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GO@dopamine-Cu as a Green Nanocatalyst for the Efficient Synthesis of
Fully Substituted Dihydrofuran-2(5H)-ones
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Abstract:  A  new nanocatalyst  graphene oxide@dopamine-Cu was  synthesized,  and its  structure  was
characterized by fourier transform infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscopy
(SEM),  transmission  electron  microscopy  (TEM),  Energy  Dispersive  X-ray  Spectrometry  (EDX),  and
thermogravimetric analysis – differential thermal analysis (TGA-DTA) techniques. The three-component
one-pot reaction between an arylamine, aromatic aldehyde, and acetylenic carboxylate was achieved and
formed methyl 5-oxo-2-aryl-4-(arylamino)-2,5-dihydrofuran-3-carboxylate derivatives (4) in the presence
of the catalytic amount of graphene oxide@dopamine-Cu nanocatalyst in high yield. Molecular structures
of  products  were  characterized  by  FT-IR,  1H,  13C  nuclear  magnetic  resonance  (NMR),  and  Mass
spectroscopy  techniques.  Representatively,  the  mass  fragmentation  of  4a was  discussed,  and  the
structure was confirmed. Easy reaction, high performance, and easy catalyst recyclability are the main
advantages of this work. This nanocatalyst is recycled up to five successive runs.
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1. INTRODUCTION 

Nowadays,  green chemistry  and its  features  have
caused  nanocatalysts  to  be  significant  in  organic
synthesis and the development of green chemistry.
In  addition,  much  attention  has  been  focused  on
preparing  novel  catalysts,  which  are  important
objects  (1–3).  Preparing  new  composites  using
graphene oxide (GO) has recently attracted much
attention worldwide. In this regard, the GO supports
many catalysts designation and is highly applicable.
Some of  the  advantages  of  GO include  its  active
sites and pores'  thermal  stability,  high selectivity,
and high mechanical strength (4,5).

Furthermore,  there  are  various  functional  groups
such  as  carbonyl,  hydroxyl,  carboxylic  acid,  and
epoxide on GO sheets, in which GO can easily make
covalent bonds to various functional groups in other

molecules. Also, the immobilization of some metallic
nanoparticles (NPs) on GO made them used in many
applications, such as catalysts, optoelectronics, and
sensors for energy storage and generation (6–10).
Using graphite oxidation for the synthesis of GO is
one of the most known and useful protocols in the
preparation  of  materials  based  on  GO  (11,12).
Several  oxygenic  functional  groups  on  GO  sheet
surface are caused to be hydrophilic (13), which can
be reacted and functionalized by different reactants
and organic ligands (14).

In recent years, multicomponent reactions (MCRs)
have been one of the best tools in organic synthesis
(15–19). The  MCRs  are  one  of  the  best  ways  to
synthesize useful and accessible compounds used to
synthesize  pharmaceutical and  drug  compounds.
The MCRs have a wide range of  benefits  such as
high  atom  economy  by  reacting  three  or  more
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reactants  in one step and the ability to synthesize
assigned and desired compounds. 

Many  biologically  active  natural  products  and
synthetic pharmaceutical drugs such as rubrolide A
and benfurodil hemisuccinate have dihydrofuranone
ring structure skeleton. The furanone five-membe-
red  heterocyclic  compounds,  including  lactones,
show a wide spectrum of biological and pharmaco-
logical  behaviors such as anticancer,  antibacterial,
antifungal, and anti-oxidant (20–24). Full substitu-
ted furans are important in organic synthesis; they
are important in many natural product compounds
and are common structural  textures in pharmace-
uticals and flavors (25,26). Furan and dihydrofuran
skeletons display several biological and pharmace-
utical  behaviors  such  as  anticancer  (27,28),  anti-
inflammatory  (29,30),  antimicrobial,  (31–34)
antifungal (35) and anti-viral HIV-1 (36) activities.

