Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, Cilt: 7 Sayı: 1, 67 - 80, 15.02.2022
https://doi.org/10.26833/ijeg.878236

Öz

Proje Numarası

201319004

Kaynakça

  • Alçay S & Ati̇z Ö (2021). Farklı Yazılımlar Kullanılarak Gerçek Zamanlı Hassas Nokta Konum Belirleme (RT-PPP) Yönteminin Performansının İncelenmesi. Geomatik, 6 (1), 77-83. https://doi.org/10.29128/geomatik.687709.
  • Alcay S & Gungor M (2020). Investigation of ionospheric TEC anomalies caused by space weather conditions. Astrophysics and Space Science, 365(9), 1-15. https://doi.org/10.1007/s10509-020-03862-x.
  • Atiz O, Alcay S, Ogutcu S & Kalayci I (2020). Necmettin Erbakan University Continuously Operating Reference Station. Intercontinental Geoinformation Days (IGD), 44-47, Mersin, Turkey.
  • Baybura T, Tiryakioğlu İ, Uğur M A, Solak H İ & Şafak Ş (2019). Examining the accuracy of network RTK and long base RTK methods with repetitive measurements. Journal of Sensors, 2019. https://doi.org/10.1155/2019/3572605.
  • Bothmer V & Daglis I A (2007). Space weather: physics and effects. Springer Science & Business Media. ISBN 978-3-540-23907-9
  • Bramanto B, Gumilar I, Taufik M & Hermawan I M D (2019). Long-range Single Baseline RTK GNSS Positioning for Land Cadastral Survey Mapping. In E3S Web of Conferences (ISGNSS 2018), 94, 01022, Bali, Indonesia.
  • Castro-Arvizu J M, Medina D & Ziebold R (2020). Impact of Satellite Elevation Mask in GPS+ Galileo RTK Positioning. In Institute of Navigation International Technical Meeting 2020, 487-498, San Diego, California.
  • Dabove P & Di Pietra V (2019). Single-baseline RTK positioning using dual-frequency GNSS receivers inside smartphones. Sensors, 19(19), 4302. http://dx.doi.org/10.3390/s19194302.
  • Dabove P (2019). The usability of GNSS mass-market receivers for cadastral surveys considering RTK and NRTK techniques. Geodesy and Geodynamics, 10(4), 282-289. https://doi.org/10.1016/j.geog.2019.04.006. Edwards S J, Clarke P J, Penna N T & Goebell S (2010). An examination of network RTK GPS services in Great Britain. Survey Review, 42(316), 107-121. https://doi.org/10.1179/003962610X12572516251529.
  • El-Mowafy A & Kubo N (2017). Integrity monitoring of vehicle positioning in urban environment using RTK-GNSS, IMU and speedometer. Measurement Science and Technology, 28(5), 055102. https://doi.org/10.1088/1361-6501/aa5c66.
  • Erenoglu R C (2017). A comprehensive evaluation of GNSS-and CORS-based positioning and terrestrial surveying for cadastral surveys. Survey Review, 49(352), 28-38. https://doi.org/10.1080/00396265.2015.1104093.
  • Herring T A, King R W & McClusky S C (2010). Introduction to GAMIT/GLOBK. Massachusetts Institute of Technology, Cambridge, Massachusetts.
  • Hofmann-Wellenhof B, Lichtenegger H & Wasle E (2007). GNSS–global navigation satellite systems: GPS, GLONASS, Galileo, and more. Springer Science & Business Media. ISBN 978-3-211-73012-6
  • Kim D & Langley R B (2008). Improving Long-Range RTK. GPS World.
  • Kouba J & Héroux P (2001). Precise point positioning using IGS orbit and clock products. GPS solutions, 5(2), 12-28. https://doi.org/10.1007/PL00012883.
  • Lagler K, Schindelegger M, Böhm J, Krásná H & Nilsson T (2013). GPT2: Empirical slant delay model for radio space geodetic techniques. Geophysical research letters, 40(6), 1069-1073. https://doi.org/10.1002/grl.50288.
  • Li G, Wu J, Zhao C & Tian Y (2017b). Double differencing within GNSS constellations. GPS Solutions, 21(3), 1161-1177. https://doi.org/10.1007/s10291-017-0599-4.
  • Li T, Zhang H, Niu X & Gao Z (2017a). Tightly-coupled integration of multi-GNSS single-frequency RTK and MEMS-IMU for enhanced positioning performance. Sensors, 17(11), 2462. http://dx.doi.org/10.3390/s17112462.
  • Li X, Lv H, Ma F, Li X, Liu J & Jiang Z (2019). GNSS RTK positioning augmented with large LEO constellation. Remote Sensing, 11(3), 228. https://doi.org/10.3390/rs11030228.
