Araştırma Makalesi
BibTex RIS Kaynak Göster

Çeşitli Klinik Örneklerden İzole Edilen Metisiline Dirençli ve Duyarlı Staphylococcus aureus Suşlarının Toksin Profillerinin Araştırılması

Yıl 2021, Cilt: 23 Sayı: 3, 244 - 251, 30.12.2021
https://doi.org/10.18678/dtfd.956666

Öz

Amaç: Bu çalışmada çeşitli klinik materyallerden elde edilen Staphylococcus aureus izolatlarında süperantijenik (SAg) toksin, eksfoliatif toksin (ET), hemolizin (HLY) ve lökotoksin (LUK) genleri ve aksesuar gen regülatör (agr) tiplerinin araştırılması amaçlandı.
Gereç ve Yöntemler: Toplam 190 S. aureus izolatında toksin genleri, mecA geni ve agr tipleri polimeraz zincir reaksiyonu (PZR) kullanılarak incelendi.
Bulgular: mecA geni 87 (%45,8) izolatta tespit edildi. İncelenen 190 S. aureus izolatının %83,7’si (n=159) SAg genleri yönünden pozitif bulundu. En yaygın toksin geni seg (%41,1) olarak belirlenirken, bunu sırasıyla sei (%38,9), selo (%38,9), selm (%28,4), sea (%25,8) ve tst (%18,4) genleri izledi. Yetmiş bir farklı SAg toksin profili belirlendi. sei, seg, selm, seln ve selo genlerini taşıyan tip I νSaβ 37 (%19,5) izolatta tespit edilerek en yaygın mobil genetik element (MGE) olarak belirlendi. hla, hlb, hld, hlg ve hlg2 genleri izolatların sırasıyla %92,6 (n=176), %1,6 (n=3), %98,9 (n=188), %1,1 (n=2) ve %31,6’sında (n=60) tespit edildi. pvl geni sırasıyla, metisilin dirençli S. aureus (methicillin resistant S. aureus, MRSA) izolatlarının %12,6’sında (n=11) ve metisilin duyarlı S. aureus (methicillin sensitive S. aureus, MSSA) izolatlarının ise %14,6’sında (n=15) saptandı (p=0,701). İzolatların hiçbiri lukM geni taşımazken, MSSA izolatlarının %67’si (n=69) ve MRSA izolatlarının %69’u (n=60) lukED geni için pozitif bulundu (p=0,519).
Sonuç: S. aureus izolatları arasında toksin genlerinin yüksek oranda bulunması ve çeşitliliği, toksin genlerinin MGE'ler aracılığıyla horizontal transferi ile açıklanabilir.

