏-torsion free module. If it is quasi 𝜏-discrete, it is semisimple. 
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Proof. Let 𝑁 ≤ 𝑀. By assumption, we can write 𝑀 = 𝐴⨁𝐵 with 𝐴 ≤ 𝑁 and 𝑁 ∩ 𝐵 ⊆ 𝜏(𝐵). 
Since 𝑀 is 𝜏-torsion free, we can write 𝑁 ∩ 𝐵 ⊆ 𝜏(𝐵) ⊆ 𝜏(𝑀) = 0 and so 𝑁 = 𝑁 ∩ 𝐵 = 𝐴⊕
(𝑁 ∩ 𝐵) = 𝐴, as required.		

Recall from [2] that a submodule Z of a module E is a τ–supplement of some submodule T≤M 
provided Z+T is M and Z ∩ T ⊆ τ (Z). 

Theorem 3.9 Let 𝜏 be an exact preradical and let 𝑀 be a 𝜏-lifting module and 𝑉 be 𝜏-supplement 
in 𝑀. Then 𝑉 is 𝜏-lifting. 

Proof. Let 𝑁 ≤ 𝑉. Since 𝑀 is 𝜏-lifting, we can write 𝑀 = 𝐴⊕𝐵, 𝐴 ≤ 𝑁 and 𝑁 ∩ 𝐵 ⊆ 𝜏(𝐵). 
By the modularity, we can write V is 𝐴⨁(𝑉 ∩ 𝐵), and clearly, 𝑁 ∩ (𝑉 ∩ 𝐵) = 𝑁 ∩ 𝐵 ⊆ 𝜏(𝐵). 
Since 𝜏 is an exact preradical in 𝑅-𝑀𝑜𝑑, we can write 𝜏(𝑉 ∩ 𝐵)	is	𝑉 ∩ 𝜏(𝐵). Now 𝑁 ∩ 𝐵 ⊆
𝑉 ∩ 𝜏(𝐵) is 	𝜏(𝑉 ∩ 𝐵). It means that 𝑉 is 𝜏-lifting. 

Corollary 3.10 Let 𝜏 be an exact preradical in 𝑅 −𝑀𝑜𝑑 and 𝑀 be a uniform 𝑅-module. If 𝑀 
is 𝜏-lifting, then every 𝜏-supplement submodule  V of 𝑀 is quasi 𝜏-discrete. 

Proof.  By Theorem 3.9, we obtain that 𝑉 is 𝜏-lifting. Since uniform modules have the property 
(𝐷#), we get that 𝑉 is quasi 𝜏-discrete.  

Proposition 3.10 Let 𝜏 be a radical in 𝑅 −𝑀𝑜𝑑 and 𝑀 be a (quasi) 𝜏-discrete module with 
small 𝜏(𝑀). Then 𝜏(𝑀) = 𝑅𝑎𝑑(𝑀) and it is (quasi) discrete.  

Proof. By [2, 2.10 (1)], we obtain that 𝑅𝑎𝑑(𝑀) ⊆ 𝜏(𝑀). Since 𝜏(𝑀) ≪ 𝑀, 𝜏(𝑀) = 𝑅𝑎𝑑(𝑀) 
is small in 𝑀. So 𝑀 is lifting. Hence it is (quasi) discrete. 

A module E is called 𝜏-torsion  if E=𝜏(𝐸). For example, semisimple modules are Soc-torsion, 
radical modules are Rad-torsion, and projective semisimple modules are 𝛿-torsion.  

Lemma 3.11 Suppose that 𝑀 is a 𝜏-lifting module. If 𝑁 ≤ 𝑀 is 𝜏-torsion, $
7

 is 𝜏-lifting. 

Proof. Let 𝑁 ≤ 𝐴 ≤ 𝑀. Then we can write 𝑀 = 𝐴&⨁𝐵, 𝐴& ≤ 𝐴 and 𝐴 ∩ 𝐵 ⊆ 𝜏(𝐵) for 

submodules 𝐴&, 𝐵 ≤ 𝑀. It follows that $
7
= %*17

7
+217

7
 and %∩217

7
⊆ 𝜏(217

7
). Since 𝑁 is 𝜏-

torsion, we can write L%
*17
7
M ∩ L217

7
M = 0. Thus $

7
 is 𝜏-lifting. 

Theorem 3.12 Suppose that 𝑁 is a 𝜏-torsion submodule of a projective module 𝑀. If 𝑀 is 𝜏-
lifting,  $

7
 is 𝜏-discrete. 

Proof. Since 𝑀 is a projective module and 𝑁 is 𝜏-torsion, $
7

 has the property (𝐷"). Applying 

Lemma 3.11, we deduce that $
7

 is 𝜏-discrete.  
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Corollary 3.13 If 𝑀 is a projective and 𝑆𝑜𝑐-lifting module, then $
,-.($)

 is 𝑆𝑜𝑐-discrete and its 

radical is semisimple. 

Proof. Following Theorem 3.12, we get that $
,-.($)

 is 𝑆𝑜𝑐-discrete. Also, applying [2, 2.10 (1)], 

𝑅𝑎𝑑( $
,-.($)

) is semisimple. This completes the proof. 

4.  Conclusion 

In this article, we introduce the concept of (quasi)  𝜏-discrete modules and investigate the basic 
properties of these modules by preradicals in 𝑅 −𝑚𝑜𝑑, where R is an associative ring with 
identity. We characterize projective 𝜏-discrete modules. We show that if a module is 𝜏-lifting, 
then its factor modules by 𝜏-torsion submodules are 𝜏-lifting. We prove that if a projective 
module M  is Soc-lifting, then $

,-.($)
 is 𝑆𝑜𝑐-discrete and its radical is semisimple 
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