Several catalytic routes for the synthesis of 2(5H)-
furanone were reported in the literature, e.g., acidic
ionic liquid on silica-coated magnetic nanoparticles
(19),  graphene-oxide/Schiff  base  N2O4 ligand-
palladium (14)  and  using BF@ Propyl  /dopamine/
Palladium  (37).  Some  synthetic  routes  have  also
been  reported  to  access  fully  substituted  furan
derivatives,  for  example,  the  reaction  of  α-
substituted  ketones  with  β-dicarbonyl  derivatives
(38).  Due  to  the  eligibility  and  usability  of  these
compounds, several various methods were achieved
and  used,  such  as  Pd(Ph3P)2Cl2 (34),  Al(HSO4)3

(36),  FeCl3 (39),  and  lactic  acid  (40).  These
conditions suffer from the following problems, e.g.,
long reaction time, troublesome work-up, low yields,
environmental  pollution,  and disagreeable reaction
conditions.  Herein,  GO@dopamine-Cu  as  a
recoverable nanocatalyst was used for the one-pot
synthesis of full substituted dihydrofuran-2(5H)-one
derivative (4) in high yield.

2. EXPERIMENTAL SECTION

2.1 Materials and Instruments
Chemicals were purchased from Fluka, Merck, and
Aldrich Chemicals. All products were determined by
comparing spectral data (1H NMR and 13C NMR) and
physical data with valid samples. FT-IR spectra were
measured  by  a  Perkin  Elmer  Spectrum  Version
10.02.00  spectrometer  using KBr  pellets.  Mass
spectra were measured by a  Shimadzu GC MS-QP
1000  EX.  The  Buchi  510  apparatus  was  used  to
obtain melting points. The ultrasonic apparatus for
sonication was used  SONICA 50Hz 230/240 V. The
TEM, SEM, and EDX analyses were taken by Zeiss-
EM10C-100KV,  EM3200, and  FESEM-SIGM (Germa-
ny), respectively. TGA analysis was measured using
the PYRIS DIAMOND model.

2.2. Synthesis of GO@dopamine-Cu

2.2.1. Preparation of graphene oxide
In a 500-mL round bottom flask equipped with a
magnetic  stirrer,  2.5  g  of  natural  graphite  were
placed together with 50 mL of concentrated sulfuric
acid (98%). The mixture was swirled for  30 min.
Subsequently, 1.25 g of sodium nitrate were added
to the flask and violently mixed. Next, the reaction
mixture was transferred from the flask into an ice
bath.  Proceed  by  introducing  7  g  of  potassium
permanganate (KMnO4) and gradually adding 25 mL
of  hydrogen  peroxide  (30%  concentration)  while
continuously  stirring  the  solution  for  45 min.  The
reaction  mixture,  which  was  black,  underwent  a
washing  process  using  1  mL  of  hydrochloric  acid
(37%). Subsequently, the mixture was subjected to
centrifugation and subsequent drying.

2.2.2. Immobilization of 2-(3,4-dihydroxy 
phenyl)ethyl amine (dopamine) on graphene oxide
In  a  250  mL  round-bottom  flask  containing  a
magnetically stirred setup, 0.5 g of graphene oxide
(GO)  and  25  mL  of  toluene  were  combined  and
dispersed. The resulting mixture was subjected to
sonication  for  20  minutes  at  room  temperature.
Subsequently, a quantity of 1.5 g of dopamine was
introduced and subjected to reflux for 24 hours. The
precipitate was separated using filtration, followed
by  rinsing  with  a  small  amount  of  toluene  and
subsequently  with  ethanol.  Finally,  the  precipitate
was dried at 100 °C under vacuum conditions.

2.2.3. Synthesis of GO@dopamine/Cu
In  a  50  mL  round  bottom flask  equipped  with  a
magnetic stirrer, put 0.5 gr GO@dopamine and the
solution of 0.5 g (1 mmol) copper acetate in 10 mL
acetonitrile. The reaction mixture was sonicated for
15 minutes and then stirred for 24 hrs at 90 °C.
Afterwards, it was filtered off, washed with a few mL
of acetone, and dried in an oven for 18 hrs at 50 °C.

