Editöre Mektup
BibTex RIS Kaynak Göster

The effects of electromagnetic fields to whole protein, myelin basic protein, neuron specific enolase profiles and nitric oxide levels in rat brains

Yıl 2012, Cilt: 59 Sayı: 3, 175 - 181, 01.09.2012
https://doi.org/10.1501/Vetfak_0000002522

Öz

The aim of the study was to investigate the effects of electromagnetic fields (EMF) to whole protein, neuron specific enolase (NSE), myelin basic protein (MBP) profiles and nitric oxide levels in rat brains. In addition, serum NSE was also determined. For this aim, 33 rats with 2-days-old age were divided into three groups. The rats in control group were kept in the normal conditions with no exposure of EMF. Group 2 and 3 were exposed to 900 and 1800MHz EMF respectively for 2 h/day for 90 days at the same time and everyday in the piecage restrainer. At the end of the exposure period, the brains of rats were excluded and splitted up to two parts (right and left), horizontally. The brain parts of same groups were mixed, homogenized and sonicated. The protein concentrations were equalized to 40 mg/ml with spectrophotometer. The protein profiles were determined for sizes and densities of bands with SDS-PAGE. NSE and MBP profiles were detected with western blot technique. Nitric oxide levels were determined by using ELISA test kit. The sizes of protein bands were detected as being same but the densities were found as variable into the groups for all parameters. The protein band, MBP and NSE densities of brains of rats were defined as increased in group 2, but decreased in group 3 when compared with control group. Also, there was no difference seen in right and left parts of brains in all groups. NSE in serum was determined to be higher in group 3 than the group 2 and control. Nitric oxide levels in the right and left brain parts were 224.09±20.32 µM/mL and 207.43±24.19 µM/mL in control group, 253.8±33.58 µM/mL and 336.9±24.47 µM/mL in group 2, 237.87±36.30 µM/mL and 281.53±36.75 µM/mL in group 3, respectively. The difference of nitric oxide levels among the groups was found as not significant (P>0.05). The results of this study may lighten the future and advance studies about the risks of the cellular and digital communication handsets against brain used by the general public