Proje Numarası

19.YL.051

Kaynakça

  • Kraus D, Peschel A. Staphylococcus aureus evasion of innate antimicrobial defense. Future Microbiol. 2008;3(4):437-51.
  • Verdú-Expósito C, Romanyk J, Cuadros-González J, TesfaMariam A, Copa-Patiño JL, Pérez-Serrano J, et al. Study of susceptibility to antibiotics and molecular characterization of high virulence Staphylococcus aureus strains isolated from a rural hospital in Ethiopia. PLoS One. 2020;15(3):e0230031.
  • Elsherif HM, Helal ZH, El-Ansary MR, Fahmy ZA, Eltayeb WN, Radwan S, et al. Staphylococcal enterotoxins and toxic shock syndrome toxin-1 and their association among bacteremic and infective endocarditis patients in Egypt. Biomed Res Int. 2020;2020:6981095.
  • Bachert C, Humbert M, Hanania NA, Zhang N, Holgate S, Buhl R, et al. Staphylococcus aureus and its IgE-inducing enterotoxins in asthma: current knowledge. Eur Respir J. 2020;55(4):1901592.
  • Suzuki Y, Ono HK, Shimojima Y, Kubota H, Kato R, Kakuda T, et al. A novel staphylococcal enterotoxin SE02 involved in a staphylococcal food poisoning outbreak that occurred in Tokyo in 2004. Food Microbiol. 2020;92:103588.
  • Alonzo F 3rd, Torres VJ. The bicomponent pore-forming leukocidins of Staphylococcus aureus. Microbiol Mol Biol Rev. 2014;78(2):199-230.
  • Bukowski M, Wladyka B Dubin G. Exfoliative toxins of Staphylococcus aureus. Toxins (Basel). 2010;2(5):1148-65.
  • Oliveira D, Borges A, Simões M. Staphylococcus aureus toxins and their molecular activity in infectious diseases. Toxins (Basel). 2018;10(6):252.
  • Divyakolu S, Chikkala R, Ratnakar KS, Sritharan V. Hemolysins of Staphylococcus aureus-An update on their biology, role in pathogenesis and as targets for anti-virulence therapy. Adv Infect Dis. 2019;9(2):80-104.
  • Thompson TA, Brown PD. Association between the agr locus and the presence of virulence genes and pathogenesis in Staphylococcus aureus using a Caenorhabditis elegans model. Int J Infect Dis. 2017;54:72-6.
  • Bibalan MH, Shakeri F, Javid N, Ghaemi A, Ghaemi EA. Accessory gene regulator types of Staphylococcus aureus isolated in Gorgan, North of Iran. J Clin Diagn Res. 2014;8(4):DC07-9.
  • Tan L, Li SR, Jiang B, Hu XM, Li S. Therapeutic targeting of the Staphylococcus aureus accessory gene regulator (agr) system. Front Microbiol. 2018;9:55.
  • Jarraud S, Mougel C, Thioulouse J, Lina G, Meugnier H, Forey F, et al. Relationships between Staphylococcus aureus genetic background, virulence factors, agr groups (alleles), and human disease. Infect Immun. 2002;70(2):631-41.
  • Koneman EW, Allen SD, Janda WM, Schreckenberger PC, Winn WC, Washington MD. Staphylococci and related gram- positive cocci. In: Koneman's color atlas and textbook of diagnostic microbiology. 5th ed. USA: Lippincott Williams and Wilkins; 1997. p.539-65.
  • EUCAST. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 10.0, 2020:22-27.
  • Kim CH, Khan M, Morin DE, Hurley WL, Tripathy DN, Kehrli M Jr, et al. Optimization of the PCR for detection of Staphylococcus aureus nuc gene in bovine milk. J Dairy Sci. 2001;84(1):74-83.
  • Choi SM, Kim SH, Kim HJ, Lee DG, Choi JH, Yoo JH, et al. Multiplex PCR for the detection of genes encoding aminoglycoside modifying enzymes and methicillin resistance among Staphylococcus species. J Korean Med Sci. 2003;18(5):631-6.
  • Omoe K, Hu DL, Takahashi-Omoe H, Nakane A, Shinagawa K. Comprehensive analysis of classical and newly described staphylococcal superantigenic toxin genes in Staphylococcus aureus isolates. FEMS Microbiol Lett. 2005;246(2):191-8.
  • Mehrotra M, Wang G, Johnson WM. Multiplex PCR for detection of genes for Staphylococcus aureus enterotoxins, exfoliative toxins, toxic shock syndrome toxin 1, and methicillin resistance. J Clin Microbiol. 2000;38(3):1032-5.
  • Lina G, Piémont Y, Godail-Gamot F, Bes M, Peter MO, Gauduchon V, et al. Involvement of Panton-Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin Infect Dis 1999;29(5):1128-32.
  • Gilot P, Lina G, Cochard T, Poutrel B. Analysis of the genetic variability of genes encoding the RNA III-activating components agr and TRAP in a population of Staphylococcus aureus strains isolated from cows with mastitis. J Clin Microbiol. 2002;40(11):4060-7.
  • Vasconcelos NG, da Cunha MLRS. Staphylococcal enterotoxins: Molecular aspects and detection methods. J Public Health Epidemiol. 2010;2(3):29-42.
  • Motamedifar M, Ebrahim-Saraie HS, Alfatemi SMH, Zalipour M, Kaveh M, Khoshkharam-Roodmajani H. Frequency of the toxic shock syndrome toxin-1 gene in methicillin-susceptible and -resistant Staphylococcus aureus isolates from teaching hospitals in Shiraz, Iran. Rev Soc Bras Med Trop. 2015;48(1):90-3.
  • Özel Y, Büyükzengin KB, Yavuz MT. Investigation of antibiotic resistance profile of methicillin resistant and susceptible Staphylococcus aureus strains isolated from clinical samples. ANKEM Derg. 2017;31(2):41-7.
  • Tanrıverdi Çaycı Y, Hasli F, Bilgin K, Birinci A. Evaluation of susceptibility of Staphylococcus aureus strains that isolated from blood cultures in Samsun Ondokuz Mayıs University Hospital between 2014-2017. KOU Sag Bil Derg. 2017;4(1):20-2.
  • Arıcı N, Aksaray S. Determination of meticillin resistance and investigation of antibiotic susceptibility of Staphylococcus aureus strains isolated from clinical samples. ANKEM Derg. 2019;33(2):70-6.
  • Duman Y, Kuzucu Ç, Çuğlan SS. Bacteria isolated from blood cultures and their antimicrobial susceptibility. Erciyes Med J. 2011;33(3):189-96.
  • Kılıç S, Beşirbellioğlu B, Kılıç A, Pasha A. Methicillin resistant Staphylococcus aureus infections determined at a training hospital in the years of 2003-2004. Gülhane Med J. 2005;47(3):195-8.
  • Şahin İ, Çalışkan E, Öztürk E, Yavuz MT, Türkmen Albayrak H, Karadağ G, et al. Distribution of microorganisms in blood culture and antimicrobial susceptiblity. Duzce Med J. 2013;15(2):11-4.
