Araştırma Makalesi
BibTex RIS Kaynak Göster

Assessment Results of Salinity Stressed F2 Population Originated from Interspecific Hybridization of Eggplant with Wild Relative Solanum incanum L.

Yıl 2024, Cilt: 41 Sayı: 2, 50 - 59
https://doi.org/10.16882/hortis.1479101

Öz

Salinity, which is one of the major abiotic stresses, prevails in mostly arid and semiarid areas that is nearly 20% of the world’s cultivated area. Excessive amounts of salt around the plant root zone are detrimental to vegetative growth and economic yield. Today salinization is still severely expanding and posing a great threat to the development of sustainable agriculture. Although eggplant (Solanum melongena L.) is considered moderately sensitive, soil salinity mitigates strictly the growth and yield. Eggplant has significant crop wild relatives (CWRs) which are thought to be more tolerant to abiotic stresses and it is substantial to exploit their potential against salinity in hybrid breeding studies. It has previously been proven that Solanum incanum L. has tolerance to salinity stress. This study aimed to improve salinity-tolerant pure eggplant lines. Therefore, the acquired F2 population from interspecific hybridization between the pure line (BATEM-TDC47) with distinctive features from BATEM eggplant gene pool and S. incanum L., were subjected to salinity stress at 150 mM NaCl level with its parents and F1 plants. On the 12th day after the last salt treatment, the plants were evaluated using a 0-5 visual scale. Among the 256 stressed plants, 50 F2 individuals were determined to be salt tolerant. Additionally, some of their morphological and physiological features, such as shoot length, stem diameter, number of leaves, anthocyanin presence, prickliness, malondialdehyde (MDA), and proline levels, were studied and compared to the controls of their parent and F1 plants. Results showed that shoot length and stem diameter decreased dramatically under salt stress. According to the analysis, the average MDA and proline levels of the F2 population were identified as 10.9 µ mol g-1 FW and 8.4 µ mol g-1 FW, respectively. The distinguished 50 F2 plants that showed salinity tolerance were transferred to the greenhouse and self-pollinated to produce the F3 generation.