Kaynakça

  • Ammari M, Gamez C, Lecomte A, Sakly M, Abdelmelek H, De Seze R (2010): GFAP expression in the rat brain following sub-chronic exposure to a 900 MHz electromagnetic field signal. Int J Radiat Biol, 86, 67–75.
  • Aydin B, Akar A (2011): Effects of a 900-MHz Electromagnetic Field on Oxidative Stress Parameters in Rat Lymphoid Organs, Polymorphonuclear Leukocytes and Plasma. Arc Med Res, 42, 261–267.
  • Cohen SR. Guarnieri M (1976): Immunochemical measurement of myelin basic protein in developing rat brain: an index of myelin synthesis. Dev Biol, 49, 294– 299.
  • Foster KR, Glaser R (2007): Thermal mechanisms of interaction of radiofrequency energy with biological systems with relevance to exposure guidelines. Health Phys, 92, 609–620.
  • Garthwaite J, Boulton CL (1995): Nitric oxide signaling in the nervous system. Ann Rev Physiol, 57, 683–706.
  • Hartman BK, Agrawal HC, Kalmbach S, Shearer WT (1979): A comparative study of the immunohistochemical localization of basic protein to myelin and oligodendrocytes in rat and chicken brain. J Comp Neurol, 15, 273–290.
  • Hua Q, Zhu X, Li P, Tang H, Cai D, Xu Y, Jia X, Chen J, Shen Y (2008): Refined qing kai ling, traditional chinese medicinal preparation, reduces ıschemic stroke- ınduced ınfarct size and neurological deficits and ıncreases expression of endothelial nitric oxide synthase. Biol Pharm Bull, 31, 633–637.
  • Hyland GJ (2000): Physics and biology of mobile telephony. Lancet, 356, 1833–1836.
  • Ilhan A, Gurel A, Armutcu F, Kamisli S, Iraz M, Akyol O, Ozen S (2004): Ginkgo biloba prevents mobile phone- induced oxidative stress in rat brain. Clin Chim Acta, 340, 153–162.
  • Irmak MK, Fadillioğlu E, Güleç M, Erdoğan H, Yağmurca M, Akyol O (2002): Effects of electromagnetic radiation from a cellular telephone on the oxidant and antioxidant levels in rabbits. Cell Biochem Funct, 20, 279– 283.
  • Laemmli UK (1970): Cleavage of structural proteins during the assembly of the head of bacteriophage 274 T4. Nature, 227, 680–685.
  • Lai H, Singh NP (2004): Magnetic-field-induced DNA strand breaks in brain cells of the rat. Environ Health Perspect, 112, 687–94.
  • Li SD, Liu Y, Yang MH (2011): Effect of Bushenhuoxue Yin on cerebral levels of nitric oxide, tumor necrosis factor-α and interferon-γ in a mouse model of Parkinson disease. Nan Fang Yi Ke Da Xue Xue Bao, 31, 90–92.
  • Marangos PJ, Schmechel DE (1987): Neuron specific enolase, a clinically useful marker for neurons and neuroendocrine cells. Annu Rev Neurosci, 10, 269–295.
  • Mason RB, Pluta RM, Walbridge S, Wink DA, Oldfield EH, Boock RJ (2000): Production of reactive oxygen species after reperfusion in vitro and in vivo: protective effect of nitric oxide. J Neurosurg, 93, 99–107.
  • Nazar ASMI, Paul A, Dutta SK (1987): Frequency- dependent alteration of enolase activity by ELF fields Neurons and Neuroendocrine Cells. Annu Rev Neurosci, 10, 269–295.
  • Otto M, Mühlendahl KE (2007): Electromagnetic fields (EMF): Do they play a role in children’s environmental health (CEH)? Int J Hyg Environ Health, 210, 635–644.
  • Panagiotakos G, Alshamy G, Chan B, Abrams R, Greenberg E, Saxena A, Bradbury M, Edgar M, Gutin P, Tabar V (2007): Long-term impact of radiation on the stem cell and oligodendrocyte precursors in the brain. LoS One, 11, 2(7):e588.
  • Repacholi MH (2001): Health risks from the use of mobile phones. Toxicol Lett, 120, 323– 331.
  • Santos RM, Lourenço CF, Gerhardt GA, Cadenas E, Laranjinha J, Barbosa RM (2011): Evidence for a pathway that facilitates nitric oxide diffusion in the brain. Neurochem Int, 59(1), 90–96.
  • SAS (2008): SAS Ver. 9.1.3, SAS Campus Drive Cary, NC 27513 USA.
  • Schmechel D, Marangos PJ, Zis AP, Brightman M, Goodwin FK (1978): Brain endolases as specific markers of neuronal and glial cells. Sci, 20, 199(4326), 313–315.
  • Suzuki R, Yamaguchi T, Kirino T, Orzi F, Klatzo I (1983) The effects of 5-minute ischemia in gerbils, I: blood brain barrier, cerebral blood flow, and local cerebral glucose utilization changes. Acta Neuropathol (Berl), 60, 207–216.
  • Swamy M, Yusof WR, Sirajudeen KN, Mustapha Z, Govindasamy C (2011): Decreased glutamine synthetase, increased citrulline–nitric oxide cycle activities, and oxidative stress in different regions of brain in epilepsy rat model. J Physiol Biochem, 67, 105–113.
  • Szabo C (1996): Physiological and pathophysiological roles of nitric oxide in the central nervous system. Brain Res Bull, 41 (3), 131–141.
  • Yuan H, Gerencser AA, Liot G, Lipton SA, Ellisman M, Perkins GA, Bossy-Wetzel E (2007): Mitochondrial fission is an upstream and required event for bax foci formation in response to nitric oxide in cortical neurons. Cell Death Differ, 14, 462–471.