  • Karahan ZC, Tekeli A, Adaleti R, Koyuncu E, Dolapci I, Akan OA. Investigation of Panton-Valentine leukocidin genes and SCCmec types in clinical Staphylococcus aureus isolates from Turkey. Microb Drug Resist. 2008;14(3):203-10.
  • Gillet Y, Issartel B, Vanhems P, Fournet JC, Lina G, Bes M, et al. Association between Staphylococcus aureus strains carrying gene for Panton-Valentine leukocidin and highly lethal necrotising pneumonia in young immunocompetent patients. Lancet. 2002;359(9308):753-9.
  • Cirit OS, Yıldırım T, Çoban AY. Investigation of Panton-Valentine leukocidin presence in the clinical strains of Staphylococcus aureus. Balkan Med J. 2011;28(2):119-24.
  • Xie Y, He Y, Gehring A, Hu Y, Li Q, Tu SI, et al. Genotypes and toxin gene profiles of Staphylococcus aureus clinical isolates from China. PLoS One. 2011;6(12):e28276.
  • Jiménez JN, Ocampo AM, Vanegas JM, Rodríguez EA, Garcés CG, Patiño LA, et al. Characterisation of virulence genes in methicillin susceptible and resistant Staphylococcus aureus isolates from a paediatric population in a university hospital of Medellín, Colombia. Mem Inst Oswaldo Cruz. 2011;106(8):980-5.
  • de Souza CSM, Fortaleza CMCB, Witzel CL, Silveira M, Bonesso MF, Marques SA, et al. Toxigenic profile of methicillin-sensitive and resistant Staphylococcus aureus isolated from special groups. Ann Clin Microbiol Antimicrob. 2016;15:9.
  • Nhan TX, Leclercq R, Cattoir V. Prevalence of toxin genes in consecutive clinical isolates of Staphylococcus aureus and clinical impact. Eur J Clin Microbiol Infect Dis. 2011;30(6):719-25.
  • Demir C, Aslantaş Ö, Duran N, Ocak S, Özer B. Investigation of toxin genes in Staphylococcus aureus strains isolated in Mustafa Kemal University Hospital. Turk J Med Sci. 2011;41(2):343-52.
  • Hu DL, Omoe K, Inoue F, Kasai T, Yasujima M, Shinagawa K, et al. Comparative prevalence of superantigenic toxin genes in meticillin-resistant and meticillin-susceptible Staphylococcus aureus isolates. J Med Microbiol. 2008;57(Pt 9):1106-12.
  • Tekeli A, Koyuncu E, Dolapçı I, Akan OA, Karahan ZC. Molecular characteristics of methicillin-resistant Staphylococcus aureus strains isolated from blood cultures between 2002-2005 in Ankara University Hospital. Mikrobiyol Bul. 2009;43(1):1-10.
  • Kaneko J, Kamio Y. Bacterial two-component and hetero-heptameric pore-forming cytolytic toxins: structures, pore-forming mechanism, and organization of the genes. Biosci Biotechnol Biochem. 2004;68(5):981-1003.
  • Shukla SK, Karow ME, Brady JM, Stemper ME, Kislow J, Moore N, et al. Virulence genes and genotypic associations in nasal carriage, community-associated methicillin-susceptible and methicillin-resistant USA400 Staphylococcus aureus isolates. J Clin Microbiol. 2010;48(10):3582-92.
  • Aggarwal S, Jena S, Panda S, Sharma S, Dhawan B, Nath G, et al. Antibiotic susceptibility, virulence pattern, and typing of Staphylococcus aureus strains isolated from variety of infections in India. Front Microbiol. 2019;10:2763.
  • Li X, Fang F, Zhao J, Lou N, Li C, Huang T, et al. Molecular characteristics and virulence gene profiles of Staphylococcus aureus causing bloodstream infection. Braz J Infect Dis. 2018;22(6):487-94.
  • Arabestani MR, Rastiyani S, Alikhani MY, Mousavi SF. The relationship between prevalence of antibiotics resistance and virulence factors genes of MRSA and MSSA strains isolated from clinical samples, West Iran. Oman Med J. 2018;33(2):134-40.
  • Grumann D, Nübel U, Bröker BM. Staphylococcus aureus toxins--their functions and genetics. Infect Genet Evol. 2014;21:583-92.
  • Havaei S, Moghadam SO, Pourmand M, Faghri J. Prevalence of genes encoding bi-component leukocidins among clinical isolates of methicillin-resistant Staphylococcus aureus. Iran J Public Health. 2010;39(1):8-14.
  • He C, Xu S, Zhao H, Hu F, Xu X, Jin S, et al. Leukotoxin and pyrogenic toxin superantigen gene backgrounds in bloodstream and wound Staphylococcus aureus isolates from eastern region of China. BMC Infect Dis. 2018;18(1):395.
  • Peerayeh SN, Azimian A, Nejad QB, Kashi M. Prevalence of agr specificity groups among Staphylococcus aureus isolates from university hospitals in Tehran. Lab Med. 2009;40(1):27-9.
  • Shopsin B, Mathema B, Alcabes P, Said-Salim B, Lina G, Matsuka A, et al. Prevalence of agr specificity groups among Staphylococcus aureus strains colonizing children and their guardians. J Clin Microbiol. 2003;41(1):456-9.
  • van Leeuwen W, van Nieuwenhuizen W, Gijzen C, Verbrugh H, van Belkum A. Population studies of methicillin-resistant and -sensitive Staphylococcus aureus strains reveal a lack of variability in the agrD gene, encoding a staphylococcal autoinducer peptide. J Bacteriol. 2000;182(20): 5721-9.
  • Manago K, Nishi J, Wakimoto N, Miyanohara H, Sarantuya J, Tokuda K, et al. Biofilm formation by and accessory gene regulator typing of methicillin-resistant Staphylococcus aureus strains recovered from patients with nosocomial infections. Infect Control Hosp Epidemiol. 2006;27(2):188-90.
  • Sakoulas G, Eliopoulos GM, Moellering RC Jr, Wennersten C, Venkataraman L, Novick RP, et al. Accessory gene regulator (agr) locus in geographically diverse Staphylococcus aureus isolates with reduced susceptibility to vancomycin. Antimicrob Agents Chemother. 2002;46(5):1492-502.
  • Yoon HJ, Choi JY, Lee K, Yong D, Kim JM, Song YG. Accessory gene regulator group polymorphisms in methicillin-resistant Staphylococcus aureus: an association with clinical significance. Yonsei Med J. 2007;48(2):176-83.
  • Ji G, Beavis R, Novick RP. Bacterial interference caused by autoinducing peptide variants. Science. 1997;276(5321):2027-30.
  • Fisher EL, Otto M, Cheung GYC. Basis of virulence in enterotoxin-mediated staphylococcal food poisoning. Front Microbiol. 2018;9:436.

