Editöre Mektup
BibTex RIS Kaynak Göster

Magnetic resonance (MR) imaging of the carpal tunnel and related structures in New Zealand Rabbit (Oryctolagus cuniculus): An anatomic and radiologic evaluation on an animal model

Yıl 2014, , 1 - 7, 01.03.2014
https://doi.org/10.1501/Vetfak_0000002597

Öz

The aim of this study was to determine the anatomical structures in carpal region with the routine T1, T2 weighted (W) and three-dimensional (3D) magnetic resonance (MR) sequences that are frequently being used for the diagnosis and the treatment of the wrist disorders and to indicate the efficacy of MR imaging (MRI) on the rabbit’s carpal region which can be a convenient wrist model especially for the carpal tunnel syndrome. It is also aspired to compare the image features obtained from 1.5 and 3 Tesla MR units in terms of anatomy and radiology. Five adult New Zealand rabbits were used in this study. Wrists were scanned in neutral position by 1.5 and 3 Tesla MR devices with a loop coil and a 15-channel transmit-receive birdcage coil respectively. Anatomy of the carpal tunnel was well defined in T1W transverse images in 1.5 Tesla MRI. The median nerve was imaged with greater signal intensity on T2W sequences. In 3 Tesla MRI, the anatomical structures in carpal region could easily be evaluated on high resolution 3D sequences with isotropic voxels and also with the help of thin section reformatted images. According to our results, 3D sequences with isotropic voxel sizes by 15-channel transmit-receive birdcage coil in 3 Tesla MRI device seems to be more efficient than the other routine two-dimensional sequences in 1.5 Tesla MRI for the assessment of carpal tunnel anatomy, diagnosis and treatment of disorders both in humans and in animals. This process also decreases the MRI time and specific absorption rate (SAR) values

Kaynakça

  • Algin O, Turkbey B (2012): Evaluation of aqueductal stenosis by 3D sampling perfection with application- optimized contrasts using different flip angle evolutions sequence: preliminary results with 3T MR imaging. Am J Neuroradiol, 33, 740-746.
  • Bagatur EA, Zorer G, Oral B (2002): The role of magnetic resonance imaging in carpal tunnel syndrome: Correlation of clinical, electrodiagnostic and intraoperative findings and staging. Acta Orthop Traumatol Turc, 36, 22- 30.
  • Barone P, Pavaux C, Blin PC, Cuq P (1973): Atlas d'anatomie du lapin. Atlas of rabbit anatomy. Masson & Cie Editeurs, Paris.
  • Bland JD (2005): Carpal tunnel syndrome. Curr Opin Neurol, 18, 581-585.
  • Bower JA, Stanisz GJ, Keir PJ (2006): An MRI evaluation of carpal tunnel dimensions in healthy wrists:
  • hipointens olarak görüntülendi (beyaz ok). Implications for carpal tunnel syndrome. Clin Biomech, 21, 816-825.
  • Cheng XG, You YH, Liu W, Zhao T, Qu H (2004): MRI features of pigmented villonodular synovitis (PVNS). Clin Rheumatol, 23, 31-34.
  • Craigie EH (1969): Practical Anatomy of the Rabbit. University of Toronto Press, Toronto.
  • de Krom MC, Knipschild PG, Kester AD, Thijs CT, Boekkooi PF, Spaans F (1992): Carpal tunnel syndrome: prevalence in the general population. J Clin Epidemiol, 45, 373-376.
  • Diao E, Shao F, Liebenberg E, Rempel D, Lotz JC (2005): Carpal tunnel pressure alters median nerve function in a dose-dependent manner: a rabbit model for carpal tunnel syndrome. J Orthop Res, 23, 218-223
  • Ettema AM, Zhao C, An KN, Amadio PC (2006): Comparative anatomy of the subsynovial connective tissue in the carpal tunnel of the rat, rabbit, dog, baboon, and human. Hand (N Y). 1, 78-84
  • Farooki S, Ashman CJ, Yu JS, Abduljalil A, Chakeres D (2002): In vivo high-resolution MR imaging of the carpal tunnel at 8.0 tesla. Skeletal Radiol, 31, 445-450.
  • Haystead CM, Dale BM, Merkle EM (2008): N/2 ghosting artifacts: elimination at 3.0-T MR cholangiography with SPACE pulse sequence. Radiology, 246, 589-595.
  • McLaughlin CA, Chiasson RB (1990): Laboratory Anatomy of the Rabbit. Brown Publishers. Dubuque, IA, USA.
  • Mugler 3rd JP, Wald LL, Brookeman JR (2001): T2- weighted 3D spin-echo train imaging of the brain at 3 tesla: reduced power deposition using low flip-angle refocusing RF pulses. Proc Intl Soc Mag Reson Med, 9, 438.
  • Notohamiprodjo M, Horng A, Kuschel B, Paul D, Li G, Raya JG, Reiser MF, Glaser C (2012): 3D-imaging of the knee with an optimized 3D-FSE-sequence and a 15- channel knee-coil. Eur J Radiol, 81, 3441–3449.
  • Oto Ç, Ekim O, Algin O, Şenel OO, İnce N, Hazıroğlu RM (2011): 3 Tesla Magnetic resonance imaging and multiplanar reconstruction of the brain and its associated structures in pig. Vet J Ankara Univ, 58, 75-78.
  • Pierre-Jerome C, Smitson RD Jr, Shah RK, Moncayo V, Abdelnoor M, Terk MR (2010): MRI of the median nerve and median artery in the carpal tunnel: prevalence of their anatomical variations and clinical significance. Surg Radiol Anat, 32, 315-322.
  • Popesko P, Rajtova V, Horak J (1992): Colour Atlas of Anatomy of Small Laboratory Animals Volume 1: Rabbit and Guinea Pig. Wolfe Publishing, London.
  • Silverstein, BA, Fine L.J, Armstrong TJ (1987): Occupational factors and carpal tunnel syndrome. Am J Public Health, 11, 343-358.
  • Smith DK (1993): Dorsal carpal ligaments of the wrist: normal appearance on multi planar reconstructions of three-dimensional fourier transform MR imaging. Am J Roentgenol, 161, 119-125.
  • Sobotta J, Becher H (1968): Atlas der Anatomie des Menchen. Urban & Schwarzenberg, München.
  • Stehling C, Langer M, Bachmann R, Kraemer S, Kooijman H, Heindel W, Vieth V (2009): Three-tesla magnetic resonance imaging of the wrist: Diagnostic performance compared to 1.5-T. J Comput Assist Tomogr, 33, 934–939.
  • Steinbach LS, Smith DK (2000): MRI of the wrist. Clin Imaging, 24, 298-322. Geliş tarihi: 27.02.2013 / Kabul tarihi: 29.04.2013 Address for correspondence: Assoc. Prof. Dr. Çağdaş OTO Ankara University, Faculty of Veterinary Medicine, Department of Anatomy, İrfan Baştuğ cad. 06110 Ankara-TURKEY e-mail: coto@gmail.com

