Effects of propolis on in vitro rumen microbial fermentation

Hakan OZTURK1, Mert PEKCAN2, Meltem SIRELI1, Ulvi Reha FIDANCI2

1 Department of Physiology, Faculty of Veterinary Medicine, University of Ankara; 2Department of Biochemistry, Faculty of Veterinary Medicine, University of Ankara, Turkey.

Summary: The aim of this study was to investigate the effects of different concentrations of propolis ethanolic extract (PEE) on rumen microbial fermentation using the rumen simulation technique (Rusitec). Six fermenters with a nominal volume of 750 ml were set up for the study that lasted 14 days. Each fermenter received daily 10 g of a basal diet consisting of 6 g pelleted alfalfa hay and 4 g pelleted concentrate. Treatments were control (received 0.5 ml/day of 70% ethanol without having any propolis), 0.5 ml/day of 20% PEE, and 0.5 ml/day of 60% PEE. Supplementation of PEE in both concentrations did not affect ruminal pH, production of total short-chain fatty acid (SCFA) as well as of acetate, acetate to propionate ratio, total protozoa count, and dry matter digestibility. High concentration of PEE resulted in a significant decrease (p<0.05) in propionate production whereas both high and low concentrations of PEE significantly increased (p<0.05) ruminal butyrate production. Total count of ruminal bacteria was decreased (p<0.05) after the addition of PEE in both concentrations. Furthermore, NH₃-N concentration in rumen fluid was reduced (p<0.05) in a dose-dependent manner by 24 and 39% by the addition of low and high concentrations of PEE, respectively. In conclusion, the results of this study indicate that propolis may be a useful additive to decrease ruminal ammonia production and to improve the nitrogen utilization in ruminants.

Key words: In vitro, fermentation, propolis, rumen

Propolisisin rumen mikrobiyal fermantasyonu üzerine in vitro etkileri

Özet: Bu araştırmda, Rusitec tekniği (Rumen Simulation Technique) kullanılarak, farklı yoğunluklardaki etanolik propolis ekstraktlarının rumen mikrobiyal fermantasyonu üzerine etkilerinin belirlenmesi amaçlandı. Gerçek hacimleri 750 ml olan 6 fermenterde ayrıca araştırma 14 gün sürdü. Her bir fermenterde günlük olarak 6 g yonca otu peleti ve 4 g konsantre pelet yemden oluşan bir rasyon inkübe edildi. Araştırma sırasında grupları kontrol (propolis içermeyen % 70’lik etanol çözeltisinden 0,5 ml/gün), propolisin % 20’lik etanolik ekstrakti (0,5 ml/gün) ve propolisin % 60’lik etanolik ekstrakti (0,5 ml/gün) olarak olarakARGIN kodlanmış. Rusitec fermenterline ilave edilen propolisin her iki yoğunlukta ekstraktı da ruminal pH, toplam konsantrasyonu ve eti setinve etkileri, asetatin propiyonata oranı, toplam protozoa sayısı ve yumurta malzemesinin sindirilirlikl引いていなお該てでなかった。 Ancak % 60’lık propolis ekstraktı propiyonat üretimi belirgin bir şekilde arttı (p<0.05), hem % 60 hem de % 20’lik propolis ekstraktı ruminal ürün birim olarak azaltma bir şekilde ani (p<0.05). Ayrıca her iki yoğunlukta propolis ekstraktı ruminal bakterilerin toplam sayıya ait colored data (p<0.05) neden oldu. NH₃-N konsantrasyonunda hem düşük hem de yüksek yoğunlukta propolis ekstraktı ilavesinden sonra sırasıyla % 24 ve % 39’luk bir azalma (p<0.05) belirledi. Bu araştırmanın elde edilen sonuçlar propolisinin ruminal amonyak üretimini azalttı ve ruminal azot değerlendirilebilirliğini iyileştirmededir.

Anahtar sözcükler: In vitro, fermentasyon, propolis, rumen

Introduction

A goal of ruminant microbiologists and nutritionists is to manipulate the ruminal microbial ecosystem to improve production efficiency of domestic ruminants. In these animals, the use of antibiotics as feed additives, such as ionophore antibiotics, has proved to be a useful tool to reduce the loss of energy as methane, and nitrogen as ammonia from the diet. However, due to the risk of transferring residues into meat and milk and resistant strains of bacteria, the use of antibiotics in animal nutrition has been prohibited in the European Union since January 2006 (14, 17). Thus, there is increasing interest in exploiting natural products as manipulators of ruminal fermentation.