  • Luo X, Schaufler S, Branzanti M & Chen J (2020). Assessing the benefits of Galileo to high-precision GNSS positioning–RTK, PPP and post-processing. Advances in Space Research. https://doi.org/10.1016/j.asr.2020.08.022.
  • Mendez Astudillo J, Lau L, Tang Y T & Moore T (2018). Analysing the zenith tropospheric delay estimates in on-line precise point positioning (PPP) services and PPP software packages. Sensors, 18(2), 580. https://doi.org/10.3390/s18020580.
  • Mi X, Zhang B & Yuan Y (2019). Multi-GNSS inter-system biases: estimability analysis and impact on RTK positioning. GPS Solutions, 23(3), 81. https://doi.org/10.1007/s10291-019-0873-8.
  • Odijk D & Teunissen P J (2013). Characterization of between-receiver GPS-Galileo inter-system biases and their effect on mixed ambiguity resolution. GPS solutions. 17(4), 521-533. https://doi.org/10.1007/s10291-012-0298-0.
  • Odijk D & Wanninger L (2017). Differential Positioning. In: Teunissen P.J., Montenbruck O. (eds) Springer Handbook of Global Navigation Satellite Systems. Springer Handbooks. ISBN 978-3-319-42928-1
  • Odijk D, Verhagen S & Teunissen P J G (2012). Medium-distance GPS ambiguity resolution with controlled failure rate. In Geodesy for Planet Earth (pp. 745-751). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20338-1_93. Odolinski R, Teunissen P J G & Odijk D (2015a). Combined GPS+ BDS for short to long baseline RTK positioning. Measurement Science and Technology, 26(4), 045801. http://dx.doi.org/10.1088/0957-0233/26/4/045801.
  • Odolinski R, Teunissen P J G & Odijk D (2015b). Combined BDS, Galileo, QZSS and GPS Single-Frequency RTK. GPS Solutions, 19(1), 151-163. https://doi.org/10.1007/s10291-014-0376-6.
  • Ogutcu S & Kalayci I (2018). Accuracy and precision of network-based RTK techniques as a function of baseline distance and occupation time. Arabian Journal of Geosciences, 11(13), 354. https://doi.org/10.1007/s12517-018-3712-2.
  • Ogutcu S (2019). Temporal correlation length of network based RTK techniques. Measurement, 134, 539-547. https://doi.org/10.1016/j.measurement.2018.10.099.
  • Paziewski J & Wielgosz P (2017). Investigation of some selected strategies for multi-GNSS instantaneous RTK positioning. Advances in Space Research, 59(1), 12-23. https://doi.org/10.1016/j.asr.2016.08.034.
  • Shu B, Liu H, Xu L, Qian C, Gong X & An X (2018). Performance analysis of BDS medium-long baseline RTK positioning using an empirical troposphere model. Sensors, 18(4), 1199. https://doi.org/10.3390/s18041199.
  • Tian Y, Sui L, Xiao G, Zhao D & Tian Y (2019). Analysis of Galileo/BDS/GPS signals and RTK performance. GPS Solutions, 23(2), 37. https://doi.org/10.1007/s10291-019-0831-5.
  • Weber G, Dettmering D & Gebhard H (2005). Networked transport of RTCM via internet protocol (NTRIP). In A Window on the Future of Geodesy, 60-64, Berlin, Germany.
  • Wessel P, Luis J F, Uieda L, Scharroo R, Wobbe F, Smith W H F & Tian D (2019). The generic mapping tools version 6. Geochemistry, Geophysics, Geosystems, 20(11), 5556-5564. https://doi.org/10.1029/2019GC008515.
  • Wielgosz P, Kashani I & Grejner-Brzezinska D (2005). Analysis of long-range network RTK during a severe ionospheric storm. Journal of Geodesy, 79(9), 524-531. https://doi.org/10.1007/s00190-005-0003-y.
  • Yu J, Yan B, Meng X, Shao X & Ye H (2016). Measurement of bridge dynamic responses using network-based real-time kinematic GNSS technique. Journal of Surveying Engineering, 142(3), 04015013. http://dx.doi.org/10.1061/(ASCE)SU.1943-5428.0000167.
  • Zhang Y, Kubo N, Chen J, Chu F Y, Wang H & Wang J (2020). Contribution of QZSS with four satellites to multi-GNSS long baseline RTK. Journal of Spatial Science, 65(1), 41-60. https://doi.org/10.1080/14498596.2019.1646676.
  • Zumberge J F, Heflin M B, Jefferson D C, Watkins M M & Webb F H (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of geophysical research: solid earth, 102(B3), 5005-5017. https://doi.org/10.1029/96JB03860.