Kaynakça

  • Akinci, I. E., Akinci, S., Yilmaz, K., & Dikici, H. (2004). Response of eggplant varieties (Solanum melongena) to salinity in germination and seedling stages. New Zealand Journal of Crop and Horticultural Science, 32:193-200.
  • Al Hassan, M., Morosan, M., López-Gresa, M.P., Prohens, J., Vicente, O., & Boşcaiu, M., (2016). Salinity-ınduced variation in biochemical markers provides ınsight into the mechanisms of salt tolerance in common (Phaseolus vulgaris) and runner (P. coccineus) beans. International Journal of Moleculer Science,17:1582.
  • Alkhatib, R., Abdo, N., & Mheidat, M. (2021). Photosynthetic and ultrastructural properties of eggplant (Solanum melongena) under salinity stress. Horticulturae, 7(7):181.
  • Assaha, D.V., Ueda, A., & Saneoka, H. (2013). Comparison of growth and mineral accumulation of two solanaceous species, Solanum scabrum Mill. (huckleberry) and S. melongena L. (eggplant), under salinity stress. Soil Science and Plant Nutrition, 59(6):912-920.
  • Bates, L.S., Waldren, R.P., & Teare, I.D. (1973). Rapiddetermination of free proline for water-stressstudies. Plant and Soil, 39(1):205-207.
  • Bhati, S., Gangopadhyay, K.K., Yadav, S.K., & Garg, G. (2020). Seedling growth and antioxidant activity of eggplant (Solanum melongena L.) genotypes under salt stress. Vegetable Science, 47(2):207-212.
  • Brenes, M., Solana, A., Boscaiu, M., Fita, A., Vicente, O., Calatayud, Á., & Plazas, M. (2020a). Physiological and biochemical responses to salt stress in cultivated eggplant (Solanum melongena L.) and in S. insanum L., a close wild relative. Agronomy, 10(5):651.
  • Brenes, M., Pérez, J., González-Orenga, S., Solana, A., Boscaiu, M., Prohens, J., & Vicente, O. (2020b). Comparative studies on the physiological and biochemical responses to salt stress of eggplant (Solanum melongena) and its rootstock S. torvum. Agriculture, 10(8):328.
  • Bybordi, A., & Tabatabaei, J. (2009). Effect of salinity stress on germination and seedling properties in canola cultivars (Brassica napus L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 37(2):71-76.
  • Caliskan, S., Toppino, L., Boyaci, H.F., Rotino, G.L., & Cebeci, E. (2023). Assessment of new genetic resources to uncover potential nematode resistance traits for eggplant (Solanum melongena) improvement. Phytoparasitica, 1-14.
  • Cebeci, E., Boyaci, H.F., Kiran, S., & Ellialtioğlu, Ş.Ş., (2022). Selection of Drought tolerant individuals in segregating populations generated by interspecific cross in eggplant. Bahçe, 51:1:35-42.
  • Cebeci, E., Boyaci, H.F., Kiran, S., & Ellialtioğlu, Ş.Ş. (2023). Responses of interspecific hybrid eggplant f4 inbred lines to drought and heat stress. Soil Studies,12(2):70-76.
  • Chaudhry, S., & Sidhu, G.P.S. (2022). Climate change regulated abiotic stress mechanisms in plants: A comprehensive review. Plant Cell Reports, 41(1):1-31.
  • Cheah, B.H., Nadarajah, K., Divate, M.D., & Wickneswari, R. (2015). Identification of four functionally important microRNA families with contrasting differential expression profiles between drought-tolerant and susceptible rice leaf at vegetative stage.BMC Genomics, 16:1-18.
  • Chen, H., & Jiang, J.G. (2010). Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity. Environmental Reviews, 18(NA):309-319.
  • Chinnusamy, V., Jagendorf. A., & Zhu. J.K. (2005). Understanding and improving salt tolerance in plants. Crop Science, 45(2):437-448.
  • Diaz-Perez, J.C., & Eaton, T.E. (2015). Eggplant (Solanum melongena L.) plant growth and fruit yield as affected by drip irrigation rate. HortScience, 50(11):1709-1714.
  • Ekincialp, A. (2019). The differences among melon genotypes and varieties under salt stress based on certain morphological and physiological properties-mixture modeling and principal component analysis (PCA). Applied Ecology & Environmental Research, 17(2):2965-2981.
  • Etesami, H., & Noori, F. (2019). Soil Salinity as a Challenge for Sustainable Agriculture and Bacterial-Mediated Alleviation of Salinity Stress in Crop Plants. In: Kumar, M., Etesami, H., Kumar, V. (eds) Saline Soil-based Agriculture by Halotolerant Microorganisms. Springer, Singapore.
  • Evelin, H., Devi, T.S., Gupta, S., & Kapoor, R. (2019). Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: Current understanding and new challenges. Frontiers in Plant Science, 10:470.