Propolis is a resinous substance collected by honeybees from buds and leaves of trees and plants, mixing with pollen as well as enzymes secreted by bees (5). Substances, which are identified in propolis, generally are typical constituents of food and/or food additives, and are recognized as GRAS (Generally Recognized As Safe) substances (4). Numerous studies have proven its versatile pharmacological activities: antibacterial, antifungal, antiviral, anti-inflammatory, hepatoprotective, antioxidant, antitumoral, etc. (1). The
antimicrobial activity was higher against Gram positive than against Gram negative bacteria (8). Gram positive bacteria produce more ammonia, hydrogen, and lactate than Gram negative species, and compounds that inhibit Gram positive ruminal bacteria have increased feed efficiency (23). Because propolis can inhibit the growth of Gram positive bacteria, it might be a useful additive for modifying microbial fermentation in the rumen. However, its potential for manipulating rumen microbial fermentation has not been widely assessed. The specific aim of the present study was to evaluate the effects of different concentrations of propolis ethanolic extract on rumen microbial fermentation in a long-term in vitro study.

Material and Methods

Incubation technique: The study was carried out using the rumen simulation technique RUSITEC (6). The complete unit consisted of six fermenters with an effective volume of 750 ml each and the general incubation procedure was as described by Oeztuerk et al. (16). Rumen content was obtained from a pooled sample from two freshly slaughtered mature Merino sheep and transferred to the in vitro system within 30 min. Animals had been fed 1.5 kg/day of a forage plus concentrate diet of 900 g pelleted alfalfa hay and 600 g commercial concentrate pellet. The same diet was also used for in vitro incubation trial. The complete unit of the Rusitec consisted of six fermenters with an effective volume of 750 ml each. Each fermenter was loaded with 2 nylon bags (70 x 120 mm with a pore size of 150 µm). On day 1, one bag was filled with 80 g of solid rumen contents to inoculate particle-associated microorganisms into the system and the other with the daily diet, a mixture of 4 g of pelleted concentrate and 6 g of pelleted alfalfa hay. The chemical composition of experimental diet is given in Table 1.

The fermenters were filled with rumen fluid to inoculate fluid-associated microorganisms. The nylon bag with solid rumen contents was replaced after 24 h of incubation with a bag containing the daily diet. The feed bag was changed after 48 h so that 2 bags were always present. This gave a retention time of 48 h for feed. Bags were exchanged under anaerobic conditions using CO2 to flush the fermenters. To maintain conditions as close to those of the in vivo rumen as possible, the incubation temperature was 39°C and rumen fluid turnover was simulated by a continuous buffer perfusion at a rate of 750 ml/day. The chemical composition of the buffer solution is presented in Table 2. The pH was 7.4 and the osmolality was 293 mosmol/l. By moving the inner vessel up and down continuously rumen motility was simulated and exchange between the fluid and particle phases was facilitated. Rumen gas was collected in gastight collecting sacs to ensure a closed system; the fluid outflow was collected in ice-cooled Erlenmeyer flasks to stop microbial activity and preserve fermentation products.

Table 2: Chemical composition of the buffer solution (mmol/l).

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>28.00</td>
</tr>
<tr>
<td>KCl</td>
<td>7.69</td>
</tr>
<tr>
<td>CaCl2·2H2O</td>
<td>0.22</td>
</tr>
<tr>
<td>MgCl2·6H2O</td>
<td>0.63</td>
</tr>
<tr>
<td>NH4Cl</td>
<td>5.00</td>
</tr>
<tr>
<td>Na2HPO4·12H2O</td>
<td>10.00</td>
</tr>
<tr>
<td>NaH2PO4·H2O</td>
<td>10.00</td>
</tr>
<tr>
<td>NaHCO3</td>
<td>97.90</td>
</tr>
</tbody>
</table>

Preparation of propolis extracts: Ethanolic extracts of propolis were prepared as described previously by Sforcin et al. (25). Crude propolis was ground into a fine powder, and thereafter 20% and 60% ethanolic extracts of propolis were prepared (2 g and 6 g propolis powders were completed to 10 ml with 70% ethyl alcohol), protected from light, with moderate shaking, at room temperature. After a week, the insoluble fraction was separated by filtration. The filtrate was named ethanolic extract of propolis and was maintained in caramel flask in dark at room temperature.

Experimental procedure: Six fermenters of the Rusitec were run for a total period of 14 days. The first 7 days were allowed for equilibration of the system. The following 7 days represented an experimental period during which the six fermenters were divided into 3 groups with two fermenters per group. The first group served as control and received daily 0.5 ml of 70% ethyl alcohol in water (without having any propolis). The second and third groups received daily 0.5 ml of 20% PEE (contained active substances of 100 mg crude propolis) and 0.5 ml of 60% PEE (contained active substances of 300 mg crude propolis), respectively.