Comparative analysis of the performance of Multi-GNSS RTK: A case study in Turkey

Yıl 2022, Cilt: 7 Sayı: 1, 67 - 80, 15.02.2022
https://doi.org/10.26833/ijeg.878236

Öz

The Real Time Kinematic (RTK) method is widely used in the land surveying. Whereas RTK method has the advantage of practical use, positioning accuracy depends mostly on the baseline length due to the atmospheric errors. In general, RTK measurements are made by using GPS and GLONASS satellite systems. For this reason, the positioning performance of the technique is adversely affected under restricted satellite geometry conditions such as urban canyons. At present, most receivers on the market have the ability to track signals of Galileo and BeiDou satellites. Therefore, in this study, the positioning performance of RTK with different satellite combinations (GPS-only, GPS+GLONASS, GPS+GLONASS+GALILEO+BeiDou) was examined with a comparative approach. A field test was carried out considering approximately 20, 40, 60, and 80 km length of baselines. Three different cut off elevation angles – namely, 10°, 20°, and 30° – were chosen for the field test. The results were investigated in terms of accuracy and precision. Also, the ground truth coordinates of the rovers were obtained by post-processing relative method using GAMIT/GLOBK software. The results showed that multi-GNSS combinations provided better repeatability at the 10° cut off angle option. The accuracy of GPS-only solutions varied between 0.63/2.17 cm and 2.40/4.94 cm for horizontal and vertical components, respectively. However, the multi-GNSS combinations did not have a remarkable superiority in terms of position accuracy even at high satellite cut off angle (30°) compared to the GPS-only RTK.

Destekleyen Kurum

Necmettin Erbakan University Scientific Research Projects (BAP)

Proje Numarası

201319004

Teşekkür

This study was funded by Necmettin Erbakan University Scientific Research Projects (Project No: 201319004). We appreciate the technical team of CHC Turkey and Ufuk R. Ozbey for their support during this study. The authors also thank MIT for providing GAMIT/GLOBK software.

