Araştırma Makalesi
PDF Mendeley EndNote BibTex Kaynak Göster

Yıl 2022, Cilt , Sayı , 31.12.2022
https://doi.org/10.33988/auvfd.911244

Öz

Kaynakça

  • 1. Adamczak A, Ożarowski M, Karpiński TM (2020): Curcumin, a Natural Antimicrobial Agent with Strain-Specific Activity. Pharmaceuticals, 13, 153.
  • 2. Akram M, Shahab-Uddin AA, Usmanghani K, et al (2010): Curcuma longa and curcumin: a review article. Rom J Biol Plant Biol, 55, 65-70.
  • 3. Arslan MB, Şahin HT (2016): Unutulan Bir Orman Ürünü Kaynağı: Anadolu Sığla Ağacı (Liquidambar Orientalis Miller). Bartın Orman Fakültesi Dergisi, 18, 103-117.
  • 4. Bintsis T (2017): Foodborne pathogens. AIMS Microbiol, 3, 529-563.
  • 5. Božik M, Hovorková P, Klouček P (2018): Antibacterial Effect of Carvacrol and Coconut Oil on Selected Pathogenic Bacteria. Scientia Agriculturae Bohemica, 49, 46-52.
  • 6. Cabarkapa I, Colovic R, Duragic O, et al (2019): Anti-biofilm activities of essential oils rich in carvacrol and thymol against Salmonella Enteritidis. Biofouling, 35, 361-375.
  • 7. Chouhan S, Sharma K, Guleria S (2017): Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives. Medicines, 4, 58.
  • 8. Clinical and Laboratory Sandards Institute (2018): Performance Standards for Antimicrobial Susceptibility Testing. 26th ed Pennsylvania, USA M100S.
  • 9. Demirtas A, Ozturk H, Sudagidan M, et al (2019): Effects of commercial aldehydes from green leaf volatiles (green odour) on rumen microbial population and fermentation profile in an artificial rumen (Rusitec). Anaerobe, 55, 83-92.
  • 10. Eng S-K, Pusparajah P, Ab Mutalib N-S, et al (2015): Salmonella: a review on pathogenesis, epidemiology and antibiotic resistance. Frontiers in Life Science, 8, 284-293.
  • 11. Engel JB, Heckler C, Tondo EC, et al (2017): Antimicrobial activity of free and liposome-encapsulated thymol and carvacrol against Salmonella and Staphylococcus aureus adhered to stainless steel. Int J Food Microbiol, 252, 18-23.
  • 12. Erdem Y, Gisho H, Ekrem S, et al (1993): Traditional medicine in Turkey IV. Folk medicine in the Mediterranean subdivision. J Ethnopharmacol, 39, 31-38.
  • 13. Gong J, Xu M, Zhu C, et al (2013): Antimicrobial resistance, presence of integrons and biofilm formation of Salmonella Pullorum isolates from Eastern China (1962-2010). Avian Pathol, 42, 290-294.
  • 14. Gunes H, Gulen D, Mutlu R, et al (2016): Antibacterial effects of curcumin: An in vitro minimum inhibitory concentration study. Toxicol Ind Health, 32, 246-250.
  • 15. Gupta PD, Birdi TJ (2017): Development of botanicals to combat antibiotic resistance. J Ayurveda Integr Med, 8, 266-275.
  • 16. Gurbuz I, Yesilada E, Demirci B, et al (2013): Characterization of volatiles and anti-ulcerogenic effect of Turkish sweetgum balsam (Styrax liquidus). J Ethnopharmacol, 148, 332-336.
  • 17. Honda G, Yeşilada E, Tabata M, et al (1996): Traditional medicine in Turkey VI. Folk medicine in West Anatolia: Afyon, Kütahya, Denizli, Muğla, Aydin provinces. J Ethnopharmacol, 53, 75-87.
  • 18. Howard ZR, O'Bryan CA, Crandall PG, et al (2012): Salmonella Enteritidis in shell eggs: Current issues and prospects for control. Food Res Int, 45, 755-764.
  • 19. Iramiot JS, Kajumbula H, Bazira J, et al (2020): Antimicrobial resistance at the human-animal interface in the Pastoralist Communities of Kasese District, South Western Uganda. Sci Rep, 10, 14737.
  • 20. İstek A (1995): Sığla Yağı (Storax)’nın Kimyasal Bileşenleri. Master Thesis. Graduate Institute of Natural and Applied Sciences, Trabzon.
  • 21. Kang MS, Oh JS, Kang IC, et al (2008): Inhibitory effect of methyl gallate and gallic acid on oral bacteria. J Microbiol, 46, 744-750.
  • 22. Karagoz A, Tutun H, Altintas L, et al (2020): Molecular typing of drug-resistant Mycobacterium tuberculosis strains from Turkey. J Glob Antimicrob Resist, 23, 130-134.
  • 23. Keyvan E, Tutun H (2019): Effects of carvacrol on Staphylococcus aureus isolated from bulk tank milk. Med Weter, 75, 238-241.
  • 24. Khameneh B, Iranshahy M, Soheili V, et al (2019): Review on plant antimicrobials: a mechanistic viewpoint. Antimicrobial Resistance & Infection Control, 8, 118.
