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Abstract
In the study, the data obtained to describe the body characteristics of the Hairpin were utilized in the businesses that were registered with 
Karaman Province Breeding Sheep Goat Breeders Association. Body weights of 130 goats, 2, 3, 4, 5, 6 and 7 years old and 50 goats, 2, 3 and 
4 years old, selected by simple random sampling method were used in the data of total 900. In the study, Pearson correlation coefficient for 
variables providing parametric test prerequisites, and Spearman correlation analysis for variables not providing parametric test prerequisites. 
In the regression analysis, "live weight" dependent variable and other variables were determined as independent variables and parametric and 
nonparametric regression methods were applied. Univariate and multivariable regression models were applied for the whole data set. When all 
analyzes are evaluated, univariate regression models give lower determination coefficients (R2) than multivariate models. In this case, it has 
been deemed appropriate to use a multivariate regression model instead of a univariate model in order to make a correct prediction.However, 
in practice, univariate Quadratic or Cubic regression methods can be used for researchers.
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INTRODUCTION
Regression analysis assumes that when the mean 

relation between the dependent variable and the independent 
variable is expressed by a mathematical function, the 
independent variable and the dependent variable are in a 
linear relationship.

Regression models are regression models known as 
parametric, nonparametric and semi-parametric regression 
methods.

All of the approaches available for the semi-parametric 
regression model are based on different non-parametric 
regression methods. Semi-parametric regression models 
summarize complex data sets in a way that we can 
understand and maintain important properties while ignoring 
the insignificant details of the data in practice, thus allowing 
robust decisions to be made [1].

Semi-parametric regression method is widely used in 
the analysis of time-dependent data. Generally, longitudinal 
data obtained from experiments in the fields of agriculture, 
medicine and biostatistics are measured with a continuous 
scale depending on the time, and measurements taken at 
different times from the same trial unit (individual) take 
different values. But the recipients are related to each other. 
This is the result of applying multiple behaviors to the same 
test units to follow each other [2].

In the majority of longitudinal studies, the effects of 
time and continuous independent variables on the resulting 
outcome variance are included in the model. Correlation 
(autocorrelation) between error variables occurs when 
more than one observation is made on the same individual 
depending on location and time. In such cases, some 
assumptions do not apply. Therefore, making time-related 
assessments is a common problem for parametric methods. 
Non-parametric methods can be used in such cases. However, 
when nonparametric methods are used to analyze the number 
of independent variables, it is difficult to make analyzes 
and to interpret the graphs. As an alternative method, semi-

parametric models can be used. In semiparametric models, 
the effects of chance and time are affected by nonparametric 
methods, while the effects of continuous independent 
variables are included by methods that are parametric.

The semi-parametric regression model is also called 
the "partial linear model" by the fact that it consists of a 
combination of parametric and non-parametric regression 
functions. In the study, the live body weight was estimated 
from different body measurements in the hair follicle by 
the multivariate, univariate parametric and nonparametric 
regression methods.
MATERIALS AND METHODS

SIn regression analysis, there are two types of linearity 
in variables and coefficients (linearity in parameters). The 
state of linearity in variables means that the value of each 
variable in the model is one; indicates a linear functional 
relationship between dependent and independent variables. 
Similarly, in coefficients, linearity is the exponent of all 
coefficient values in the model and the existence of a linear 
functional relationship between the dependent variable and 
the coefficient values.

0 1i i iY X eβ β= + +
			   (1)

An example of a model is that both the coefficients and 
the variables are linear.

2
0 1i i iY X eβ β= + + 			   (2)

The coefficients are also linear, but the variables are 
examples of nonlinear models.

0 1i i iY X eβ β= + +
		  (3)

Variables are linear, while coefficients are examples of 
nonlinear models.

Simple Linear Regression Model
The regression model examines the causality relations-
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hip between a single independent variable and a dependent 
variable.

	 0 1i i iY X eβ β= + +
		  (4)

Multiple Regression Model
 

Models developed for multiple regression analysis resemble 
simple linear regression models, with the exception of more 
terms, and can be used to examine straightforward, more 
complex relationships. For example, suppose that the avera-
ge time E (y) needed to fulfill the data-processing task incre-
ases as the use of computers increases and we think that the 
relationship is curve-linear. 

To model the deterministic 110)( XyE ββ +=
component, the following quadratic model can be used ins-
tead of the straight-line model.