Elektromanyetik alanın rat beyin total protein, myelin basic protein ve neuron spesifik enolazprofilleri ile nitric oksit düzeylerine etkisi

Yıl 2012, Cilt: 59 Sayı: 3, 175 - 181, 01.09.2012
https://doi.org/10.1501/Vetfak_0000002522

Öz

Bu çalışma elektromanyetik alan (EMF) uygulanmış olan ratların beyin bölgelerindeki total protein, myelin basic protein (MBP) ve neuron spesifik enolaz (NSE) profilleri ile nitrik oksit düzeylerinin karşılaştırmalı olarak incelenmesi amacıyla gerçekleştirilmiştir. Bu amaçla 33 adet 2 günlük rat kullanılmış ve ratlar 3 grup olarak bölünmüştür. Kontrol grubundaki ratlara EMF uygulanmamıştır. Grup 2’de bulunan ratlara 900 ve Grup 3’tekilere de 1800MHz EMF uygulanmıştır. Deney süresi sonunda beyin bölgeleri dikey olarak sağ ve sol parçalara ayrılmıştır. Aynı grupta bulunan ratlara ait sağ ve sol beyin parçaları ayrı ayrı karıştırılmıştır. Bu karışımlar homojenize edildikten sonra sonike edilmişlerdir. Protein konsantrasyonları spektrofotometrik olarak 40 mg/ml olmak üzere eşitlenmiştir. Total protein profilleri bant büyüklükleri ve yoğunlukları yönünden SDS-PAGE yöntemiyle incelenmiştir. NSE ve MBP profilleri western blot tekniği ile belirlenmiştir. Nitrik oksit (NO) düzeyleri ise ELISA ile ölçülmüştür. Protein profilinin tüm gruplarda bant büyüklükleri yönünden aynı olduğu fakat yoğunluklarının değişkenlik gösterdiği görülmüştür. Protein bant, MBP ve NSE yoğunlukları kontrol grubu ile karşılaştırıldığı zaman grup 2’de artmış ve grup 3’te ise azalmış olduğu görülmüştür. NSE profili grup 3’te diğerlerine göre daha fazla bulunmuştur. NO düzeyleri de sırasıyla sağ ve sol beyin bölgelerinde kontrol grubunda 224.09±20.32 µM/mL ve 207.43±24.19 µM/mL, grup 2’de 253.8±33.58 µM/mL ve 336.9±24.47 µM/mL, grup 3’te237.87±36.30 µM/mL ve 281.53±36.75 µM/mL olarak hesaplanmıştır. Bu sonuçların, halk arasında sıklıkla kullanılmakta olan ve EMF yayan iletişim araçlarının beyin üzerine etkileri hakkında gelecekte yapılacak olan çalışmalara ışık tutacağı düşünülmektedir