Investigation of Toxin Profiles of Methicillin Resistant and Sensitive Staphylococcus aureus Strains Isolated from Various Clinical Specimens

Yıl 2021, Cilt: 23 Sayı: 3, 244 - 251, 30.12.2021
https://doi.org/10.18678/dtfd.956666

Öz

Aim: This study aimed to investigate the superantigenic (SAg) toxin, exfoliative toxin (ET), hemolysin (HLY), leukotoxin (LUK) genes and accessory gene regulator (agr) types in Staphylococcus aureus isolates from various clinical materials.
Material and Methods: A total of 190 S. aureus isolates were investigated for the presence of toxin genes, mecA gene and agr types using by polymerase chain reaction (PCR).
Results: mecA gene was detected in 87 (45.8%) isolates. Of the 190 S. aureus isolates examined, 83.7% (n=159) were found to be positive for SAg genes. The seg (41.1%) was determined to be the most common toxin gene, followed by sei (38.9%), selo (38.9%), selm (28.4%), sea (%25.8), and tst (18.4%) genes, respectively. Seventy one different SAg toxin profiles were identified. Type I νSaβ encoding seg, sei, selm, seln and selo was the most common mobile genetic element (MGE), which was detected in 37 isolates (19.5%). The hla, hlb, hld, hlg and hlg2 genes were detected in 92.6% (n=176), 1.6% (n=3), 98.9% (n=188), 1.1% (n=2) and 31.6% (n=60) of the isolates, respectively. The pvl gene was detected in 12.6% (n=11) of methicillin resistant S. aureus (MRSA) and 14.6% (n=15) of methicillin sensitive S. aureus (MSSA), respectively (p=0.701). While none of the isolates carried lukM gene, 67% (n=69) of MSSA and 69% (n=60) of MRSA isolates were found to be positive for lukED gene (p=0.519).
Conclusion: High occurrence and diversity of toxin genes among S. aureus isolates could be explained by horizontal transmission of toxin genes through MGEs.