  • Fidan, E., & Ekincialp, A. (2017). Investigation of responses of some bean (Phaseolus vulgaris L.) genotypes to different levels of salt stress. Yuzuncu Yıl University Journal of Agricultural Sciences, 27(4):558-568.
  • García-Fortea, E., Gramazio, P., Vilanova, S., Fita, A., Mangino, G., Villanueva, G., Arrones, A.,Knapp, S., Prohens, J., & Plazas, M. (2019). First successful backcrossing towards eggplant (Solanum melongena) of a New World species, the silverleaf nightshade (S. elaeagnifolium), and characterization of interspecific hybrids and backcrosses. Scientia Horticulturea, 246:563-573.
  • Giordano, M., Petropoulos, S.A., & Rouphael, Y. (2021). Response and defence mechanisms of vegetable crops against drought, heat and salinity stress. Agriculture, 11(5):463.
  • Gramazio, P., Blanca, J., Ziarsolo, P., Herraiz, F. J., Plazas, M., Prohens, J., & Vilanova, S. (2016). Transcriptome analysis and molecular marker discovery in Solanum incanum and S. aethiopicum, two close relatives of the brinjal eggplant (Solanum melongena) with interest for breeding. BMC Genomics, 17:300.
  • Gramazio, P., Prohens, J., Plazas, M., Mangino, G., Herraiz, F.J., & Vilanova, S. (2017). Development and genetic characterization of advanced backcross materials and an introgression line population of Solanum incanum in a S. melongena background. Frontiers in Plant Science, 8:1477.
  • Gregorio, G.B., Senadhira, D., Mendoza, R.D., Manigbas, N.L., Roxas, J.P., & Guerta, C.Q. (2002). Progress in breeding for salinity tolerance and associated abiotic stresses in rice. Field Crops Research, 76(2-3):91-101.
  • Hanci, F., Cebeci, E., & Polat, Z. (2014). The effects of Trichoderma harzianum on germination of onion (Allium cepa L.) seeds under salt stress conditions. International Journal of Agricultural and Natural Sciences, 7(1):45-48.
  • Hannachi, S., Van Labeke, M.C., & Mehouachi, T. (2014). Application of chlorophyll fluorescence to screen eggplant (Solanum melongena L.) cultivars for salt tolerance. Photosynthetica, 52:57-62.
  • Hannachi, S., & Van Labeke, M.C. (2018). Salt stress affects germination, seedling growth and physiological responses differentially in eggplant cultivars (Solanum melongena L.). Scientia Horticulturae, 228:56-65.
  • Hemathilake, D.M.K.S., & Gunathilake, D.M.C.C. (2022). Agricultural productivity and food supply to meet increased demands. In Future Foods (pp. 539-553). Academic Press.
  • Hoagland, D.R., & Arnon, D.I. (1950). The Water-Culture Method for Growing Plants without Soil. 2nd Edition, Circular 347, California Agricultural Experiment Station.
  • Ibrahim, E.A. (2016). Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology, 192:38-46.
  • Johnson, R., & Puthur, J.T. (2021). Seed priming as a cost effective technique for developing plants with cross tolerance to salinity stress. Plant Physiology and Biochemistry, 162:247-257.
  • Kıran, S., Kusvuran, Ş., Ozkay, F., & Ellialtioğlu, Ş.Ş. (2016). The change of some morphological parameters in salt tolerant and salt sensitive genotypes under drought stress condition. Journal of Agricultural Faculty of Mustafa Kemal University, 21(2):130-138.
  • Kouassi, B., Prohens, J., Gramazio, P., Kouassi, A.B., Vilanova, S., Galán-Ávila, A., Herráiz, F.J., Kouassi, A., Seguí-Simarro, J.M., & Plazas, M. (2016). Development of backcross generations and new interspecific hybrid combinations for introgression breeding in eggplant (Solanum melongena). Scientia Horticulturea, 213:199-207.
  • Khan, A., Jalil, S., Cao, H., Tsago, Y., Sunusi, M., Chen, Z., & Jin, X. (2020). The purple leaf (pl6) mutation regulates leaf color by altering the anthocyanin and chlorophyll contents in rice. Plants, 9(11):1477.
  • Knapp, S., Vorontsova, M.S., & Prohens, J. (2013). Wild relatives of the eggplant (Solanum melongena L.: Solanaceae): New understanding of species names in a complex group. PLoS One, 8:e57039.
  • Kumar, A., Singh, S., Gaurav, A.K., Srivastava, S., & Verma, J.P. (2020). Plant growth-promoting bacteria: biological tools for the mitigation of salinity stress in plants. Frontiers in Microbiology, 11:1216.
  • Kusvuran, S. (2010). Relationships between physiological mechanisms of tolerances to drought and salinity in melons. PhD Thesis, Çukurova University, Adana, Türkiye.