2.3. General Procedure for the Synthesis of 4a
in  the  Presence  of  GO@dopamine/Cu  as  a
Model Reaction
Dimethyl  acetylenedicarboxylate  (1  mmol),
benzaldehyde (1 mmol), and aniline (1 mmol) were
introduced into a 25 mL round bottom flask fitted
with  a  magnetic  stirrer.  Additionally,  0.05  g  of
nanocatalyst was included in 15 mL of ethanol. The
resulting  mixture  was  subjected  to  stirring  and
refluxing for 30 minutes. The course of the reaction
was seen through thin-layer chromatography (TLC)
with a solvent mixture consisting of n-hexane and
ethyl acetate at a ratio of 2:10 (v/v). Following the
conclusion of the reaction, the resulting mixture was
subjected  to  filtration,  followed  by  a  thorough
washing  with  a  small  volume  of  ethanol.
Subsequently, the obtained solid was subjected to
recrystallization in hot ethanol. The spectral data for
4a is shown here in a representative manner.
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2.3.1. Methyl 5-oxo-2-phenyl-4-(phenylamino)-2,5-
dihydrofuran-3-carboxylate (4a)
Light yellow solid (Yield: 85%); M.p. 187-189 °C;
FT-IR  (KBr):  ῡ (cm-1) 3263,  3210,  2958,  1703,
1682, 1499, 1457, 1383, 1234, 1136, 755; 1H NMR
(400 MHz, DMSO-d6,  δ, ppm): 3.57 (s, 3H, OCH3),
6.06 (s, 1H, CH), 7.07 (m, 1H, Ar-H), 7.24 (m, 7H,
Ar-H), 7.55 (m, 2H, Ar-H), 11.74 (s, 1H, NH);  13C
NMR  (100  MHz,  DMSO-d6,  δ,  ppm):  51.1,  60.5,
111.9,  122.5,  127.6,  128.2,  128.6,  136.2,  136.5,
152.5, 162.4, 163.9; MS (m/z): 309.1 (M+, 100%,

base peak), 277, 250, 222, 189, 158, 130, 102, 77,
51.

3. RESULTS AND DISCUSSION

3.1.  Synthesis  of  Nanocatalyst  and
Dihydrofuran-2(5H)-one derivatives 
This  article  first  described  the  synthesis  and
characterization  of  a  new  nanocatalyst  of
GO@dopamine-Cu (Scheme 1)  and followed using
this nanocatalyst for the synthesis of dihydrofuran-
2(5H)-one derivatives 4a-4l (Table 1).

Scheme 1. Synthesis of GO@dopamine-Cu nanocatalyst.
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Table 1. Synthesis of dihydrofuran-2(5H)-one derivatives in the presence of GO@dopamine-Cu
nanocatalyst.

Representatively, the FT-IR spectrum of 4a showed
two bands at 3262 and 3210 cm-1 for NH stretching
frequencies.  Two  bands  at  1702  and  1681  cm-1

correspond to two carbonyl stretching frequencies of
dihydrofuran  and  methyl  carboxylate  carbonyl

groups,  respectively.  1H  NMR  spectrum  of  this
compound showed a broad peak at δ 11.73 ppm for
NH  proton,  at  δ 7.10-7.54  ppm  for  two  phenyl
protons,  a  singlet  at  δ 6.53 ppm for  benzylic  CH
proton, and finally, a singlet at δ 3.57 ppm for OMe
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protons.  13C  NMR  spectrum  of  this  compound
showed fourteen distinct peaks and confirmed the
assigned  structure.  Representatively,  the  spectral
data for 4a is presented in the experimental section.
(Other  spectral  data  are  available;  for  more
information, see Supplemental  materials).  The MS

spectrum of 4a showed m/z 309 (100%, base peak,
molecular ion mass) as a molecular ion mass and a
fragment at  m/z 250 (75%) via the loss of methyl
carboxylate  fragment.  The  proposed  full
fragmentation of 4a is shown in Scheme 2, confirm-
ing the assigned structure.