Destekleyen Kurum

This project was supported by the Scientific Research Projects Coordination Unit at Hatay Mustafa Kemal University

Proje Numarası

19.YL.051

Teşekkür

This study was derived from the MSc dissertation of the first author, Mücella BAYIRLI

Kaynakça

  • Kraus D, Peschel A. Staphylococcus aureus evasion of innate antimicrobial defense. Future Microbiol. 2008;3(4):437-51.
  • Verdú-Expósito C, Romanyk J, Cuadros-González J, TesfaMariam A, Copa-Patiño JL, Pérez-Serrano J, et al. Study of susceptibility to antibiotics and molecular characterization of high virulence Staphylococcus aureus strains isolated from a rural hospital in Ethiopia. PLoS One. 2020;15(3):e0230031.
  • Elsherif HM, Helal ZH, El-Ansary MR, Fahmy ZA, Eltayeb WN, Radwan S, et al. Staphylococcal enterotoxins and toxic shock syndrome toxin-1 and their association among bacteremic and infective endocarditis patients in Egypt. Biomed Res Int. 2020;2020:6981095.
  • Bachert C, Humbert M, Hanania NA, Zhang N, Holgate S, Buhl R, et al. Staphylococcus aureus and its IgE-inducing enterotoxins in asthma: current knowledge. Eur Respir J. 2020;55(4):1901592.
  • Suzuki Y, Ono HK, Shimojima Y, Kubota H, Kato R, Kakuda T, et al. A novel staphylococcal enterotoxin SE02 involved in a staphylococcal food poisoning outbreak that occurred in Tokyo in 2004. Food Microbiol. 2020;92:103588.
  • Alonzo F 3rd, Torres VJ. The bicomponent pore-forming leukocidins of Staphylococcus aureus. Microbiol Mol Biol Rev. 2014;78(2):199-230.
  • Bukowski M, Wladyka B Dubin G. Exfoliative toxins of Staphylococcus aureus. Toxins (Basel). 2010;2(5):1148-65.
  • Oliveira D, Borges A, Simões M. Staphylococcus aureus toxins and their molecular activity in infectious diseases. Toxins (Basel). 2018;10(6):252.
  • Divyakolu S, Chikkala R, Ratnakar KS, Sritharan V. Hemolysins of Staphylococcus aureus-An update on their biology, role in pathogenesis and as targets for anti-virulence therapy. Adv Infect Dis. 2019;9(2):80-104.
  • Thompson TA, Brown PD. Association between the agr locus and the presence of virulence genes and pathogenesis in Staphylococcus aureus using a Caenorhabditis elegans model. Int J Infect Dis. 2017;54:72-6.
  • Bibalan MH, Shakeri F, Javid N, Ghaemi A, Ghaemi EA. Accessory gene regulator types of Staphylococcus aureus isolated in Gorgan, North of Iran. J Clin Diagn Res. 2014;8(4):DC07-9.
  • Tan L, Li SR, Jiang B, Hu XM, Li S. Therapeutic targeting of the Staphylococcus aureus accessory gene regulator (agr) system. Front Microbiol. 2018;9:55.
  • Jarraud S, Mougel C, Thioulouse J, Lina G, Meugnier H, Forey F, et al. Relationships between Staphylococcus aureus genetic background, virulence factors, agr groups (alleles), and human disease. Infect Immun. 2002;70(2):631-41.
  • Koneman EW, Allen SD, Janda WM, Schreckenberger PC, Winn WC, Washington MD. Staphylococci and related gram- positive cocci. In: Koneman's color atlas and textbook of diagnostic microbiology. 5th ed. USA: Lippincott Williams and Wilkins; 1997. p.539-65.
  • EUCAST. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 10.0, 2020:22-27.
  • Kim CH, Khan M, Morin DE, Hurley WL, Tripathy DN, Kehrli M Jr, et al. Optimization of the PCR for detection of Staphylococcus aureus nuc gene in bovine milk. J Dairy Sci. 2001;84(1):74-83.
  • Choi SM, Kim SH, Kim HJ, Lee DG, Choi JH, Yoo JH, et al. Multiplex PCR for the detection of genes encoding aminoglycoside modifying enzymes and methicillin resistance among Staphylococcus species. J Korean Med Sci. 2003;18(5):631-6.
  • Omoe K, Hu DL, Takahashi-Omoe H, Nakane A, Shinagawa K. Comprehensive analysis of classical and newly described staphylococcal superantigenic toxin genes in Staphylococcus aureus isolates. FEMS Microbiol Lett. 2005;246(2):191-8.
  • Mehrotra M, Wang G, Johnson WM. Multiplex PCR for detection of genes for Staphylococcus aureus enterotoxins, exfoliative toxins, toxic shock syndrome toxin 1, and methicillin resistance. J Clin Microbiol. 2000;38(3):1032-5.