Yeni Zelanda Tavşanı’nda (Oryctolagus cuniculus) karpal tünel ve ilişkili yapıların manyetik rezonans(MR) görüntülenmesi: Hayvan modeli üzerinde anatomik ve radyolojik bir değerlendirme

Yıl 2014, , 1 - 7, 01.03.2014
https://doi.org/10.1501/Vetfak_0000002597

Öz

Bu çalışmanın amacı; el bileği bölgesindeki rahatsızlıkların teşhis ve tedavisinde kullanılan rutin T1, T2 Ağırlıklı (A) ve 3 boyutlu manyetik rezonans (MR) sekanslarının yardımıyla, karpal bölgedeki anatomik oluşumları belirlemek ve manyetik rezonans görüntülemenin, özellikle karpal tünel sendromu için uygun bir bilek modeli olabilecek tavşan karpal bölgesi üzerindeki etkinliğine işaret etmektir. Ayrıca 1,5 ve 3 Tesla MR cihazlarından elde edilen görüntü özelliklerinin anatomik ve radyolojik açıdan karşılaştırılması da amaçlanmıştır. Bu çalışma için 5 adet Yeni Zelanda Tavşanı’ndan faydalanılmıştır. El bilekleri nötral pozisyonda sırasıyla 1,5 Tesla MR cihazında, halka tipi koil ile ve 3 Tesla MR ünitesinde, 15 kanallı alıcı-verici kafes tipi koil ile tarandı. 1,5 Tesla MR görüntülemede; T1 A transversal imajlarda carpal tünel daha iyi belirlendi. T2 A sekanslarda nervus medianus yüksek sinyal yoğunluğu gösterdi. 3 Tesla MR görüntülemede; karpal bölgedeki anatomik yapılar izotropik vokselli 3 boyutlu sekanslar ve ayrıca ince kesit reformat görüntülerin de yardımıyla rahatlıkla değerlendirilebildi. Sonuçlarımıza göre; hem insan hem de hayvanlarda karpal tünel anatomisinin değerlendirilmesi, rahatsızlıkların teşhis ve tedavisi için izotropik voksel 3 boyutlu sekanslar ve 15 kanal alıcı-verici koil vasıtasıyla çekilen 3 Tesla MR görüntülemenin, 1,5 Tesla MR görüntülemede kullandığımız 2 boyutlu sekanslara göre daha etkin olduğu görülmektedir. Ayrıca bu işlem MR görüntüleme zamanını kısaltmakta ve SAR değerlerini de düşürmektedir

