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Özet 

Bu çalışmada, serilerin üst yakınsaklığı ile bu serilerin kısmi toplamlar dizisinin toplanabilir bir 

uzanımının varlığı arasında bağlantı kuran bir genel toplanabilme matrisi tanıtıldı. Bu matrislerin bazı 

özellikleri ve Riesz Matrislerinin hangi koşullar altında bu matris sınıfına girdiği incelendi. 

 

On Diluted Cesàro Matrices 
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Abstract 

In this paper, we introduced some general summability matrices which make contact between the 

overconvergence of series and the existence of a summable elongation of the sequence of the partial 

sums of the series. We investigated some properties of them and analysed under what conditions will 

the Riesz Matrices be in the class of matrices which are defined. 
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1. Introduction 

A theorem of Drobot (1970) asserts that a power 
series can be diluted to become  1C -summable 

outside of the circle of convergence if and only if it 
overconvergences, that is, there exists a 
convergent subsequence of the sequence of partial 
sums of power series outside of the circle of 
convergence. Gharibyan and Luh (2011) obtained 
the same result by the different method. The 
authors in (Tunc and Kucukaslan, 2014) extended 
this result to some regular summability matrices 
instead of 1C -summability. The natural question is 

what are general summability matrices that replace 
with Cesàro Matrices in the theorem. This paper 
deals with this problem. We define some general 
summability matrices which are called as "diluted 
Cesàro matrices", investigate some properties and 
analysed under what conditions will the certain 
important methods of summability be diluted 
Cesàro matrices. 

 

2. Material and Method 

We give some required concepts in the following. 

2.1. Elongation of Sequences 

Let 

 




    1 2 3
1

n
n

a a a a  (2.1) 

be a series of complex or real numbers of na , 

𝑛 ∈ ℕ. The series 

 




           1 2 3
1

0 0 0 0 0 0n
n

a a a a  

which is obtained by adding arbitrary number of 
zeros between the terms of the series (2.1) is called 
a “dilution” of the series (2.1). The number of zeros 
which are added can be characterized by a 
sequence of natural numbers. Let 1nm , 𝑛 ∈ ℕ, 

be the number of zeros added after the term na , 
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and let 

 1( )n nm m . Then the resulting series is 

called  m dilution of the series(2.1). In the special 
case, if m  is a constant sequence, it is said that this 

dilution is uniform. If 

1( )n nS  is the sequence of 

partial sums of the series (2.1), then the sequence 
of partial sums of the diluted series will be in the 
following form: 

 

  1 2

1 1 1 2 2 2( , ,..., , , ,..., ,..., , ,..., ,...)

n

n n n

m times m times m times

S S S S S S S S S  (2.2) 

This result leads to the concept of elongation of the 
sequences. The sequence (2.2) is called 
m elongation  of ( )nS . It is obvious that the 

sequence ( )nS  is convergent if and only if any m

elongation  of ( )nS  is convergent with the same 

limit. However, this assertion does not hold for the 
Cesàro convergence of sequences. For example, 

the Cesàro limit of the sequence  ( ) 1,0,1,0,nx  

is 
1

2
, while the Cesàro limit of   1,2,1,2,1,2,m

-elongation of the sequence ( )nx  is 
1

3
. 

2.2. A-Summability 

Let  ,( )n kA a , 𝑛, 𝑘 ∈ ℕ,  be an infinite matrix of real 

(or complex) numbers. A sequence  nS  of real (or 

complex) numbers is said to be summable to a 

number S   by the method  ,( )n kA a , shortly A-

summable to S , if the limit relation 

 





 ,
1

lim n k k
n

k

a S S  

holds, and it is written as limA nS S . The matrix 

 ,( )n kA a  is called regular if it transforms 

convergent sequences to convergent sequences 
with the same limit. 

The Cesàro Matrix: The Cesàro means 1C  which 

transform a given sequence ( )nS to the sequence 

( )n , where  

 


 
1

1
,

n

n k
k

S
n

 

which has the matrix representation  ,n ka  defined 

by  

 




 
 

,

1
,

0, . 
n k

k n
a n

k n

 

The matrix  1 ,n kC a  is regular (Petersen, 1969). 