  • Li, Z., & Ahammed, G.J. (2023). Plant stress response and adaptation via anthocyanins: A review. Plant Stress, 100230.
  • Liu, J., Zheng, Z., Zhou, X., Feng, C., & Zhuang, Y. (2015). Improving the resistance of eggplant (Solanum melongena) to Verticillium wilt using wild species Solanum linnaeanum. Euphytica, 201:463-469.
  • Lutts, S., Kinet, J.M., & Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany, 78(3):389-398.
  • Mbarki, S., Sytar, O., Zivcak, M., Abdelly, C., Cerda, A., & Brestic, M. (2018). Anthocyanins of coloured wheat genotypes in specific response to salt stress. Molecules, 23(7):1518.
  • Munns, R.; Tester, M., (2008). Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681.
  • Nouman, W., Basra, S.M.A., Yasmeen, A., Gull, T., Hussain, S.B., Zubair, M., & Gul, R. (2014). Seed priming improves the emergence potential, growth and antioxidant system of Moringa oleifera under saline conditions. Plant Growth Regulation, 73:267-278.
  • Plazas, M., Vilanova, S., Gramazio, P., Rodríguez-Burruezo, A., Fita, A., Herráiz, F.J., Prohens, J. (2016). Interspecific hybridization between eggplant and wild relatives from different genepools. Journal of American Society Horticultural Science, 141:34-44.
  • Plazas, M., Gonzalez-Orenga, S., Nguyen, H.T., Morar, I. M., Fita, A., Boscaiu, M., & Vicente, O. (2022). Growth and antioxidant responses triggered by water stress in wild relatives of eggplant. Scientia Horticulturae, 293:110685.
  • Porcel, R., Aroca, R., & Ruiz-Lozano, J.M. (2012). Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agronomy for Sustainable Development, 32:181-200.
  • Ranil, R.H.G., Prohens, J., Aubriot, X., Niran, H.M.L., Plazas, M., Fonseka, R.M., Vilanova, S., Fonseka, H.H., Gramazio, P., & Knapp, S. (2016). Solanum insanum L. (subgenus Leptostemonum Bitter, Solanaceae), the neglected wild progenitor of eggplant (S. melongena L.): A review of taxonomy, characteristics and uses aimed at its enhancement for improved eggplant breeding. Genetic Resources Crop Evoluation, 64:1707-1722.
  • Rotino, G.L., Sala, T., & Toppino, L. (2014). Eggplant. Alien gene transfer in crop plants, volume 2: Achievements and impacts, 381-409.
  • Singh, Z., Karthigesu, I.P., Singh, P., & Rupinder, K.A.U. R. (2014). Use of malondialdehyde as a biomarker for assessing oxidative stress in different disease pathologies: a review. Iranian Journal of Public Health, 43(Supple 3):7-16.
  • Singh, B.K., Trivedi, P., Singh, S., Macdonald, CA., & Verma, J.P. (2018). Emerging microbiome technologies for sustainable increase in farm productivity and environmental security. Microbiology Australia, 39(1):17-23.
  • Shaheenuzzamn, M. (2014). Screening of chickpea genotypes against salinity stress. Bangladesh Journal of Agricultural Research, 39(4), 605-619.
  • Sharma, A., Shahzad, B., Kumar, V., Kohli, S.K., Sidhu, G.P.S., Bali, A.S., & Zheng, B. (2019). Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules, 9(7):285.
  • Slama, I., Abdelly, C., Bouchereau, A., Flowers, T., & Savouré, A. (2015). Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Annals of Botany, 115(3):433-447.
  • Suarez, D. L., Celis, N., Ferreira, J.F., Reynolds, T., & Sandhu, D. (2021). Linking genetic determinants with salinity tolerance and ion relationships in eggplant, tomato and pepper. Scientific Reports, 11(1):16298.
  • Tang, X., Mu, X., Shao, H., Wang, H., Brestic, M. (2015). Global plant-responding mechanisms to salt stress: Physiological and molecular levels and implications in biotechnology. Critical Review Biotechnology, 35:425-437.
  • Toppino, L., Valè, G., & Rotino, G.L. (2008). Inheritance of Fusarium wilt resistance introgressed from Solanum aethiopicum Gilo and Aculeatum groups into cultivated eggplant (S. melongena) and development of associated PCR-based markers. Molecular Breeding, 22:237-250.
  • Toppino, L., Barchi, L., Rotino, G.L. (2022). Next Generation Breeding for Abiotic Stress Resistance in Eggplant. In: Kole, C. (eds) Genomic Designing for Abiotic Stress Resistant Vegetable Crops. Springer, Cham. https://doi.org/10.1007/978-3-031-03964-5_4
  • Unlukara, A. Kurunç, A. Kesmez, G.D. Yurtseven, E. & Suarez, D.L. (2010). Effects of salinity on eggplant (Solanum melongena L.) growth and evapotranspiration. Irrigation and Drainage, 59:203–214.
Yıl 2024, Cilt: 41 Sayı: 2, 50 - 59
https://doi.org/10.16882/hortis.1479101