Kaynakça

  • Ammari M, Gamez C, Lecomte A, Sakly M, Abdelmelek H, De Seze R (2010): GFAP expression in the rat brain following sub-chronic exposure to a 900 MHz electromagnetic field signal. Int J Radiat Biol, 86, 67–75.
  • Aydin B, Akar A (2011): Effects of a 900-MHz Electromagnetic Field on Oxidative Stress Parameters in Rat Lymphoid Organs, Polymorphonuclear Leukocytes and Plasma. Arc Med Res, 42, 261–267.
  • Cohen SR. Guarnieri M (1976): Immunochemical measurement of myelin basic protein in developing rat brain: an index of myelin synthesis. Dev Biol, 49, 294– 299.
  • Foster KR, Glaser R (2007): Thermal mechanisms of interaction of radiofrequency energy with biological systems with relevance to exposure guidelines. Health Phys, 92, 609–620.
  • Garthwaite J, Boulton CL (1995): Nitric oxide signaling in the nervous system. Ann Rev Physiol, 57, 683–706.
  • Hartman BK, Agrawal HC, Kalmbach S, Shearer WT (1979): A comparative study of the immunohistochemical localization of basic protein to myelin and oligodendrocytes in rat and chicken brain. J Comp Neurol, 15, 273–290.
  • Hua Q, Zhu X, Li P, Tang H, Cai D, Xu Y, Jia X, Chen J, Shen Y (2008): Refined qing kai ling, traditional chinese medicinal preparation, reduces ıschemic stroke- ınduced ınfarct size and neurological deficits and ıncreases expression of endothelial nitric oxide synthase. Biol Pharm Bull, 31, 633–637.
  • Hyland GJ (2000): Physics and biology of mobile telephony. Lancet, 356, 1833–1836.
  • Ilhan A, Gurel A, Armutcu F, Kamisli S, Iraz M, Akyol O, Ozen S (2004): Ginkgo biloba prevents mobile phone- induced oxidative stress in rat brain. Clin Chim Acta, 340, 153–162.
  • Irmak MK, Fadillioğlu E, Güleç M, Erdoğan H, Yağmurca M, Akyol O (2002): Effects of electromagnetic radiation from a cellular telephone on the oxidant and antioxidant levels in rabbits. Cell Biochem Funct, 20, 279– 283.
  • Laemmli UK (1970): Cleavage of structural proteins during the assembly of the head of bacteriophage 274 T4. Nature, 227, 680–685.
  • Lai H, Singh NP (2004): Magnetic-field-induced DNA strand breaks in brain cells of the rat. Environ Health Perspect, 112, 687–94.
  • Li SD, Liu Y, Yang MH (2011): Effect of Bushenhuoxue Yin on cerebral levels of nitric oxide, tumor necrosis factor-α and interferon-γ in a mouse model of Parkinson disease. Nan Fang Yi Ke Da Xue Xue Bao, 31, 90–92.
  • Marangos PJ, Schmechel DE (1987): Neuron specific enolase, a clinically useful marker for neurons and neuroendocrine cells. Annu Rev Neurosci, 10, 269–295.
  • Mason RB, Pluta RM, Walbridge S, Wink DA, Oldfield EH, Boock RJ (2000): Production of reactive oxygen species after reperfusion in vitro and in vivo: protective effect of nitric oxide. J Neurosurg, 93, 99–107.
  • Nazar ASMI, Paul A, Dutta SK (1987): Frequency- dependent alteration of enolase activity by ELF fields Neurons and Neuroendocrine Cells. Annu Rev Neurosci, 10, 269–295.
  • Otto M, Mühlendahl KE (2007): Electromagnetic fields (EMF): Do they play a role in children’s environmental health (CEH)? Int J Hyg Environ Health, 210, 635–644.
  • Panagiotakos G, Alshamy G, Chan B, Abrams R, Greenberg E, Saxena A, Bradbury M, Edgar M, Gutin P, Tabar V (2007): Long-term impact of radiation on the stem cell and oligodendrocyte precursors in the brain. LoS One, 11, 2(7):e588.
  • Repacholi MH (2001): Health risks from the use of mobile phones. Toxicol Lett, 120, 323– 331.
  • Santos RM, Lourenço CF, Gerhardt GA, Cadenas E, Laranjinha J, Barbosa RM (2011): Evidence for a pathway that facilitates nitric oxide diffusion in the brain. Neurochem Int, 59(1), 90–96.
  • SAS (2008): SAS Ver. 9.1.3, SAS Campus Drive Cary, NC 27513 USA.
  • Schmechel D, Marangos PJ, Zis AP, Brightman M, Goodwin FK (1978): Brain endolases as specific markers of neuronal and glial cells. Sci, 20, 199(4326), 313–315.
  • Suzuki R, Yamaguchi T, Kirino T, Orzi F, Klatzo I (1983) The effects of 5-minute ischemia in gerbils, I: blood brain barrier, cerebral blood flow, and local cerebral glucose utilization changes. Acta Neuropathol (Berl), 60, 207–216.
  • Swamy M, Yusof WR, Sirajudeen KN, Mustapha Z, Govindasamy C (2011): Decreased glutamine synthetase, increased citrulline–nitric oxide cycle activities, and oxidative stress in different regions of brain in epilepsy rat model. J Physiol Biochem, 67, 105–113.
  • Szabo C (1996): Physiological and pathophysiological roles of nitric oxide in the central nervous system. Brain Res Bull, 41 (3), 131–141.
  • Yuan H, Gerencser AA, Liot G, Lipton SA, Ellisman M, Perkins GA, Bossy-Wetzel E (2007): Mitochondrial fission is an upstream and required event for bax foci formation in response to nitric oxide in cortical neurons. Cell Death Differ, 14, 462–471.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Veteriner Cerrahi
Diğer ID JA53PH43DF
Bölüm Araştırma Makalesi
Yazarlar