  • Lina G, Piémont Y, Godail-Gamot F, Bes M, Peter MO, Gauduchon V, et al. Involvement of Panton-Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin Infect Dis 1999;29(5):1128-32.
  • Gilot P, Lina G, Cochard T, Poutrel B. Analysis of the genetic variability of genes encoding the RNA III-activating components agr and TRAP in a population of Staphylococcus aureus strains isolated from cows with mastitis. J Clin Microbiol. 2002;40(11):4060-7.
  • Vasconcelos NG, da Cunha MLRS. Staphylococcal enterotoxins: Molecular aspects and detection methods. J Public Health Epidemiol. 2010;2(3):29-42.
  • Motamedifar M, Ebrahim-Saraie HS, Alfatemi SMH, Zalipour M, Kaveh M, Khoshkharam-Roodmajani H. Frequency of the toxic shock syndrome toxin-1 gene in methicillin-susceptible and -resistant Staphylococcus aureus isolates from teaching hospitals in Shiraz, Iran. Rev Soc Bras Med Trop. 2015;48(1):90-3.
  • Özel Y, Büyükzengin KB, Yavuz MT. Investigation of antibiotic resistance profile of methicillin resistant and susceptible Staphylococcus aureus strains isolated from clinical samples. ANKEM Derg. 2017;31(2):41-7.
  • Tanrıverdi Çaycı Y, Hasli F, Bilgin K, Birinci A. Evaluation of susceptibility of Staphylococcus aureus strains that isolated from blood cultures in Samsun Ondokuz Mayıs University Hospital between 2014-2017. KOU Sag Bil Derg. 2017;4(1):20-2.
  • Arıcı N, Aksaray S. Determination of meticillin resistance and investigation of antibiotic susceptibility of Staphylococcus aureus strains isolated from clinical samples. ANKEM Derg. 2019;33(2):70-6.
  • Duman Y, Kuzucu Ç, Çuğlan SS. Bacteria isolated from blood cultures and their antimicrobial susceptibility. Erciyes Med J. 2011;33(3):189-96.
  • Kılıç S, Beşirbellioğlu B, Kılıç A, Pasha A. Methicillin resistant Staphylococcus aureus infections determined at a training hospital in the years of 2003-2004. Gülhane Med J. 2005;47(3):195-8.
  • Şahin İ, Çalışkan E, Öztürk E, Yavuz MT, Türkmen Albayrak H, Karadağ G, et al. Distribution of microorganisms in blood culture and antimicrobial susceptiblity. Duzce Med J. 2013;15(2):11-4.
  • Karahan ZC, Tekeli A, Adaleti R, Koyuncu E, Dolapci I, Akan OA. Investigation of Panton-Valentine leukocidin genes and SCCmec types in clinical Staphylococcus aureus isolates from Turkey. Microb Drug Resist. 2008;14(3):203-10.
  • Gillet Y, Issartel B, Vanhems P, Fournet JC, Lina G, Bes M, et al. Association between Staphylococcus aureus strains carrying gene for Panton-Valentine leukocidin and highly lethal necrotising pneumonia in young immunocompetent patients. Lancet. 2002;359(9308):753-9.
  • Cirit OS, Yıldırım T, Çoban AY. Investigation of Panton-Valentine leukocidin presence in the clinical strains of Staphylococcus aureus. Balkan Med J. 2011;28(2):119-24.
  • Xie Y, He Y, Gehring A, Hu Y, Li Q, Tu SI, et al. Genotypes and toxin gene profiles of Staphylococcus aureus clinical isolates from China. PLoS One. 2011;6(12):e28276.
  • Jiménez JN, Ocampo AM, Vanegas JM, Rodríguez EA, Garcés CG, Patiño LA, et al. Characterisation of virulence genes in methicillin susceptible and resistant Staphylococcus aureus isolates from a paediatric population in a university hospital of Medellín, Colombia. Mem Inst Oswaldo Cruz. 2011;106(8):980-5.
  • de Souza CSM, Fortaleza CMCB, Witzel CL, Silveira M, Bonesso MF, Marques SA, et al. Toxigenic profile of methicillin-sensitive and resistant Staphylococcus aureus isolated from special groups. Ann Clin Microbiol Antimicrob. 2016;15:9.
  • Nhan TX, Leclercq R, Cattoir V. Prevalence of toxin genes in consecutive clinical isolates of Staphylococcus aureus and clinical impact. Eur J Clin Microbiol Infect Dis. 2011;30(6):719-25.
  • Demir C, Aslantaş Ö, Duran N, Ocak S, Özer B. Investigation of toxin genes in Staphylococcus aureus strains isolated in Mustafa Kemal University Hospital. Turk J Med Sci. 2011;41(2):343-52.
  • Hu DL, Omoe K, Inoue F, Kasai T, Yasujima M, Shinagawa K, et al. Comparative prevalence of superantigenic toxin genes in meticillin-resistant and meticillin-susceptible Staphylococcus aureus isolates. J Med Microbiol. 2008;57(Pt 9):1106-12.