Öz

Kaynakça

  • Akinci, I. E., Akinci, S., Yilmaz, K., & Dikici, H. (2004). Response of eggplant varieties (Solanum melongena) to salinity in germination and seedling stages. New Zealand Journal of Crop and Horticultural Science, 32:193-200.
  • Al Hassan, M., Morosan, M., López-Gresa, M.P., Prohens, J., Vicente, O., & Boşcaiu, M., (2016). Salinity-ınduced variation in biochemical markers provides ınsight into the mechanisms of salt tolerance in common (Phaseolus vulgaris) and runner (P. coccineus) beans. International Journal of Moleculer Science,17:1582.
  • Alkhatib, R., Abdo, N., & Mheidat, M. (2021). Photosynthetic and ultrastructural properties of eggplant (Solanum melongena) under salinity stress. Horticulturae, 7(7):181.
  • Assaha, D.V., Ueda, A., & Saneoka, H. (2013). Comparison of growth and mineral accumulation of two solanaceous species, Solanum scabrum Mill. (huckleberry) and S. melongena L. (eggplant), under salinity stress. Soil Science and Plant Nutrition, 59(6):912-920.
  • Bates, L.S., Waldren, R.P., & Teare, I.D. (1973). Rapiddetermination of free proline for water-stressstudies. Plant and Soil, 39(1):205-207.
  • Bhati, S., Gangopadhyay, K.K., Yadav, S.K., & Garg, G. (2020). Seedling growth and antioxidant activity of eggplant (Solanum melongena L.) genotypes under salt stress. Vegetable Science, 47(2):207-212.
  • Brenes, M., Solana, A., Boscaiu, M., Fita, A., Vicente, O., Calatayud, Á., & Plazas, M. (2020a). Physiological and biochemical responses to salt stress in cultivated eggplant (Solanum melongena L.) and in S. insanum L., a close wild relative. Agronomy, 10(5):651.
  • Brenes, M., Pérez, J., González-Orenga, S., Solana, A., Boscaiu, M., Prohens, J., & Vicente, O. (2020b). Comparative studies on the physiological and biochemical responses to salt stress of eggplant (Solanum melongena) and its rootstock S. torvum. Agriculture, 10(8):328.
  • Bybordi, A., & Tabatabaei, J. (2009). Effect of salinity stress on germination and seedling properties in canola cultivars (Brassica napus L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 37(2):71-76.
  • Caliskan, S., Toppino, L., Boyaci, H.F., Rotino, G.L., & Cebeci, E. (2023). Assessment of new genetic resources to uncover potential nematode resistance traits for eggplant (Solanum melongena) improvement. Phytoparasitica, 1-14.
  • Cebeci, E., Boyaci, H.F., Kiran, S., & Ellialtioğlu, Ş.Ş., (2022). Selection of Drought tolerant individuals in segregating populations generated by interspecific cross in eggplant. Bahçe, 51:1:35-42.
  • Cebeci, E., Boyaci, H.F., Kiran, S., & Ellialtioğlu, Ş.Ş. (2023). Responses of interspecific hybrid eggplant f4 inbred lines to drought and heat stress. Soil Studies,12(2):70-76.
  • Chaudhry, S., & Sidhu, G.P.S. (2022). Climate change regulated abiotic stress mechanisms in plants: A comprehensive review. Plant Cell Reports, 41(1):1-31.
  • Cheah, B.H., Nadarajah, K., Divate, M.D., & Wickneswari, R. (2015). Identification of four functionally important microRNA families with contrasting differential expression profiles between drought-tolerant and susceptible rice leaf at vegetative stage.BMC Genomics, 16:1-18.
  • Chen, H., & Jiang, J.G. (2010). Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity. Environmental Reviews, 18(NA):309-319.
  • Chinnusamy, V., Jagendorf. A., & Zhu. J.K. (2005). Understanding and improving salt tolerance in plants. Crop Science, 45(2):437-448.
  • Diaz-Perez, J.C., & Eaton, T.E. (2015). Eggplant (Solanum melongena L.) plant growth and fruit yield as affected by drip irrigation rate. HortScience, 50(11):1709-1714.
  • Ekincialp, A. (2019). The differences among melon genotypes and varieties under salt stress based on certain morphological and physiological properties-mixture modeling and principal component analysis (PCA). Applied Ecology & Environmental Research, 17(2):2965-2981.
  • Etesami, H., & Noori, F. (2019). Soil Salinity as a Challenge for Sustainable Agriculture and Bacterial-Mediated Alleviation of Salinity Stress in Crop Plants. In: Kumar, M., Etesami, H., Kumar, V. (eds) Saline Soil-based Agriculture by Halotolerant Microorganisms. Springer, Singapore.
  • Evelin, H., Devi, T.S., Gupta, S., & Kapoor, R. (2019). Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: Current understanding and new challenges. Frontiers in Plant Science, 10:470.