  • 25. Kharat M, Du Z, Zhang G, et al (2017): Physical and Chemical Stability of Curcumin in Aqueous Solutions and Emulsions: Impact of pH, Temperature, and Molecular Environment. J Agric Food Chem, 65, 1525-1532.
  • 26. Kocaadam B, Sanlier N (2017): Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit Rev Food Sci Nutr, 57, 2889-2895.
  • 27. Kuang X, Hao H, Dai M, et al (2015): Serotypes and antimicrobial susceptibility of Salmonella spp. isolated from farm animals in China. Front Microbiol, 6, 602-602.
  • 28. Marathe SA, Ray S, Chakravortty D (2010): Curcumin Increases the Pathogenicity of Salmonella enterica Serovar Typhimurium in Murine Model. PLoS One, 5, e11511.
  • 29. Marchese A, Orhan IE, Daglia M, et al (2016): Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem, 210, 402-414.
  • 30. Nathan C, Cars O (2014): Antibiotic resistance--problems, progress, and prospects. N Engl J Med, 371, 1761-1763.
  • 31. Özdemir H, Keyvan E (2016): Isolation and characterisation of Staphylococcus aureus strains isolated from beef, sheep and chicken meat. Ankara Üniv Vet Fak Derg, 63, 333-338.
  • 32. Palombo EA (2011): Traditional Medicinal Plant Extracts and Natural Products with Activity against Oral Bacteria: Potential Application in the Prevention and Treatment of Oral Diseases. Evid Based Complement Alternat Med, 2011, 680354.
  • 33. Porter JA, Morey A, Monu EA (2020): Antimicrobial efficacy of white mustard essential oil and carvacrol against Salmonella in refrigerated ground chicken. Poult Sci, 99, 5091-5095.
  • 34. Rudramurthy GR, Swamy MK, Sinniah UR, et al (2016): Nanoparticles: Alternatives Against Drug-Resistant Pathogenic Microbes. Molecules, 21, 836.
  • 35. Sagdic O, Ozkan G, Ozcan M, et al (2005): A study on inhibitory effects of Sigla tree (Liquidambar orientalis Mill. var. orientalis) storax against several bacteria. Phytother Res, 19, 549-551.
  • 36. Sandikci Altunatmaz S, Yilmaz Aksu F, Issa G (2016): Antimicrobial effects of curcumin against L. monocytogenes, S. aureus, S. Typhimurium and E. coli O157: H7 pathogens in minced meat. Vet Med (Praha), 61, 256-262.
  • 37. Silva J, Abebe W, Sousa SM, et al (2003): Analgesic and anti-inflammatory effects of essential oils of Eucalyptus. J Ethnopharmacol, 89, 277-283.
  • 38. Silva ACD, Santos PDF, Palazzi NC, et al (2017): Production and characterization of curcumin microcrystals and evaluation of the antimicrobial and sensory aspects in minimally processed carrots. Food Funct, 8, 1851-1858.
  • 39. Stanić Z (2017): Curcumin, a Compound from Natural Sources, a True Scientific Challenge - A Review. Plant Foods Hum Nutr, 72, 1-12.
  • 40. Tariq S, Wani S, Rasool W, et al (2019): A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microb Pathog, 134, 103580.
  • 41. Tutun H, Koç N, Kart A (2018): Plant essential oils used against some bee diseases. Turkish Journal of Agriculture-Food Science and Technology, 6, 34-45.
  • 42. Tyagi P, Singh M, Kumari H, et al (2015): Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PLoS One, 10, e0121313.
  • 43. Ugurlu E, Secmen O (2008): Medicinal plants popularly used in the villages of Yunt Mountain(Manisa-Turkey). Fitoterapia, 79, 126-131.
  • 44. Ultee A, Kets EP, Smid EJ (1999): Mechanisms of action of carvacrol on the food-borne pathogen Bacillus cereus. Appl Environ Microbiol, 65, 4606-4610.
  • 45. Ultee A, Bennik MHJ, Moezelaar R (2002): The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl Environ Microbiol, 68, 1561-1568.
  • 46. Wells J, Butterfield J (1999): Incidence of Salmonella on fresh fruits and vegetables affected by fungal rots or physical injury. Plant Dis, 83, 722-726.
  • 47. White PL, Naugle AL, Jackson CR, et al (2007): Salmonella Enteritidis in meat, poultry, and pasteurized egg products regulated by the US Food Safety and Inspection Service, 1998 through 2003. J Food Prot, 70 , 582-591.
  • 48. World-Health-Organization (2021): Food safety. Available at https://www.who.int/news-room/fact-sheets/detail/food-safety. (Accessed January 10, 2021).