  • Tekeli A, Koyuncu E, Dolapçı I, Akan OA, Karahan ZC. Molecular characteristics of methicillin-resistant Staphylococcus aureus strains isolated from blood cultures between 2002-2005 in Ankara University Hospital. Mikrobiyol Bul. 2009;43(1):1-10.
  • Kaneko J, Kamio Y. Bacterial two-component and hetero-heptameric pore-forming cytolytic toxins: structures, pore-forming mechanism, and organization of the genes. Biosci Biotechnol Biochem. 2004;68(5):981-1003.
  • Shukla SK, Karow ME, Brady JM, Stemper ME, Kislow J, Moore N, et al. Virulence genes and genotypic associations in nasal carriage, community-associated methicillin-susceptible and methicillin-resistant USA400 Staphylococcus aureus isolates. J Clin Microbiol. 2010;48(10):3582-92.
  • Aggarwal S, Jena S, Panda S, Sharma S, Dhawan B, Nath G, et al. Antibiotic susceptibility, virulence pattern, and typing of Staphylococcus aureus strains isolated from variety of infections in India. Front Microbiol. 2019;10:2763.
  • Li X, Fang F, Zhao J, Lou N, Li C, Huang T, et al. Molecular characteristics and virulence gene profiles of Staphylococcus aureus causing bloodstream infection. Braz J Infect Dis. 2018;22(6):487-94.
  • Arabestani MR, Rastiyani S, Alikhani MY, Mousavi SF. The relationship between prevalence of antibiotics resistance and virulence factors genes of MRSA and MSSA strains isolated from clinical samples, West Iran. Oman Med J. 2018;33(2):134-40.
  • Grumann D, Nübel U, Bröker BM. Staphylococcus aureus toxins--their functions and genetics. Infect Genet Evol. 2014;21:583-92.
  • Havaei S, Moghadam SO, Pourmand M, Faghri J. Prevalence of genes encoding bi-component leukocidins among clinical isolates of methicillin-resistant Staphylococcus aureus. Iran J Public Health. 2010;39(1):8-14.
  • He C, Xu S, Zhao H, Hu F, Xu X, Jin S, et al. Leukotoxin and pyrogenic toxin superantigen gene backgrounds in bloodstream and wound Staphylococcus aureus isolates from eastern region of China. BMC Infect Dis. 2018;18(1):395.
  • Peerayeh SN, Azimian A, Nejad QB, Kashi M. Prevalence of agr specificity groups among Staphylococcus aureus isolates from university hospitals in Tehran. Lab Med. 2009;40(1):27-9.
  • Shopsin B, Mathema B, Alcabes P, Said-Salim B, Lina G, Matsuka A, et al. Prevalence of agr specificity groups among Staphylococcus aureus strains colonizing children and their guardians. J Clin Microbiol. 2003;41(1):456-9.
  • van Leeuwen W, van Nieuwenhuizen W, Gijzen C, Verbrugh H, van Belkum A. Population studies of methicillin-resistant and -sensitive Staphylococcus aureus strains reveal a lack of variability in the agrD gene, encoding a staphylococcal autoinducer peptide. J Bacteriol. 2000;182(20): 5721-9.
  • Manago K, Nishi J, Wakimoto N, Miyanohara H, Sarantuya J, Tokuda K, et al. Biofilm formation by and accessory gene regulator typing of methicillin-resistant Staphylococcus aureus strains recovered from patients with nosocomial infections. Infect Control Hosp Epidemiol. 2006;27(2):188-90.
  • Sakoulas G, Eliopoulos GM, Moellering RC Jr, Wennersten C, Venkataraman L, Novick RP, et al. Accessory gene regulator (agr) locus in geographically diverse Staphylococcus aureus isolates with reduced susceptibility to vancomycin. Antimicrob Agents Chemother. 2002;46(5):1492-502.
  • Yoon HJ, Choi JY, Lee K, Yong D, Kim JM, Song YG. Accessory gene regulator group polymorphisms in methicillin-resistant Staphylococcus aureus: an association with clinical significance. Yonsei Med J. 2007;48(2):176-83.
  • Ji G, Beavis R, Novick RP. Bacterial interference caused by autoinducing peptide variants. Science. 1997;276(5321):2027-30.
  • Fisher EL, Otto M, Cheung GYC. Basis of virulence in enterotoxin-mediated staphylococcal food poisoning. Front Microbiol. 2018;9:436.
Toplam 55 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Klinik Tıp Bilimleri
Bölüm Araştırma Makalesi
Yazarlar