Riesz Matrices: Suppose that ( )np  is a sequence of 

non-negative numbers, and put  

     1 2 1... ; 0.n nP p p p p  

Thematrix  transformation of ( )nS  given by  

 


 
1

1 n

n k k
kn

R p S
P

 

 is called as the Riesz mean ( , )nR p . The matrix 

representation of the ( , )nR p  mean is defined as 

follows  

 




 
 

,

 ,

0, . 

k

nn k

p
k n

Pr

k n

 

If we take 1np  for all 𝑛 ∈ ℕ, then ( , )nR p  coincide 

with the Cesàro means 1C . Besides, ( , )nR p  is 

regular if and only if 


lim n
n

P  (Petersen, 1969). 

3. Diluted Cesàro Matrices 

Let ( )nx  be an arbitrary sequence. While the 1C  

transformation of an elongation of ( )nx  is 

convergent, the sequence ( )nx  may be not 1C -

convergent. For example, the sequence  

 

  



2 21 10 0 2 times 2 times2 times 2 times2 2

( ) (1,0, 1,1, 0,0, 1,1,1,1,0,0,0,0, )nx  

is not 1C -convergent(Peyerimhoff, 1969), but it has 

an elongation whose Cesàro means converge, since 
it is bounded (Drobot, 1975). The following 
theorem is concerned with the conditions that if 
the sequence has a 1C -convergent elongation then 

it is 1C -convergent. 

First, we give a lemma, which is obtained by simple 
calculations. 
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Lemma 3. 1. Let  ( )nm m  be a sequence of positive 

integers and 



1

n

n k
k

M m . Then  

 


 

 
   

 


1

1 1

1 1
.

n
n

k
k k k n

M
M n

m m m
 

Theorem 3. 1.   Let ( )nx  be a sequence of real 

numbers,  ( )nm m  be a sequence of positive 

integers and 



1

n

n k
k

M m . If m-elongation of ( )nx  is 

1C -convergent to a number , and the conditions  

i.  


 lim n

n
n

M

nm
 

ii.  


 

 
1

1 1

1 1 1
sup

n

k
n k k k

M
n m m

 

hold, then ( )nx  is 1C -convergent to . 

Proof. Let ( )nx  be m -elongation of the sequence 

( )nx  and  n  be the Cesàro means of the elongated 

sequence.  Then the sequence ( )n  converges to 

the number . Since every subsequence of ( )n  

converges to the number , then  

 
 



 
1

1
lim lim .

k

k

M i i
k k

ik

m x
M

 

Let  n  be the Cesàro means of the sequence ( )nx . 

Using Abel's partial summation formula, we have 


 

  
1 1

1 1 1k k

k i i i
i i i

x m x
k k m

 



  

   
    

   
  

1

1 1 11

1 1 1 1k k i

i i j j
i i jk i i

m x m x
k m m m

 

 


 

 
   

 


1

1 1

1 1
.

k i

k
k i

M M
ik i i

M M

km k m m
 

By the hypotheses of theorem and using Lemma 1, 

the matrix   kiA a , with entries  

 


  
   

   




1

1 1
,

0,

i

ki i i

M
i k

a k m m

i k

 

satisfies the conditions of Kojima-Schur Theorem 
(Cooke, 1950). Therefore, we obtain  

    


   lim 1 .k
k

∎ 

We will denote by   the space of all sequences 
with real terms. Besides the space  ,  let us 
consider the subspaces of  which are given in the 
following: 

    : {( ) : sup }n n
n

l x x  

 


 : {( ) : lim exists}n n
n

c x x  




  0 : {( ) : lim 0}n n
n

c x x  

It is clear that   0c c l . Let N  be a non-

empty subset of  . 

Definition 3. 1.Let  ( )nkA a  be a limitation matrix 

which transforms convergent sequences to 
convergent sequences. The matrix A  is called a 
Diluted Cesàro Matrix on N  (for short NDCM ) if 

every A-convergent sequence on N  has 1C -

convergent elongation. If 
N l , it is called as 

Diluted Cesàro Matrix (for short DCM ). 

For example, every Schur Matrix is a DCM , since it 
transforms each bounded sequence to a 
convergent sequence. 

Definition 3. 2. Let  ( )nkA a  be a limitation matrix 

which transforms convergent sequences to 
convergent sequences. The matrix A  is called a 
Smooth Diluted Cesàro Matrix on N  (for short 

NSDCM ) if every A-convergent sequence on N  has 

1C -convergent elongation with same limit. If 
N l

, it is called as Smooth Diluted Cesàro Matrix (for 
short SDCM ). 