  • Fidan, E., & Ekincialp, A. (2017). Investigation of responses of some bean (Phaseolus vulgaris L.) genotypes to different levels of salt stress. Yuzuncu Yıl University Journal of Agricultural Sciences, 27(4):558-568.
  • García-Fortea, E., Gramazio, P., Vilanova, S., Fita, A., Mangino, G., Villanueva, G., Arrones, A.,Knapp, S., Prohens, J., & Plazas, M. (2019). First successful backcrossing towards eggplant (Solanum melongena) of a New World species, the silverleaf nightshade (S. elaeagnifolium), and characterization of interspecific hybrids and backcrosses. Scientia Horticulturea, 246:563-573.
  • Giordano, M., Petropoulos, S.A., & Rouphael, Y. (2021). Response and defence mechanisms of vegetable crops against drought, heat and salinity stress. Agriculture, 11(5):463.
  • Gramazio, P., Blanca, J., Ziarsolo, P., Herraiz, F. J., Plazas, M., Prohens, J., & Vilanova, S. (2016). Transcriptome analysis and molecular marker discovery in Solanum incanum and S. aethiopicum, two close relatives of the brinjal eggplant (Solanum melongena) with interest for breeding. BMC Genomics, 17:300.
  • Gramazio, P., Prohens, J., Plazas, M., Mangino, G., Herraiz, F.J., & Vilanova, S. (2017). Development and genetic characterization of advanced backcross materials and an introgression line population of Solanum incanum in a S. melongena background. Frontiers in Plant Science, 8:1477.
  • Gregorio, G.B., Senadhira, D., Mendoza, R.D., Manigbas, N.L., Roxas, J.P., & Guerta, C.Q. (2002). Progress in breeding for salinity tolerance and associated abiotic stresses in rice. Field Crops Research, 76(2-3):91-101.
  • Hanci, F., Cebeci, E., & Polat, Z. (2014). The effects of Trichoderma harzianum on germination of onion (Allium cepa L.) seeds under salt stress conditions. International Journal of Agricultural and Natural Sciences, 7(1):45-48.
  • Hannachi, S., Van Labeke, M.C., & Mehouachi, T. (2014). Application of chlorophyll fluorescence to screen eggplant (Solanum melongena L.) cultivars for salt tolerance. Photosynthetica, 52:57-62.
  • Hannachi, S., & Van Labeke, M.C. (2018). Salt stress affects germination, seedling growth and physiological responses differentially in eggplant cultivars (Solanum melongena L.). Scientia Horticulturae, 228:56-65.
  • Hemathilake, D.M.K.S., & Gunathilake, D.M.C.C. (2022). Agricultural productivity and food supply to meet increased demands. In Future Foods (pp. 539-553). Academic Press.
  • Hoagland, D.R., & Arnon, D.I. (1950). The Water-Culture Method for Growing Plants without Soil. 2nd Edition, Circular 347, California Agricultural Experiment Station.
  • Ibrahim, E.A. (2016). Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology, 192:38-46.
  • Johnson, R., & Puthur, J.T. (2021). Seed priming as a cost effective technique for developing plants with cross tolerance to salinity stress. Plant Physiology and Biochemistry, 162:247-257.
  • Kıran, S., Kusvuran, Ş., Ozkay, F., & Ellialtioğlu, Ş.Ş. (2016). The change of some morphological parameters in salt tolerant and salt sensitive genotypes under drought stress condition. Journal of Agricultural Faculty of Mustafa Kemal University, 21(2):130-138.
  • Kouassi, B., Prohens, J., Gramazio, P., Kouassi, A.B., Vilanova, S., Galán-Ávila, A., Herráiz, F.J., Kouassi, A., Seguí-Simarro, J.M., & Plazas, M. (2016). Development of backcross generations and new interspecific hybrid combinations for introgression breeding in eggplant (Solanum melongena). Scientia Horticulturea, 213:199-207.
  • Khan, A., Jalil, S., Cao, H., Tsago, Y., Sunusi, M., Chen, Z., & Jin, X. (2020). The purple leaf (pl6) mutation regulates leaf color by altering the anthocyanin and chlorophyll contents in rice. Plants, 9(11):1477.
  • Knapp, S., Vorontsova, M.S., & Prohens, J. (2013). Wild relatives of the eggplant (Solanum melongena L.: Solanaceae): New understanding of species names in a complex group. PLoS One, 8:e57039.
  • Kumar, A., Singh, S., Gaurav, A.K., Srivastava, S., & Verma, J.P. (2020). Plant growth-promoting bacteria: biological tools for the mitigation of salinity stress in plants. Frontiers in Microbiology, 11:1216.
  • Kusvuran, S. (2010). Relationships between physiological mechanisms of tolerances to drought and salinity in melons. PhD Thesis, Çukurova University, Adana, Türkiye.
  • Li, Z., & Ahammed, G.J. (2023). Plant stress response and adaptation via anthocyanins: A review. Plant Stress, 100230.