Kaynakça

  • Algin O, Turkbey B (2012): Evaluation of aqueductal stenosis by 3D sampling perfection with application- optimized contrasts using different flip angle evolutions sequence: preliminary results with 3T MR imaging. Am J Neuroradiol, 33, 740-746.
  • Bagatur EA, Zorer G, Oral B (2002): The role of magnetic resonance imaging in carpal tunnel syndrome: Correlation of clinical, electrodiagnostic and intraoperative findings and staging. Acta Orthop Traumatol Turc, 36, 22- 30.
  • Barone P, Pavaux C, Blin PC, Cuq P (1973): Atlas d'anatomie du lapin. Atlas of rabbit anatomy. Masson & Cie Editeurs, Paris.
  • Bland JD (2005): Carpal tunnel syndrome. Curr Opin Neurol, 18, 581-585.
  • Bower JA, Stanisz GJ, Keir PJ (2006): An MRI evaluation of carpal tunnel dimensions in healthy wrists:
  • hipointens olarak görüntülendi (beyaz ok). Implications for carpal tunnel syndrome. Clin Biomech, 21, 816-825.
  • Cheng XG, You YH, Liu W, Zhao T, Qu H (2004): MRI features of pigmented villonodular synovitis (PVNS). Clin Rheumatol, 23, 31-34.
  • Craigie EH (1969): Practical Anatomy of the Rabbit. University of Toronto Press, Toronto.
  • de Krom MC, Knipschild PG, Kester AD, Thijs CT, Boekkooi PF, Spaans F (1992): Carpal tunnel syndrome: prevalence in the general population. J Clin Epidemiol, 45, 373-376.
  • Diao E, Shao F, Liebenberg E, Rempel D, Lotz JC (2005): Carpal tunnel pressure alters median nerve function in a dose-dependent manner: a rabbit model for carpal tunnel syndrome. J Orthop Res, 23, 218-223
  • Ettema AM, Zhao C, An KN, Amadio PC (2006): Comparative anatomy of the subsynovial connective tissue in the carpal tunnel of the rat, rabbit, dog, baboon, and human. Hand (N Y). 1, 78-84
  • Farooki S, Ashman CJ, Yu JS, Abduljalil A, Chakeres D (2002): In vivo high-resolution MR imaging of the carpal tunnel at 8.0 tesla. Skeletal Radiol, 31, 445-450.
  • Haystead CM, Dale BM, Merkle EM (2008): N/2 ghosting artifacts: elimination at 3.0-T MR cholangiography with SPACE pulse sequence. Radiology, 246, 589-595.
  • McLaughlin CA, Chiasson RB (1990): Laboratory Anatomy of the Rabbit. Brown Publishers. Dubuque, IA, USA.
  • Mugler 3rd JP, Wald LL, Brookeman JR (2001): T2- weighted 3D spin-echo train imaging of the brain at 3 tesla: reduced power deposition using low flip-angle refocusing RF pulses. Proc Intl Soc Mag Reson Med, 9, 438.
  • Notohamiprodjo M, Horng A, Kuschel B, Paul D, Li G, Raya JG, Reiser MF, Glaser C (2012): 3D-imaging of the knee with an optimized 3D-FSE-sequence and a 15- channel knee-coil. Eur J Radiol, 81, 3441–3449.
  • Oto Ç, Ekim O, Algin O, Şenel OO, İnce N, Hazıroğlu RM (2011): 3 Tesla Magnetic resonance imaging and multiplanar reconstruction of the brain and its associated structures in pig. Vet J Ankara Univ, 58, 75-78.
  • Pierre-Jerome C, Smitson RD Jr, Shah RK, Moncayo V, Abdelnoor M, Terk MR (2010): MRI of the median nerve and median artery in the carpal tunnel: prevalence of their anatomical variations and clinical significance. Surg Radiol Anat, 32, 315-322.
  • Popesko P, Rajtova V, Horak J (1992): Colour Atlas of Anatomy of Small Laboratory Animals Volume 1: Rabbit and Guinea Pig. Wolfe Publishing, London.
  • Silverstein, BA, Fine L.J, Armstrong TJ (1987): Occupational factors and carpal tunnel syndrome. Am J Public Health, 11, 343-358.
  • Smith DK (1993): Dorsal carpal ligaments of the wrist: normal appearance on multi planar reconstructions of three-dimensional fourier transform MR imaging. Am J Roentgenol, 161, 119-125.
  • Sobotta J, Becher H (1968): Atlas der Anatomie des Menchen. Urban & Schwarzenberg, München.
  • Stehling C, Langer M, Bachmann R, Kraemer S, Kooijman H, Heindel W, Vieth V (2009): Three-tesla magnetic resonance imaging of the wrist: Diagnostic performance compared to 1.5-T. J Comput Assist Tomogr, 33, 934–939.
  • Steinbach LS, Smith DK (2000): MRI of the wrist. Clin Imaging, 24, 298-322. Geliş tarihi: 27.02.2013 / Kabul tarihi: 29.04.2013 Address for correspondence: Assoc. Prof. Dr. Çağdaş OTO Ankara University, Faculty of Veterinary Medicine, Department of Anatomy, İrfan Baştuğ cad. 06110 Ankara-TURKEY e-mail: coto@gmail.com
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Veteriner Cerrahi
Diğer ID JA82NR84DP
Bölüm Araştırma Makalesi
Yazarlar