2
12110)( XXyE βββ ++=

		      (5)
For example, the first-order model

22110)( XXyE βββ ++=
		       (6)

(x1, x2) -plane. For our example (and for many real-life 
applications), we expect a slope on the response surface and 
use a second-order model to model the relationship.

2
25

2
1421322110)( XXXXXXyE ββββββ +++++= (7)

All the models written up to now are called generic li-
near models, because E (y) is a linear function of unknown 
parameters. The following model is not linear.

xeyE 1
0)( ββ −=

			      (8)
Because E (y) is not a linear function of unknown model 

parameters.
Semi-parametric Regression Models
Semi-parametric regression models are models in which 

the dependent variable can be parameterized in relation to 
some explanatory variables, but not easily related to some 
other explanatory variable or variables. In the semi-paramet-
ric model, linear parametric components form the paramet-
ric part of the model whereas both parametric and non-linear 
components form the non-parametric part of the model. This 
model is a special case of additive regression models [3], 
which allows easier interpretation of the effect of each va-
riable and generalizes standard regression methods. In ad-
dition, the semi-parametric model is a model in which the 
dependent variable is linear with some explanatory variables 
but not linear with other specific independent variables.
Parametric Methods
Linear: Y = bo + b1X			    	             (9)
Inverse: Y = b0 + (b1 / t)			              (10)
Quadratic: Y = bo + b1X + b11X

2	                     	            (11)
Cubic: Y = bo + b1X + b11X

2+ b111X
3                         	                    (12)

Semi-Parametric Methods
Logarithmic: Y = b0+ (b1 * ln(t))	 		             (13)
Power: Y = bo + b1X veya ln(Y) = ln(b0) + (b1 * ln(t)) 	            (14)		
		
Compound: Y = b0 * (b11

2) veya ln(Y) = ln(b0) + ((b1) *ln( t))  (15)		
	
S-curve: Y = e( b

0
 + (b

1
/t)) veya ln(Y) = b0 + (b1/t) 	            (16)		

			 
Growth: Y = e( b0 + (b1 * t)) veya ln(Y) = b0 + (b1 * t) 	            (17)

Exponential: Y = b0 * (e( b1 * t)) veya ln(Y) = ln(b0) + (b1 * t)     (18)		
	                                                     

Y= dependent variable 
b0= Regression equation constant 
b1= Regression coefficient 
t= numeric value of the independent variable
Multivariate Regression Models
Variable Selection Methods 
(ForwardSelection)
(BackwardElimination)
(Stepwise Regression)

kk XXXyE ββββ ++++= ...)( 22110 (19)
[4,5,6]

In the survey, the data obtained for the purpose of desc-
ribing the body characteristics of the Hairpin were utilized 
within the scope of “Project for the development of subspe-
cies of the hairpin race”, “Project code: Tagem / Kıl2013-
02”, in the enterprises that have registered the Karpil breed 
sheep goat breeders association in Karaman province. The 
body measurements of 130 goat selected by simple random 
sampling method of 2, 3, 4, 5, 6 and 7 aged females were 
used in this study and a total of 50 teens data selected by 
simple random sampling method of 2, 3 and 4 elderly mono-
polies were used for monopolies.

The live weights of the goats and body measurements 
were taken at the end of the forties in June. Body measu-
rements were made in the cage or on the flat surface of the 
cave.

The body measurements measured by goats in 2012, the 
measurements made and their anatomical definitions are gi-
ven below.

Height at withers (CY)
Height at rump (SY)
Body length(VU)
Rump Width(SG) 
Chest width (GG)
Chest depth(GD)
Chest girth (GÇ)
Pearl Circle (İÇ)
The data to be used in the study were randomly selected 

from the general data with the MINITAB program. Statisti-
cal package program Syntax Function SPPS 20 (IBM Corp. 
Released 2011. IBM SPSS Statistics for Windows, Version 
20.0, Armonk, NY: IBM Corp.) was used to evaluate the 
data. The level of significance is shown as α = 0,05.
FINDINGS

Figure 1. Univariate parametric and semi-parametric 
regression model graphs
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	          Table 1. Results of univariate parametric and semi-parametric regression models

 