Kaynakça

  • Alçay S & Ati̇z Ö (2021). Farklı Yazılımlar Kullanılarak Gerçek Zamanlı Hassas Nokta Konum Belirleme (RT-PPP) Yönteminin Performansının İncelenmesi. Geomatik, 6 (1), 77-83. https://doi.org/10.29128/geomatik.687709.
  • Alcay S & Gungor M (2020). Investigation of ionospheric TEC anomalies caused by space weather conditions. Astrophysics and Space Science, 365(9), 1-15. https://doi.org/10.1007/s10509-020-03862-x.
  • Atiz O, Alcay S, Ogutcu S & Kalayci I (2020). Necmettin Erbakan University Continuously Operating Reference Station. Intercontinental Geoinformation Days (IGD), 44-47, Mersin, Turkey.
  • Baybura T, Tiryakioğlu İ, Uğur M A, Solak H İ & Şafak Ş (2019). Examining the accuracy of network RTK and long base RTK methods with repetitive measurements. Journal of Sensors, 2019. https://doi.org/10.1155/2019/3572605.
  • Bothmer V & Daglis I A (2007). Space weather: physics and effects. Springer Science & Business Media. ISBN 978-3-540-23907-9
  • Bramanto B, Gumilar I, Taufik M & Hermawan I M D (2019). Long-range Single Baseline RTK GNSS Positioning for Land Cadastral Survey Mapping. In E3S Web of Conferences (ISGNSS 2018), 94, 01022, Bali, Indonesia.
  • Castro-Arvizu J M, Medina D & Ziebold R (2020). Impact of Satellite Elevation Mask in GPS+ Galileo RTK Positioning. In Institute of Navigation International Technical Meeting 2020, 487-498, San Diego, California.
  • Dabove P & Di Pietra V (2019). Single-baseline RTK positioning using dual-frequency GNSS receivers inside smartphones. Sensors, 19(19), 4302. http://dx.doi.org/10.3390/s19194302.
  • Dabove P (2019). The usability of GNSS mass-market receivers for cadastral surveys considering RTK and NRTK techniques. Geodesy and Geodynamics, 10(4), 282-289. https://doi.org/10.1016/j.geog.2019.04.006. Edwards S J, Clarke P J, Penna N T & Goebell S (2010). An examination of network RTK GPS services in Great Britain. Survey Review, 42(316), 107-121. https://doi.org/10.1179/003962610X12572516251529.
  • El-Mowafy A & Kubo N (2017). Integrity monitoring of vehicle positioning in urban environment using RTK-GNSS, IMU and speedometer. Measurement Science and Technology, 28(5), 055102. https://doi.org/10.1088/1361-6501/aa5c66.
  • Erenoglu R C (2017). A comprehensive evaluation of GNSS-and CORS-based positioning and terrestrial surveying for cadastral surveys. Survey Review, 49(352), 28-38. https://doi.org/10.1080/00396265.2015.1104093.
  • Herring T A, King R W & McClusky S C (2010). Introduction to GAMIT/GLOBK. Massachusetts Institute of Technology, Cambridge, Massachusetts.
  • Hofmann-Wellenhof B, Lichtenegger H & Wasle E (2007). GNSS–global navigation satellite systems: GPS, GLONASS, Galileo, and more. Springer Science & Business Media. ISBN 978-3-211-73012-6
  • Kim D & Langley R B (2008). Improving Long-Range RTK. GPS World.
  • Kouba J & Héroux P (2001). Precise point positioning using IGS orbit and clock products. GPS solutions, 5(2), 12-28. https://doi.org/10.1007/PL00012883.
  • Lagler K, Schindelegger M, Böhm J, Krásná H & Nilsson T (2013). GPT2: Empirical slant delay model for radio space geodetic techniques. Geophysical research letters, 40(6), 1069-1073. https://doi.org/10.1002/grl.50288.
  • Li G, Wu J, Zhao C & Tian Y (2017b). Double differencing within GNSS constellations. GPS Solutions, 21(3), 1161-1177. https://doi.org/10.1007/s10291-017-0599-4.
  • Li T, Zhang H, Niu X & Gao Z (2017a). Tightly-coupled integration of multi-GNSS single-frequency RTK and MEMS-IMU for enhanced positioning performance. Sensors, 17(11), 2462. http://dx.doi.org/10.3390/s17112462.
  • Li X, Lv H, Ma F, Li X, Liu J & Jiang Z (2019). GNSS RTK positioning augmented with large LEO constellation. Remote Sensing, 11(3), 228. https://doi.org/10.3390/rs11030228.
  • Luo X, Schaufler S, Branzanti M & Chen J (2020). Assessing the benefits of Galileo to high-precision GNSS positioning–RTK, PPP and post-processing. Advances in Space Research. https://doi.org/10.1016/j.asr.2020.08.022.