It is obvious that every NSDCM  is a NDCM . But 

inverse of this statement is not true. For example 

the matrix   nkA a  with entries 
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 


  



1 / 2 , 4

1 / 2 , 4 1

0, others

n

n
nk

k

a k  

is a regular matrix and a DCM , but is not a SDCM . 
Because, for the sequence  



2 3 410 2 times 2 times 2  times2  times2

( ) (1 , 0,0 ,1,1,1,1,0,0,...,0,1,1,...,1,0, )nx  

we have  

 
1

lim ,
2

n
A
x  

but the sequence ( )nx  is not elongated as being 1C -

convergent. 

Proposition 3. 1. Let  N M . If a matrix A  is a 

MDCM , then it is a NDCM . 

Remark 3. 1. The converse of this proposition is not 
true. Indeed, if we consider the matrix  ( )nkA a  

with entries  

 

 


  



1 / 2 ,

1 / 2 , 1

0, others,
nk

k n

a k n  

it is clear that the matrix A  is a  
0c

SDCM , but it is 

not a 
l

SDCM . Moreover, it is a  
0c

DCM , but it is 

not a DCM , since the sequence ( ) ( )nx n  does not 

have a 1C -convergent elongation, but 

lim 1/2A nx . 

Theorem 3. 2. If  c N , then every NSDCM  is a 

regular matrix transformation.  

Proof. Let A  be a NSDCM  and ( )nx  be a 

convergent sequence with limit . Then every 
elongation of the sequence is 1C -convergent to . 

Therefore, lim n
A
x .∎ 

Remark 3. 2. There exists a NSDCM  which is not 

regular matrix transformation. For an example, the 

matrix A  in Remark 1  is a  
0c

SDCM  but it is not 

regular, since it transforms every convergent 
sequence to a sequence converging zero. 

The identity matrix I , the Zweier matrix 1 2Z  and 

the Cesàro matrix (of order 1) 1C  are all SDCM . If 

 np  be an increasing sequence of non-negative 

real numbers, then the Riesz matrix ( , )nR p  is a 

SDCM , since 1C  is stronger than ( , )nR p  in this 

case.  But, there exists a Riesz matrix ( , )nR p  which 

is not a SDCM . For example, it is clear that the 
Riesz matrix ( , )nR p  with 

 
 

 





     



 
1 1

0 0

1, 1

1, 2 or 1 2

0, others

n n
i i

k
i i

k

p k n k n  

Where𝑛 ∈ ℕ, is a regular matrix. However, it is not 
a  SDCM , since the ( , )nR p -limit of the sequence  

 



2 30 1 2 times 2 times2 2

( ) (1,0 ,1,0,0,1,0,0,0,0,1,0,0,...,01,0 )nx  

is 1 / 2 . But there is no an elongation of this 

sequence which is 1C -convergent to 1 / 2 , by the 

Theorem 2 in (Drobot, 1975). 

The following theorems are concerned with the 
problem: Under what conditions will the Riesz 
matrix ( , )nR p  be a SDCM ? 

Theorem 3. 3. Let  np  be a decreasing sequence of 

non-negative real numbers such that  

i.  


 lim n
n

p p ℕ , 

ii.  The sequence (𝑛(𝑝𝑛 − ⟦𝑝𝑛⟧)) is bounded. 

Then the Riesz matrix  , nR p  is a SDCM . 

Proof. By the condition i, the Riesz matrix  , nR p  is 

regular. Let   nx l , that is for a number 0M , 

nx M  for all 𝑛 ∈ ℕ. Moreover, let  

 




 
( , )

1

1
lim lim

n

n

n k k
R p n

kn

x p x
P

 (3.1) 

where    1 2n nP p p p . For nm ⟦𝑝𝑛⟧, 𝑛 ∈ ℕ, 

let the   nm m -elongation of the sequence  nx  

be given by  
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 
1 2 times  times  times

1 1 1 2 2( , , , , , , , , , , , )

km m m

n k ky x x x x x x x  

For the proof, we have to prove the following:  






 
1 1

1
lim lim

n

n k
C n

k

y y
n

 

By the condition i, there exists r ℕ such that 

nm p  for all n r . Any natural number n r  has 

a representation of the form 





   
1

1

,
r

k
k

n m ip s i ℕ,  0 s p , 




0

1

: 0
k

. Then, we get 


 