Analytical procedures and samplings: The pH values were measured daily in each fermenter at the time of feeding using an epoxy body pH electrode (WD-35801-00, Oakton) connected to a pH-meter (Ion 6, Acorn series, Oakton). 5 ml of liquid effluents, collected in ice-cold flasks, were taken daily, and immediately...
acidified with 0.4 ml of dilute HCl (9.25%) and frozen at -20°C until analysed for ammonia nitrogen. Samples of the effluents were also collected daily and kept at -20°C until SCFA analysis. Ruminal SCFA samples were allowed to thaw completely at 4°C before analysis. Samples were then acidified (pH < 3) with 90 µl of 12 N H2SO4, vortexed, and centrifuged (Universal 32R, Hettich Zentrifugen, Germany) in Eppendorf tubes for 30 min at 13000 rpm. The supernatant was filtered through a 0.2 µm PTFE membrane (Millex-GN, Millipore). Concentrations of SCFA in the supernatant were then determined by HPLC (Dionex Summit P680, AS1100) equipped with an UV absorbance detector (Dionex UVD170) operated at 210 nm. Separation of acids was conducted using an organic acid analysis column (300 x 7.8 mm; Rezex ROA-Organic Acid column), with 0.005 M H2SO4 as eluent, at flow rate of 0.6 ml/min, and with the column temperature of 60°C. A Rezex ROA Organic Acid precolumn (50 x 7.8 mm) was used to protect the column from any particles that could have been injected together with the samples. Daily production rates of SCFA were estimated by multiplying the respective concentration by the volume of effluent collected. Ruminal NH3-N samples were allowed to thaw completely at 4°C before analysis. NH3-N concentrations were determined using a light microscope (Leica CME). For bacteria and protozoa, without quantifying different types, were determined by means of an ammonia gas sensing electrode (Ammonia combination electrode, Cole-Parmer; calibrated daily with serial dilutions of an NH4Cl stock solution) connected to an Acorn series Ion meter (Oakton Instruments, USA). For bacteria and protozoa counting, rumen fluid samples of fermenters were taken daily immediately before substrate exchange. For protozoa counting, rumen fluid samples of fermenters were taken daily immediately before substrate exchange. For protozoa counting, 1 ml of sample was carefully mixed with 0 ml of a solution of 0.6 g methyl green, 6 g NaCl and 100 ml formaldehyde (37%) filled up to 1000 ml with 1 ml of a solution of 0.6 g methyl green, 6 g NaCl and 100 ml formaldehyde (37%) filled up to 1000 ml of aqua dest. Portions of the samples were then pipetted into a counting chamber (Fuchs-Rosenthal: 0.0625 mm2; 0.2 mm deep; Marienfeld, Germany) under phase-contrast microscope (Olympus Optical Co., Japan). Dry matter was determined by drying at 65°C for 48 h. The digestibility of dry matter at 48 h was calculated as original dry matter sample weight minus dry matter residue weight divided by the original sample weight. This value was then multiplied by 100 to derive the digestibility of dry matter percentage.

Statistical analyses: Data are expressed as mean ± standard deviation (SD) and were evaluated by one-way repeated measures analysis of variance (ANOVA) followed by the Duncan’s multiple range test for all pairwise multiple comparisons. The analyses were performed using the SigmaStat 3.1 statistical software (Systat Software, Erkrath, Germany) and the mean differences were considered statistically significant when p values were less than 0.05.

Results

Effects of different concentrations of PEE on *in vitro* rumen microbial fermentation are shown in Table 3. Increasing concentrations of PEE did not significantly affect (p>0.05) ruminal pH, when compared with the control fermenters. Total SCFA production was not statistically changed (p=0.05) by both PEE concentrations. The addition of both low and high concentrations of PEE did not change (p>0.05) the production of acetate but significantly increased (p<0.05) the production of butyrate. Relative the control, only the addition of 60% PEE significantly reduced (p<0.05) the production of propionate. The ratio of acetate to propionate was not significantly affected (p>0.05) by both PEE concentrations compared with the control.

Table 3: Farklı yoğunlukta etanolik propolis ekstraktlarının rumen mikrobiyal fermentasyonuna *in vitro* etkileri.