  • Mendez Astudillo J, Lau L, Tang Y T & Moore T (2018). Analysing the zenith tropospheric delay estimates in on-line precise point positioning (PPP) services and PPP software packages. Sensors, 18(2), 580. https://doi.org/10.3390/s18020580.
  • Mi X, Zhang B & Yuan Y (2019). Multi-GNSS inter-system biases: estimability analysis and impact on RTK positioning. GPS Solutions, 23(3), 81. https://doi.org/10.1007/s10291-019-0873-8.
  • Odijk D & Teunissen P J (2013). Characterization of between-receiver GPS-Galileo inter-system biases and their effect on mixed ambiguity resolution. GPS solutions. 17(4), 521-533. https://doi.org/10.1007/s10291-012-0298-0.
  • Odijk D & Wanninger L (2017). Differential Positioning. In: Teunissen P.J., Montenbruck O. (eds) Springer Handbook of Global Navigation Satellite Systems. Springer Handbooks. ISBN 978-3-319-42928-1
  • Odijk D, Verhagen S & Teunissen P J G (2012). Medium-distance GPS ambiguity resolution with controlled failure rate. In Geodesy for Planet Earth (pp. 745-751). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20338-1_93. Odolinski R, Teunissen P J G & Odijk D (2015a). Combined GPS+ BDS for short to long baseline RTK positioning. Measurement Science and Technology, 26(4), 045801. http://dx.doi.org/10.1088/0957-0233/26/4/045801.
  • Odolinski R, Teunissen P J G & Odijk D (2015b). Combined BDS, Galileo, QZSS and GPS Single-Frequency RTK. GPS Solutions, 19(1), 151-163. https://doi.org/10.1007/s10291-014-0376-6.
  • Ogutcu S & Kalayci I (2018). Accuracy and precision of network-based RTK techniques as a function of baseline distance and occupation time. Arabian Journal of Geosciences, 11(13), 354. https://doi.org/10.1007/s12517-018-3712-2.
  • Ogutcu S (2019). Temporal correlation length of network based RTK techniques. Measurement, 134, 539-547. https://doi.org/10.1016/j.measurement.2018.10.099.
  • Paziewski J & Wielgosz P (2017). Investigation of some selected strategies for multi-GNSS instantaneous RTK positioning. Advances in Space Research, 59(1), 12-23. https://doi.org/10.1016/j.asr.2016.08.034.
  • Shu B, Liu H, Xu L, Qian C, Gong X & An X (2018). Performance analysis of BDS medium-long baseline RTK positioning using an empirical troposphere model. Sensors, 18(4), 1199. https://doi.org/10.3390/s18041199.
  • Tian Y, Sui L, Xiao G, Zhao D & Tian Y (2019). Analysis of Galileo/BDS/GPS signals and RTK performance. GPS Solutions, 23(2), 37. https://doi.org/10.1007/s10291-019-0831-5.
  • Weber G, Dettmering D & Gebhard H (2005). Networked transport of RTCM via internet protocol (NTRIP). In A Window on the Future of Geodesy, 60-64, Berlin, Germany.
  • Wessel P, Luis J F, Uieda L, Scharroo R, Wobbe F, Smith W H F & Tian D (2019). The generic mapping tools version 6. Geochemistry, Geophysics, Geosystems, 20(11), 5556-5564. https://doi.org/10.1029/2019GC008515.
  • Wielgosz P, Kashani I & Grejner-Brzezinska D (2005). Analysis of long-range network RTK during a severe ionospheric storm. Journal of Geodesy, 79(9), 524-531. https://doi.org/10.1007/s00190-005-0003-y.
  • Yu J, Yan B, Meng X, Shao X & Ye H (2016). Measurement of bridge dynamic responses using network-based real-time kinematic GNSS technique. Journal of Surveying Engineering, 142(3), 04015013. http://dx.doi.org/10.1061/(ASCE)SU.1943-5428.0000167.
  • Zhang Y, Kubo N, Chen J, Chu F Y, Wang H & Wang J (2020). Contribution of QZSS with four satellites to multi-GNSS long baseline RTK. Journal of Spatial Science, 65(1), 41-60. https://doi.org/10.1080/14498596.2019.1646676.
  • Zumberge J F, Heflin M B, Jefferson D C, Watkins M M & Webb F H (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of geophysical research: solid earth, 102(B3), 5005-5017. https://doi.org/10.1029/96JB03860.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Articles
Yazarlar