Scheme 2. Representative full mass fragmentations of molecular ion mass of 4a.

3.2. Nanocatalyst characterization
FT-IR  spectra  of  GO (a),  GO@dopamine  (b),  and
GO@dopamine-Cu (c) are shown in Figure 1. As can
be seen in Figure 1a, the stretching frequencies at
1725  and  1622  cm-1 corresponding  to  carboxylic
acid's  carbonyl  groups  and  C=C  bond  of  phenyl
rings in GO. The bands at 1050 and 1230 cm-1 are
of C-O stretching frequencies of hydroxyl and epoxy
groups on the GO surface,  respectively.  In Figure

1b,  the  bands  at  1358  and  1045  cm-1 stretching
frequencies correspond to the C-O and C-N bonds,
respectively, in which dopamine interacted with GO
functional groups. Figure 1c shows the spectrum of
GO@dopamine-Cu in which nearly all peaks of GO
and dopamine are shown. The decrease of the peak
at 3350 cm-1 is attributed to the immobilization of
Cu on dopamine and GO surfaces.
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Figure 1. FT-IR spectra of GO (a), GO@dopamine (b), and GO@dopamine-Cu (c).

The XRD patterns of GO and GO@dopamine-Cu are
shown  in  Figure  2.  Peaks  at  2θ  25°  and  43°
correspond  to  GO crystalline  sheets.  Peaks  at  2θ

9.7°, 23,9°, 36.5°, and 42.1° are corresponding to
functionalized  GO  by  dopamine  and  Cu  immobil-
ization.

Figure 2. XRD patterns of GO@dopamine-Cu (a) and GO (b).

The morphology of GO@dopamine-Cu according to
the scanning electron microscopy (SEM) reveals that
the GO parent morphology is retained, as shown in
Figure 3a. Transmittance electron microscopy (TEM)
image of nanocatalyst obviously showed the graphe-
ne  oxide  nanosheets  link  to  dopamines  and  also
immobilized copper nanoparticles (Cu-NPs) on the

GO  nanosheets  are  shown  in  Figure  3b.  These
observations  confirmed  the  immobilization  of  Cu-
NPs on the surface of  GO@dopamine nanosheets.
EDS data demonstrated that the related elements
(C, Cu, O, and N) of  GO@dopamine-Cu displayed
53.8, 24.6, 11.4, and 10.2 %, respectively (Figure
3c).
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Figure 3. SEM (a) and TEM images (b) and EDS data of GO@dopamine-Cu (c).

TGA  and  DTA  of  GO@dopamine-Cu  are  shown  in
Figure 4. The weight loss at the range of 0-100 °C
corresponds to the loss of solvents and at the range
of  135-200 °C related to  the  loss  of  copper  ions
from the nanocatalyst surface. The weight loss at

the 200-400 °C range was attributed to the loss of
dopamine ligands. Finally, the weight loss at up to
400 °C corresponded to the decomposition of  the
GO structure.

Figure 4. TGA-DTA analysis of GO@dopamine-Cu.
3.3. Catalytic activity 
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In  this  step,  the  activity  of  the  proposed
nanostructure was investigated as a beneficial and
eco-friendly component in the synthesis of  4a as a
model  reaction. To  obtain  the  optimum situation,
different  amounts  of  catalyst,  various  types  of
solvents,  time,  and  temperatures  were  appraised.
As evident, the reaction yield is 15% in solvent-free
conditions in the presence of 0.05 g of nanocatalyst
(Table 2, entry 1). With this amount of nanocatalyst
in H2O:EtOH  (1:1/ v:v), the reaction yield slightly
increased over a long time (Table 2, entry 2). By
increasing the amount of nanocatalyst to 0.06 and
0.10  g  in  EtOH  solvent,  no  significant  change  in