Determination of Time Dependent Antibacterial Activities of Curcumin, Carvacrol and Styrax Liquidus on Salmonella Enteritidis

Yıl 2022, Cilt , Sayı , 31.12.2022
https://doi.org/10.33988/auvfd.911244

Öz

Salmonella Enteritidis is amongst the most common causes of foodborne salmonellosis. Multi-drug resistant Salmonella strains has been associated with treatment failures. Plant-derived phytochemicals may be an alternative to antibiotics in combating these bacteria. The purpose of this study is to investigate the antibacterial activity of curcumin, carvacrol and styrax liquidus on S. Enteritidis and S. Enteritidis PT4. Minimum inhibitory concentration (MIC) values of these substances were detected at 1.5, 3, 7.5 and 24 h by broth microdilution method to evaluate their time-dependent antibacterial activities. The findings of the present study showed that MIC values of carvacrol, curcumin styrax liquids for both S. Enteritidis and S. Enteritidis PT4 were 125 µg/ml, 132.5 µg/ml, 31.3 mg/ml for 24 h, respectively. Also, a time-dependent change was observed in the MIC values of curcumin. Carvacrol, curcumin and styrax liquidus can be used to provide antimicrobial effect on S. Enteritidis and S. Enteritidis PT4 in food applications, taking into account the MIC values and contact times.