  • Liu, J., Zheng, Z., Zhou, X., Feng, C., & Zhuang, Y. (2015). Improving the resistance of eggplant (Solanum melongena) to Verticillium wilt using wild species Solanum linnaeanum. Euphytica, 201:463-469.
  • Lutts, S., Kinet, J.M., & Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany, 78(3):389-398.
  • Mbarki, S., Sytar, O., Zivcak, M., Abdelly, C., Cerda, A., & Brestic, M. (2018). Anthocyanins of coloured wheat genotypes in specific response to salt stress. Molecules, 23(7):1518.
  • Munns, R.; Tester, M., (2008). Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681.
  • Nouman, W., Basra, S.M.A., Yasmeen, A., Gull, T., Hussain, S.B., Zubair, M., & Gul, R. (2014). Seed priming improves the emergence potential, growth and antioxidant system of Moringa oleifera under saline conditions. Plant Growth Regulation, 73:267-278.
  • Plazas, M., Vilanova, S., Gramazio, P., Rodríguez-Burruezo, A., Fita, A., Herráiz, F.J., Prohens, J. (2016). Interspecific hybridization between eggplant and wild relatives from different genepools. Journal of American Society Horticultural Science, 141:34-44.
  • Plazas, M., Gonzalez-Orenga, S., Nguyen, H.T., Morar, I. M., Fita, A., Boscaiu, M., & Vicente, O. (2022). Growth and antioxidant responses triggered by water stress in wild relatives of eggplant. Scientia Horticulturae, 293:110685.
  • Porcel, R., Aroca, R., & Ruiz-Lozano, J.M. (2012). Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agronomy for Sustainable Development, 32:181-200.
  • Ranil, R.H.G., Prohens, J., Aubriot, X., Niran, H.M.L., Plazas, M., Fonseka, R.M., Vilanova, S., Fonseka, H.H., Gramazio, P., & Knapp, S. (2016). Solanum insanum L. (subgenus Leptostemonum Bitter, Solanaceae), the neglected wild progenitor of eggplant (S. melongena L.): A review of taxonomy, characteristics and uses aimed at its enhancement for improved eggplant breeding. Genetic Resources Crop Evoluation, 64:1707-1722.
  • Rotino, G.L., Sala, T., & Toppino, L. (2014). Eggplant. Alien gene transfer in crop plants, volume 2: Achievements and impacts, 381-409.
  • Singh, Z., Karthigesu, I.P., Singh, P., & Rupinder, K.A.U. R. (2014). Use of malondialdehyde as a biomarker for assessing oxidative stress in different disease pathologies: a review. Iranian Journal of Public Health, 43(Supple 3):7-16.
  • Singh, B.K., Trivedi, P., Singh, S., Macdonald, CA., & Verma, J.P. (2018). Emerging microbiome technologies for sustainable increase in farm productivity and environmental security. Microbiology Australia, 39(1):17-23.
  • Shaheenuzzamn, M. (2014). Screening of chickpea genotypes against salinity stress. Bangladesh Journal of Agricultural Research, 39(4), 605-619.
  • Sharma, A., Shahzad, B., Kumar, V., Kohli, S.K., Sidhu, G.P.S., Bali, A.S., & Zheng, B. (2019). Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules, 9(7):285.
  • Slama, I., Abdelly, C., Bouchereau, A., Flowers, T., & Savouré, A. (2015). Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Annals of Botany, 115(3):433-447.
  • Suarez, D. L., Celis, N., Ferreira, J.F., Reynolds, T., & Sandhu, D. (2021). Linking genetic determinants with salinity tolerance and ion relationships in eggplant, tomato and pepper. Scientific Reports, 11(1):16298.
  • Tang, X., Mu, X., Shao, H., Wang, H., Brestic, M. (2015). Global plant-responding mechanisms to salt stress: Physiological and molecular levels and implications in biotechnology. Critical Review Biotechnology, 35:425-437.
  • Toppino, L., Valè, G., & Rotino, G.L. (2008). Inheritance of Fusarium wilt resistance introgressed from Solanum aethiopicum Gilo and Aculeatum groups into cultivated eggplant (S. melongena) and development of associated PCR-based markers. Molecular Breeding, 22:237-250.
  • Toppino, L., Barchi, L., Rotino, G.L. (2022). Next Generation Breeding for Abiotic Stress Resistance in Eggplant. In: Kole, C. (eds) Genomic Designing for Abiotic Stress Resistant Vegetable Crops. Springer, Cham. https://doi.org/10.1007/978-3-031-03964-5_4
  • Unlukara, A. Kurunç, A. Kesmez, G.D. Yurtseven, E. & Suarez, D.L. (2010). Effects of salinity on eggplant (Solanum melongena L.) growth and evapotranspiration. Irrigation and Drainage, 59:203–214.
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ziraat Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Esra Cebeci