reaction  progress  was  observed  (86  and  85%,
respectively)  under  the  same  condition  (Table  2,
entries  5  and  7).  By  appraising  various  solvents
(H2O, CH3CN, and EtOH) within the optimal state,
EtOH had the highest efficiency compared to other
solvents, and 0.05 g of nanocatalyst was the best
amount of catalyst (Table 2, entry 4). The reaction
yield was trace when GO was used solely (Table 2,
entry 8). Immobilization of dopamine on GO (in the
absence of Cu) slightly increased the reaction yield
(12%)  on  GO@dopamine  (Table  2,  entry  9).  All
reaction conditions are outlined in Table 2.

Table 2. Optimization of parameters for the synthesis 4a as a model reaction.

Entry solvent Nanocatalyst

amount (g)

Temperature

(°C)

Time

(min)

Yield (%)

1 - 0.05 110 720 15

2 H2O/EtOH

(1:1/ v:v)

0.05 100 1440 20

3 CH3CN 0.05 Reflux 720 40

4 EtOH 0.05 Reflux 65 82

5 EtOH 0.06 Reflux 65 86

6 EtOH 0.025 Reflux 65 45

7 EtOH 0.10 Reflux 65 85

8 EtOH 0.06 (GO) Reflux 720 trace

9 EtOH 0.06

(GO@dopamine)

Reflux 720 12

The plausible mechanism for the synthesis of 4 was
presented  in  Scheme  3. First,  the  nanocatalyst
coordinated to dimethyl acetylenedicarboxylate (2),
produced  intermediate  (A),  then  nucleophilic
attacking of primary aromatic amine (1) to polarized
acetylenic carbon atom formed intermediate (B) as
an  enamine.  Afterward,  the  nucleophilic  attack  of
enamine  B to  the polarized carbonyl  group of  an
aldehyde (3) formed intermediate (C). The cycliza-
tion of this intermediate via an intramolecular attack
of  the  hydroxyl  group  on  the  activated  esteric
carbonyl  group  formed  the  desired  heterocyclic
compounds 4 (Scheme 3). 

3.4. Recyclability of nanocatalyst
To evaluate the recyclability of the  GO@dopamine-
Cu nanocatalyst, the reusability of this nanocatalyst
was examined in the one-pot reaction of aniline 1a;
dimethyl  acetylenedicarboxylate  2 and  benzalde-
hydes  3a for  the  synthesis  of  4a as  a  model
reaction based on optimum conditions  (Figure  5).
The nanocatalyst was separated at the end of each
reaction by centrifugation and then dried by elution
with ethanol. Then, the nanocatalyst is used for the
next run, indicating that the proposed nanocatalyst
is recycled in five runs. After five runs, the recycled
nanocatalyst  showed  no  significant  decrease  in
catalytic activity (Figure 5).
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Scheme 3: Plausible reaction mechanism for the synthesis of 4 in the presence of GO@dopamine-Cu
nanocatalyst.

Figure 5: Recyclability of GO@dopamine-Cu in the preparation of 4.
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4. CONCLUSION

In  summary,  in  this  work,  GO@dopamine-Cu
nanocatalyst was synthesized and characterized its
structure by FT-IR, XRD, SEM, TEM, EDX, and TGA-
DTA techniques. This nanocatalyst was used for a
one-pot,  three-component reaction of  an aromatic
aldehyde, arylamine, and acetylenic carboxylate for
the  synthesis  of  full  substituted  furan-2(5H)-ones
derivatives in  high  yield.  All  of  the  heterocyclic
structures  were  characterized  and  confirmed their
structures by spectroscopic methods. We concluded
that GO@dopamine-Cu is an efficient nanocatalyst
for the one-pot synthesis of  full substituted furan-
2(5H)-one derivatives. The main advantages of this
work  were  easy  reaction,  high  performance,  and
easy catalyst recyclability. This nanocatalyst recove-
red  at  least  five  times  with  negligible  decreasing
catalytic activity. 
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