Gülay Çiftçi

Hatice Özlem Nisbet

Ayşegül Akar

Ertuğrul Sunan

Yayımlanma Tarihi 1 Eylül 2012
Yayımlandığı Sayı Yıl 2012Cilt: 59 Sayı: 3

Kaynak Göster

APA Çiftçi, G., Nisbet, H. Ö., Akar, A., Sunan, E. (2012). The effects of electromagnetic fields to whole protein, myelin basic protein, neuron specific enolase profiles and nitric oxide levels in rat brains. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 59(3), 175-181. https://doi.org/10.1501/Vetfak_0000002522
AMA Çiftçi G, Nisbet HÖ, Akar A, Sunan E. The effects of electromagnetic fields to whole protein, myelin basic protein, neuron specific enolase profiles and nitric oxide levels in rat brains. Ankara Univ Vet Fak Derg. Eylül 2012;59(3):175-181. doi:10.1501/Vetfak_0000002522
Chicago Çiftçi, Gülay, Hatice Özlem Nisbet, Ayşegül Akar, ve Ertuğrul Sunan. “The Effects of Electromagnetic Fields to Whole Protein, Myelin Basic Protein, Neuron Specific Enolase Profiles and Nitric Oxide Levels in Rat Brains”. Ankara Üniversitesi Veteriner Fakültesi Dergisi 59, sy. 3 (Eylül 2012): 175-81. https://doi.org/10.1501/Vetfak_0000002522.
EndNote Çiftçi G, Nisbet HÖ, Akar A, Sunan E (01 Eylül 2012) The effects of electromagnetic fields to whole protein, myelin basic protein, neuron specific enolase profiles and nitric oxide levels in rat brains. Ankara Üniversitesi Veteriner Fakültesi Dergisi 59 3 175–181.
IEEE G. Çiftçi, H. Ö. Nisbet, A. Akar, ve E. Sunan, “The effects of electromagnetic fields to whole protein, myelin basic protein, neuron specific enolase profiles and nitric oxide levels in rat brains”, Ankara Univ Vet Fak Derg, c. 59, sy. 3, ss. 175–181, 2012, doi: 10.1501/Vetfak_0000002522.
ISNAD Çiftçi, Gülay vd. “The Effects of Electromagnetic Fields to Whole Protein, Myelin Basic Protein, Neuron Specific Enolase Profiles and Nitric Oxide Levels in Rat Brains”. Ankara Üniversitesi Veteriner Fakültesi Dergisi 59/3 (Eylül 2012), 175-181. https://doi.org/10.1501/Vetfak_0000002522.
JAMA Çiftçi G, Nisbet HÖ, Akar A, Sunan E. The effects of electromagnetic fields to whole protein, myelin basic protein, neuron specific enolase profiles and nitric oxide levels in rat brains. Ankara Univ Vet Fak Derg. 2012;59:175–181.
MLA Çiftçi, Gülay vd. “The Effects of Electromagnetic Fields to Whole Protein, Myelin Basic Protein, Neuron Specific Enolase Profiles and Nitric Oxide Levels in Rat Brains”. Ankara Üniversitesi Veteriner Fakültesi Dergisi, c. 59, sy. 3, 2012, ss. 175-81, doi:10.1501/Vetfak_0000002522.
Vancouver Çiftçi G, Nisbet HÖ, Akar A, Sunan E. The effects of electromagnetic fields to whole protein, myelin basic protein, neuron specific enolase profiles and nitric oxide levels in rat brains. Ankara Univ Vet Fak Derg. 2012;59(3):175-81.