Hatice Filiz Boyacı 0000-0002-3799-4673

Sevinç Kıran 0000-0002-6756-0235

Şeküre Şebnem Ellialtıoğlu 0000-0002-3851-466X

Erken Görünüm Tarihi 16 Mayıs 2024
Yayımlanma Tarihi
Gönderilme Tarihi 21 Şubat 2024
Kabul Tarihi 26 Nisan 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 41 Sayı: 2

Kaynak Göster

APA Cebeci, E., Boyacı, H. F., Kıran, S., Ellialtıoğlu, Ş. Ş. (2024). Assessment Results of Salinity Stressed F2 Population Originated from Interspecific Hybridization of Eggplant with Wild Relative Solanum incanum L. Horticultural Studies, 41(2), 50-59. https://doi.org/10.16882/hortis.1479101
AMA Cebeci E, Boyacı HF, Kıran S, Ellialtıoğlu ŞŞ. Assessment Results of Salinity Stressed F2 Population Originated from Interspecific Hybridization of Eggplant with Wild Relative Solanum incanum L. HortiS. Mayıs 2024;41(2):50-59. doi:10.16882/hortis.1479101
Chicago Cebeci, Esra, Hatice Filiz Boyacı, Sevinç Kıran, ve Şeküre Şebnem Ellialtıoğlu. “Assessment Results of Salinity Stressed F2 Population Originated from Interspecific Hybridization of Eggplant With Wild Relative Solanum Incanum L”. Horticultural Studies 41, sy. 2 (Mayıs 2024): 50-59. https://doi.org/10.16882/hortis.1479101.
EndNote Cebeci E, Boyacı HF, Kıran S, Ellialtıoğlu ŞŞ (01 Mayıs 2024) Assessment Results of Salinity Stressed F2 Population Originated from Interspecific Hybridization of Eggplant with Wild Relative Solanum incanum L. Horticultural Studies 41 2 50–59.
IEEE E. Cebeci, H. F. Boyacı, S. Kıran, ve Ş. Ş. Ellialtıoğlu, “Assessment Results of Salinity Stressed F2 Population Originated from Interspecific Hybridization of Eggplant with Wild Relative Solanum incanum L”., HortiS, c. 41, sy. 2, ss. 50–59, 2024, doi: 10.16882/hortis.1479101.
ISNAD Cebeci, Esra vd. “Assessment Results of Salinity Stressed F2 Population Originated from Interspecific Hybridization of Eggplant With Wild Relative Solanum Incanum L”. Horticultural Studies 41/2 (Mayıs 2024), 50-59. https://doi.org/10.16882/hortis.1479101.
JAMA Cebeci E, Boyacı HF, Kıran S, Ellialtıoğlu ŞŞ. Assessment Results of Salinity Stressed F2 Population Originated from Interspecific Hybridization of Eggplant with Wild Relative Solanum incanum L. HortiS. 2024;41:50–59.
MLA Cebeci, Esra vd. “Assessment Results of Salinity Stressed F2 Population Originated from Interspecific Hybridization of Eggplant With Wild Relative Solanum Incanum L”. Horticultural Studies, c. 41, sy. 2, 2024, ss. 50-59, doi:10.16882/hortis.1479101.
Vancouver Cebeci E, Boyacı HF, Kıran S, Ellialtıoğlu ŞŞ. Assessment Results of Salinity Stressed F2 Population Originated from Interspecific Hybridization of Eggplant with Wild Relative Solanum incanum L. HortiS. 2024;41(2):50-9.