Mücella Bayırlı Bu kişi benim 0000-0001-6120-0071

Özkan Aslantaş 0000-0003-0407-8633

Burçin Özer 0000-0001-8965-9335

Proje Numarası 19.YL.051
Yayımlanma Tarihi 30 Aralık 2021
Gönderilme Tarihi 24 Haziran 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 23 Sayı: 3

Kaynak Göster

APA Bayırlı, M., Aslantaş, Ö., & Özer, B. (2021). Investigation of Toxin Profiles of Methicillin Resistant and Sensitive Staphylococcus aureus Strains Isolated from Various Clinical Specimens. Duzce Medical Journal, 23(3), 244-251. https://doi.org/10.18678/dtfd.956666
AMA Bayırlı M, Aslantaş Ö, Özer B. Investigation of Toxin Profiles of Methicillin Resistant and Sensitive Staphylococcus aureus Strains Isolated from Various Clinical Specimens. Duzce Med J. Aralık 2021;23(3):244-251. doi:10.18678/dtfd.956666
Chicago Bayırlı, Mücella, Özkan Aslantaş, ve Burçin Özer. “Investigation of Toxin Profiles of Methicillin Resistant and Sensitive Staphylococcus Aureus Strains Isolated from Various Clinical Specimens”. Duzce Medical Journal 23, sy. 3 (Aralık 2021): 244-51. https://doi.org/10.18678/dtfd.956666.
EndNote Bayırlı M, Aslantaş Ö, Özer B (01 Aralık 2021) Investigation of Toxin Profiles of Methicillin Resistant and Sensitive Staphylococcus aureus Strains Isolated from Various Clinical Specimens. Duzce Medical Journal 23 3 244–251.
IEEE M. Bayırlı, Ö. Aslantaş, ve B. Özer, “Investigation of Toxin Profiles of Methicillin Resistant and Sensitive Staphylococcus aureus Strains Isolated from Various Clinical Specimens”, Duzce Med J, c. 23, sy. 3, ss. 244–251, 2021, doi: 10.18678/dtfd.956666.
ISNAD Bayırlı, Mücella vd. “Investigation of Toxin Profiles of Methicillin Resistant and Sensitive Staphylococcus Aureus Strains Isolated from Various Clinical Specimens”. Duzce Medical Journal 23/3 (Aralık 2021), 244-251. https://doi.org/10.18678/dtfd.956666.
JAMA Bayırlı M, Aslantaş Ö, Özer B. Investigation of Toxin Profiles of Methicillin Resistant and Sensitive Staphylococcus aureus Strains Isolated from Various Clinical Specimens. Duzce Med J. 2021;23:244–251.
MLA Bayırlı, Mücella vd. “Investigation of Toxin Profiles of Methicillin Resistant and Sensitive Staphylococcus Aureus Strains Isolated from Various Clinical Specimens”. Duzce Medical Journal, c. 23, sy. 3, 2021, ss. 244-51, doi:10.18678/dtfd.956666.
Vancouver Bayırlı M, Aslantaş Ö, Özer B. Investigation of Toxin Profiles of Methicillin Resistant and Sensitive Staphylococcus aureus Strains Isolated from Various Clinical Specimens. Duzce Med J. 2021;23(3):244-51.
Creative Commons Lisansı
Düzce Tıp Fakültesi Dergisi Creative Commons Atıf-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.