Okan Ekim

Çağdaş Oto

Oktay Algın

Yayımlanma Tarihi 1 Mart 2014
Yayımlandığı Sayı Yıl 2014

Kaynak Göster

APA Ekim, O., Oto, Ç., & Algın, O. (2014). Magnetic resonance (MR) imaging of the carpal tunnel and related structures in New Zealand Rabbit (Oryctolagus cuniculus): An anatomic and radiologic evaluation on an animal model. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 61(1), 1-7. https://doi.org/10.1501/Vetfak_0000002597
AMA Ekim O, Oto Ç, Algın O. Magnetic resonance (MR) imaging of the carpal tunnel and related structures in New Zealand Rabbit (Oryctolagus cuniculus): An anatomic and radiologic evaluation on an animal model. Ankara Univ Vet Fak Derg. Mart 2014;61(1):1-7. doi:10.1501/Vetfak_0000002597
Chicago Ekim, Okan, Çağdaş Oto, ve Oktay Algın. “Magnetic Resonance (MR) Imaging of the Carpal Tunnel and Related Structures in New Zealand Rabbit (Oryctolagus cuniculus): An Anatomic and Radiologic Evaluation on an Animal Model”. Ankara Üniversitesi Veteriner Fakültesi Dergisi 61, sy. 1 (Mart 2014): 1-7. https://doi.org/10.1501/Vetfak_0000002597.
EndNote Ekim O, Oto Ç, Algın O (01 Mart 2014) Magnetic resonance (MR) imaging of the carpal tunnel and related structures in New Zealand Rabbit (Oryctolagus cuniculus): An anatomic and radiologic evaluation on an animal model. Ankara Üniversitesi Veteriner Fakültesi Dergisi 61 1 1–7.
IEEE O. Ekim, Ç. Oto, ve O. Algın, “Magnetic resonance (MR) imaging of the carpal tunnel and related structures in New Zealand Rabbit (Oryctolagus cuniculus): An anatomic and radiologic evaluation on an animal model”, Ankara Univ Vet Fak Derg, c. 61, sy. 1, ss. 1–7, 2014, doi: 10.1501/Vetfak_0000002597.
ISNAD Ekim, Okan vd. “Magnetic Resonance (MR) Imaging of the Carpal Tunnel and Related Structures in New Zealand Rabbit (Oryctolagus cuniculus): An Anatomic and Radiologic Evaluation on an Animal Model”. Ankara Üniversitesi Veteriner Fakültesi Dergisi 61/1 (Mart 2014), 1-7. https://doi.org/10.1501/Vetfak_0000002597.
JAMA Ekim O, Oto Ç, Algın O. Magnetic resonance (MR) imaging of the carpal tunnel and related structures in New Zealand Rabbit (Oryctolagus cuniculus): An anatomic and radiologic evaluation on an animal model. Ankara Univ Vet Fak Derg. 2014;61:1–7.
MLA Ekim, Okan vd. “Magnetic Resonance (MR) Imaging of the Carpal Tunnel and Related Structures in New Zealand Rabbit (Oryctolagus cuniculus): An Anatomic and Radiologic Evaluation on an Animal Model”. Ankara Üniversitesi Veteriner Fakültesi Dergisi, c. 61, sy. 1, 2014, ss. 1-7, doi:10.1501/Vetfak_0000002597.
Vancouver Ekim O, Oto Ç, Algın O. Magnetic resonance (MR) imaging of the carpal tunnel and related structures in New Zealand Rabbit (Oryctolagus cuniculus): An anatomic and radiologic evaluation on an animal model. Ankara Univ Vet Fak Derg. 2014;61(1):1-7.