Methods

Summary Model Estimation of parameters  

  R2, % F SD SD p Sabit b1 b2 b3  

Height at 
withers Quadratic 49,8 87,6 2 177 0,001 246,8 -6,4 0,051  

Y = 454,5 
- 12,1X + 
0,09X2

Height at 
rump Quadratic 60,4 135,2 2 177 0,001 454,5 -12,1 0,09  

Y = 454,5 
- 12,1X + 
0,09X2

B o d y 
length Linear 54 209 1 178 0,001 -89,88 1,93     Y = -31,78 + 

5,001X 

R u m p 
Width Cubic 31,3 40,2 2 177 0,001 4,79 0 0,22 -0,003

Y = 37,28 
+ 0,001X 
+ 0,028X2- 
0,002X3

C h e s t 
width Cubic 46,6 76,8 2 177 0,001 37,28 0,001 0,028 0,002

Y = 37,28 
+ 0,001X 
+ 0,028X2- 
0,002X3

C h e s t 
depth

Logarith-
mic 24,9 50 1 178 0,001 -247,5 86,06     Y = -247,50 + 

(86,06 * ln(t))

C h e s t 
girth Quadratic 79,8 349,2 2 177 0,001 235,56 -5,48 0,039  

Y = 235,56 
- 5,48X + 
0,039X2   

P e a r l 
Circle Linear 51,1 186,1 1 178 0,001 -30,6 8,7     Y = -30,6 + 

8,7X 

Table 2. Result of multivariate regression model (Stepwise method)
Model

B

Coefficients
t

p

Alt Sınır

95,0% Confidence Interval
R2, % PS. Er-

ror
Ü s t 
Sınır

1 (Constant) -106,2 7,19 -14,8 0,001 -120,4 -92,0 75,3 0,001Chest girth 1,8 0,08 23,3 0,001 1,7 2,0

2
(Constant) -122,7 7,58 -16,2 0,001 -137,7 -107,7

78,2 0,001Chest girth 1,5 0,11 14,0 0,001 1,3 1,7
Body length 0,6 0,13 4,8 0,001 0,4 0,9

3
(Constant) -118,4 7,45 -15,9 0,001 -133,1 -103,7

79,7 0,001Chest girth 1,3 0,11 11,5 0,001 1,1 1,5
Body length 0,5 0,13 3,7 0,001 0,2 0,8
Pearl Circle 2,1 0,60 3,5 0,001 0,9 3,3

4

(Constant) -114,0 7,69 -14,8 0,001 -129,1 -98,8

80,1 0,001
Chest girth 1,2 0,13 9,3 0,001 0,9 1,4
Body length 0,5 0,13 3,6 0,001 0,2 0,7
Pearl Circle 2,0 0,59 3,5 0,001 0,9 3,2
Chest width 0,5 0,23 2,1 0,041 0,02 0,9

When the estimation equations for univariate methods are examined, Quadratic or Cubic models give higher R2 value, 
unlike the use of continuous linear models (Table 1 and Figure 1).

As a result of the multivariable regression methods, it is possible to estimate body weight by 80% with the regression 
equations generated by independent variables of Chest Environment, Body Length, Hip Circumference and Chest Width. As 
a result of univariate regression methods, Quadratic or Cubic models predict body weight by about 75% with independent 
breast circumference variation. Multivariate regression methods result in an increase of 5% when the Body Length, Thigh 
Circumference, and Chest Width arguments are added (Table 2) [7,8].
DISCUSSION and SUGGESTIONS

Some criteria are relevant to determine which statistics 
are applicable to the data obtained in a study. Analyzing 
the research with appropriate statistical methods also 
improves the reliability of the research and provides a 
consistent interpretation of the results. For this reason, 
variable structures, measurement scales, and consistency 
of assumptions are important considerations in statistical 
studies.

Using inappropriate regression methods can lead to 
incorrect and misleading results. The relationship between 
variables must be examined with functional regression 
models. The regression model that needs to be used differs 
according to the structure of the data, and using the wrong 
model can lead to incorrect results. In this case, it is 
suggested to establish the most meaningful model suitable 
for data structure.

In the study, differences in the mean of the best model 
were observed among the results of the different body 
regimens included in the model as the univariate independent 
variable versus the live weight dependent variable, in the 
different regression models applied. In all body dimensions, 
all linear and non-linear models were found to give 

statistically significant results. It has been seen that most of 
the body measurements give more favorable results in the 
sense of both R2 and Cubic models. Only in the chest depth 
variable the logarithmic model gave the highest R2 value. 
It is understood that the Quadratic or Cubic model can be 
preferred to the Linear model because all variables except 
this give the equal R2 value of the body length and width 
of the rider which can be preferred to the Quadratic model.

It is predicted that multivariable regression equations 
generated by independent variables of Chest Environment, 
Body Length, Thigh Circumference and Chest Width can be 
prefered as a result of multivariate stepwise and best subset 
regression analyzes in the study.
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