 

 
  

 
  

1

1 1

1 1n r i

k k k N i
k k

n y m x sx
n n

 

 
 

 

 
  

 


1
1

11

1 r i
r i

k k
kr i

P
p x

n P
 

 




1

1

(
1 r i

kn
𝑝𝑛 − ⟦𝑝𝑛⟧))

 r i
k

sx
x

n
 

By the condition ii, we have  

   

   

 









 

    
 

 





1 1
1

1

1

1

lim lim

1 log 1
lim 1

r i r i
ri i

k
k

ri

k
k

P P

n
m ip s

r i p r i

m ip s

 

Thus by (3.1), we obtain  

 
 

 


 

 
 

 


1
1

01

1
lim .

r i
r i

k k
i

kr i

P
p x

n P
 

On the other hand 

 




 
1

1

|
1

0 lim
r i

i
kn

𝑝𝑛 − ⟦𝑝𝑛⟧|| |kx

 




 
 

 
1

0

log 1
lim 0

ri

k
k

r i
M

m ip s

 

and since  




lim 0r i

i

sx

n
 

we have  

 


lim n
n

.∎ 

Note that if  0p , then Theorem 3. 3 does not 

apply to decide a Riesz matrix is a SDCM , or not. 
We give the following theorem for this situtation, 
but first, we prove a lemma. 

Lemma 3. 2. If the sequence  np  of positive 

numbers is decreasing and the sequence 
 
 
 

n

n

P

np
 is 

bounded, then the sequence 




 

 
 
 


1
1

1 1

1 n
k k

k
k k k

p p
P

n p p
 is 

bounded too, where    1 2n nP p p p . 

Proof. Applying Abel's partial summing formula, we 
get  






 




1
1

1
1 1

n
k k

k
k k k

p p
P

p p
 

 
 

 

   

   
       

   
  

1 2

2 1
1 1 11 1

1 1 1 1n n k

n k k
k k ik k i i

P P P
p p p p

 





 

   
      

   


2

2
11 1 1

1 1 1 1n

n k
kn k

P p
p p p p

 





 

 
     

 


2

2
11 1 1

1 1n
n n n

k
kn k n

P P P
p

p p p p p
 

Since 

 
 



  

 
 

1 1
1 1

1
1 11 1

,
n n

k k k k
k k

k kk k k k

p p p p
P P

p p p p
 

we obtain desired result.∎ 

Theorem 3. 4. Let  np  be a decreasing sequence of 

positive real numbers such that  

i.  


lim 0n
n

p . 
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ii.    sup /n n nP np  

Then the Riesz matrix  , nR p  is a SDCM . 

Proof. The proof is clear by Lemma 2 and Theorem 
1.4.7 in (Petersen, 1966).∎ 

3.1. An Application 

Let us consider a power series 

 




 
1

0

( ) with sup lim 1n
n

n n
nn

f z a z a  (3.2) 

and denote its partial sums by 

 



0

( )
n

k
n k

k

S z a z  (3.3) 

It is well known that the sequence of the partial 

sums  


0n n
S  is uniformly convergent to the 

function f  on each compact subset of the unit disk 

  : : 1z zD  and divergent for all z , where 

1z . It is also known that it can be constructed 

such a power series with the property that a 

certain subsequence of  nS { }nS  converges to f  

on the open sets from exterior of the unit disk 
where the function f  is regular (Porter, 1906-

1907). This is the phenomenon of 
overconvergence. 

A power series in (3.2) is called overconvergent, if 

there exist an open set   : 1U z z  and a 

monotone increasing sequence of positive integers 

 kn   such that  
kn

S  converges compactly on U .  

We may give the result of Gharibyan and Luh 
(2011) in the following form.  

Theorem 3. 5.Let A  be a SDCM and (3.2) has an 

analytic continuation. Then the sequence  nS  

given by (3.3) is A-convergent compactly in an open 
set U outside the unit disk then the power series is 
overconvergent. 

 

 

4. Conclusions 

The class of Diluted Cesàro Matrices which is a new 
class of summability matrices, generalizes the the 
condition of overconvergence of series with 
Dirichlet type. It is important to determine the 
charactheristic properties of these matrices forthe 
theory of divergent series.  In this study we 
generalized the results of Gharibyan, and Luh 
(2011), Drobot (1970), Luh and Nieß (2013).  
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