<table>
<thead>
<tr>
<th>Items</th>
<th>control 70% ethanol without PEE (0.5 ml/day)</th>
<th>20% PEE (0.5 ml/day)</th>
<th>60% PEE (0.5 ml/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>6.80 ± 0.01</td>
<td>6.81 ± 0.01</td>
<td>6.80 ± 0.02</td>
</tr>
<tr>
<td>Total SCFAs (mmol/day)</td>
<td>37.87 ± 1.51</td>
<td>38.13 ± 1.97</td>
<td>37.23 ± 1.84</td>
</tr>
<tr>
<td>Acetate</td>
<td>23.83 ± 0.94</td>
<td>23.78 ± 1.72</td>
<td>23.51 ± 1.25</td>
</tr>
<tr>
<td>Propionate</td>
<td>11.15 ± 0.79a</td>
<td>11.18 ± 0.59b</td>
<td>10.59 ± 0.79b</td>
</tr>
<tr>
<td>Butyrate</td>
<td>2.89 ± 0.25a</td>
<td>3.17 ± 0.29b</td>
<td>3.13 ± 0.34b</td>
</tr>
<tr>
<td>Acetate : propionate ratio</td>
<td>2.14 ± 0.14</td>
<td>2.13 ± 0.18</td>
<td>2.23 ± 0.16</td>
</tr>
<tr>
<td>Total bacteria (x 10⁸/ml)</td>
<td>16.35 ± 0.70a</td>
<td>15.47 ± 1.18b</td>
<td>14.84 ± 1.30b</td>
</tr>
<tr>
<td>Total protozoa (x 10⁷/ml)</td>
<td>2.81 ± 0.32</td>
<td>2.90 ± 0.31</td>
<td>3.04 ± 0.41</td>
</tr>
<tr>
<td>NH₃-N (mmol/l)</td>
<td>9.51 ± 0.35a</td>
<td>7.25 ± 0.57b</td>
<td>5.78 ± 0.28b</td>
</tr>
<tr>
<td>Dry matter digestibility (%)</td>
<td>62.93 ± 2.53</td>
<td>62.43 ± 2.10</td>
<td>61.21 ± 3.47</td>
</tr>
</tbody>
</table>

abc Means in the same row followed by different superscripts differ (p<0.05)
Values are means ± SD, n = 2

In the present study, addition of both concentrations of PEE significantly reduced (p<0.05) the numbers of ruminal bacteria. However, propolis at both concentrations did not significantly affect (p>0.05) the
numbers of ruminal ciliate protozoa and dry matter digestibility of diets incubated for 48 h in the Rusitec fermenters.

Discussion and Conclusion

Until recently, only few reports were found in the literature dealing with the effects of propolis on ruminal fermentation. Broudiscou et al. (2) found that addition of 500 mg/l of propolis extract increased propionate production without affecting other ruminal fatty acids in dual outflow fermenters supplied with a 50:50 orchard grass hay plus barley diet. Stradiotti Jr. et al. (26) reported that propolis extract increased the total SCFA concentration in Holstein steers fed a diet containing 65% forage and 35% concentrate. On the other hand, these latter authors (26) underlined that the molar proportions of ruminal SCFA were not changed by propolis treatment. Furthermore, Lana et al. (12, 13) showed that supplementation of propolis (up to 6 g/animal/day) did not affect total and individual SCFA concentrations in dairy goats fed a diet of 67% corn silage and 33% concentrate.

There are no data about the effect of propolis on ruminal bacteria. However, the antibacterial effect of propolis on different bacterial strains has been shown by several authors (10, 21, 24, 25). Although little is known about the mechanisms of propolis antibacterial action, Takaisi-Kikuni and Schilder (27) observed that the antibacterial action against *Streptococcus agalactiae* was complex, involving several mechanisms such as the formation of pseudo-multicellular streptococci; disorganization of the cytoplasm, the cytoplasmatic membrane, and the cell wall; partial bacteriolysis; and inhibition of protein synthesis. In another study conducted by Mirzoeva et al. (15), propolis and some of the cinnamic and flavonoid components were found to uncouple the energy transducing cytoplasmic membrane and to inhibit bacterial motility, which may contribute to the antimicrobial action.

Only two reports deal with the effect of propolis on ruminal bacteria. However, propolis at assayed doses did not improve the production rate and the profile of ruminal SCFA and it would not be nutritionally beneficial to the ruminal energetic metabolism. However, propolis was able to inhibit ruminal NH₃-N concentration. This ammonia-reducing effect may help to improve the nitrogen retention in ruminants.

Acknowledgment

The authors are grateful to Associate Professor Murat Kartal (Department of Pharmacognosy, Faculty of Pharmacy, University of Ankara, Turkey) for providing the propolis sample.

References

Geliş tarihi: 09.09.2009 / Kabul tarihi: 04.01.2010

Address for correspondence:
Dr. Hakan Öztürk
Ankara University, Faculty of Veterinary Medicine
Department of Physiology
06110 Diskapi - Ankara, Turkey
E-mail: hakan.ozturk@veterinary.ankara.edu.tr