Ömer Faruk Atiz 0000-0001-6180-7121

Ceren Konukseven 0000-0001-6598-9479

Sermet Öğütcü 0000-0002-2680-1856

Salih Alçay 0000-0001-5669-7247

Proje Numarası 201319004
Yayımlanma Tarihi 15 Şubat 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 7 Sayı: 1

Kaynak Göster

APA Atiz, Ö. F., Konukseven, C., Öğütcü, S., Alçay, S. (2022). Comparative analysis of the performance of Multi-GNSS RTK: A case study in Turkey. International Journal of Engineering and Geosciences, 7(1), 67-80. https://doi.org/10.26833/ijeg.878236
AMA Atiz ÖF, Konukseven C, Öğütcü S, Alçay S. Comparative analysis of the performance of Multi-GNSS RTK: A case study in Turkey. IJEG. Şubat 2022;7(1):67-80. doi:10.26833/ijeg.878236
Chicago Atiz, Ömer Faruk, Ceren Konukseven, Sermet Öğütcü, ve Salih Alçay. “Comparative Analysis of the Performance of Multi-GNSS RTK: A Case Study in Turkey”. International Journal of Engineering and Geosciences 7, sy. 1 (Şubat 2022): 67-80. https://doi.org/10.26833/ijeg.878236.
EndNote Atiz ÖF, Konukseven C, Öğütcü S, Alçay S (01 Şubat 2022) Comparative analysis of the performance of Multi-GNSS RTK: A case study in Turkey. International Journal of Engineering and Geosciences 7 1 67–80.
IEEE Ö. F. Atiz, C. Konukseven, S. Öğütcü, ve S. Alçay, “Comparative analysis of the performance of Multi-GNSS RTK: A case study in Turkey”, IJEG, c. 7, sy. 1, ss. 67–80, 2022, doi: 10.26833/ijeg.878236.
ISNAD Atiz, Ömer Faruk vd. “Comparative Analysis of the Performance of Multi-GNSS RTK: A Case Study in Turkey”. International Journal of Engineering and Geosciences 7/1 (Şubat 2022), 67-80. https://doi.org/10.26833/ijeg.878236.
JAMA Atiz ÖF, Konukseven C, Öğütcü S, Alçay S. Comparative analysis of the performance of Multi-GNSS RTK: A case study in Turkey. IJEG. 2022;7:67–80.
MLA Atiz, Ömer Faruk vd. “Comparative Analysis of the Performance of Multi-GNSS RTK: A Case Study in Turkey”. International Journal of Engineering and Geosciences, c. 7, sy. 1, 2022, ss. 67-80, doi:10.26833/ijeg.878236.
Vancouver Atiz ÖF, Konukseven C, Öğütcü S, Alçay S. Comparative analysis of the performance of Multi-GNSS RTK: A case study in Turkey. IJEG. 2022;7(1):67-80.