Kaynakça

  • 1. Adamczak A, Ożarowski M, Karpiński TM (2020): Curcumin, a Natural Antimicrobial Agent with Strain-Specific Activity. Pharmaceuticals, 13, 153.
  • 2. Akram M, Shahab-Uddin AA, Usmanghani K, et al (2010): Curcuma longa and curcumin: a review article. Rom J Biol Plant Biol, 55, 65-70.
  • 3. Arslan MB, Şahin HT (2016): Unutulan Bir Orman Ürünü Kaynağı: Anadolu Sığla Ağacı (Liquidambar Orientalis Miller). Bartın Orman Fakültesi Dergisi, 18, 103-117.
  • 4. Bintsis T (2017): Foodborne pathogens. AIMS Microbiol, 3, 529-563.
  • 5. Božik M, Hovorková P, Klouček P (2018): Antibacterial Effect of Carvacrol and Coconut Oil on Selected Pathogenic Bacteria. Scientia Agriculturae Bohemica, 49, 46-52.
  • 6. Cabarkapa I, Colovic R, Duragic O, et al (2019): Anti-biofilm activities of essential oils rich in carvacrol and thymol against Salmonella Enteritidis. Biofouling, 35, 361-375.
  • 7. Chouhan S, Sharma K, Guleria S (2017): Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives. Medicines, 4, 58.
  • 8. Clinical and Laboratory Sandards Institute (2018): Performance Standards for Antimicrobial Susceptibility Testing. 26th ed Pennsylvania, USA M100S.
  • 9. Demirtas A, Ozturk H, Sudagidan M, et al (2019): Effects of commercial aldehydes from green leaf volatiles (green odour) on rumen microbial population and fermentation profile in an artificial rumen (Rusitec). Anaerobe, 55, 83-92.
  • 10. Eng S-K, Pusparajah P, Ab Mutalib N-S, et al (2015): Salmonella: a review on pathogenesis, epidemiology and antibiotic resistance. Frontiers in Life Science, 8, 284-293.
  • 11. Engel JB, Heckler C, Tondo EC, et al (2017): Antimicrobial activity of free and liposome-encapsulated thymol and carvacrol against Salmonella and Staphylococcus aureus adhered to stainless steel. Int J Food Microbiol, 252, 18-23.
  • 12. Erdem Y, Gisho H, Ekrem S, et al (1993): Traditional medicine in Turkey IV. Folk medicine in the Mediterranean subdivision. J Ethnopharmacol, 39, 31-38.
  • 13. Gong J, Xu M, Zhu C, et al (2013): Antimicrobial resistance, presence of integrons and biofilm formation of Salmonella Pullorum isolates from Eastern China (1962-2010). Avian Pathol, 42, 290-294.
  • 14. Gunes H, Gulen D, Mutlu R, et al (2016): Antibacterial effects of curcumin: An in vitro minimum inhibitory concentration study. Toxicol Ind Health, 32, 246-250.
  • 15. Gupta PD, Birdi TJ (2017): Development of botanicals to combat antibiotic resistance. J Ayurveda Integr Med, 8, 266-275.
  • 16. Gurbuz I, Yesilada E, Demirci B, et al (2013): Characterization of volatiles and anti-ulcerogenic effect of Turkish sweetgum balsam (Styrax liquidus). J Ethnopharmacol, 148, 332-336.
  • 17. Honda G, Yeşilada E, Tabata M, et al (1996): Traditional medicine in Turkey VI. Folk medicine in West Anatolia: Afyon, Kütahya, Denizli, Muğla, Aydin provinces. J Ethnopharmacol, 53, 75-87.
  • 18. Howard ZR, O'Bryan CA, Crandall PG, et al (2012): Salmonella Enteritidis in shell eggs: Current issues and prospects for control. Food Res Int, 45, 755-764.
  • 19. Iramiot JS, Kajumbula H, Bazira J, et al (2020): Antimicrobial resistance at the human-animal interface in the Pastoralist Communities of Kasese District, South Western Uganda. Sci Rep, 10, 14737.
  • 20. İstek A (1995): Sığla Yağı (Storax)’nın Kimyasal Bileşenleri. Master Thesis. Graduate Institute of Natural and Applied Sciences, Trabzon.
  • 21. Kang MS, Oh JS, Kang IC, et al (2008): Inhibitory effect of methyl gallate and gallic acid on oral bacteria. J Microbiol, 46, 744-750.
  • 22. Karagoz A, Tutun H, Altintas L, et al (2020): Molecular typing of drug-resistant Mycobacterium tuberculosis strains from Turkey. J Glob Antimicrob Resist, 23, 130-134.
  • 23. Keyvan E, Tutun H (2019): Effects of carvacrol on Staphylococcus aureus isolated from bulk tank milk. Med Weter, 75, 238-241.
  • 24. Khameneh B, Iranshahy M, Soheili V, et al (2019): Review on plant antimicrobials: a mechanistic viewpoint. Antimicrobial Resistance & Infection Control, 8, 118.
  • 25. Kharat M, Du Z, Zhang G, et al (2017): Physical and Chemical Stability of Curcumin in Aqueous Solutions and Emulsions: Impact of pH, Temperature, and Molecular Environment. J Agric Food Chem, 65, 1525-1532.
  • 26. Kocaadam B, Sanlier N (2017): Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit Rev Food Sci Nutr, 57, 2889-2895.
  • 27. Kuang X, Hao H, Dai M, et al (2015): Serotypes and antimicrobial susceptibility of Salmonella spp. isolated from farm animals in China. Front Microbiol, 6, 602-602.
  • 28. Marathe SA, Ray S, Chakravortty D (2010): Curcumin Increases the Pathogenicity of Salmonella enterica Serovar Typhimurium in Murine Model. PLoS One, 5, e11511.
  • 29. Marchese A, Orhan IE, Daglia M, et al (2016): Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem, 210, 402-414.
  • 30. Nathan C, Cars O (2014): Antibiotic resistance--problems, progress, and prospects. N Engl J Med, 371, 1761-1763.
  • 31. Özdemir H, Keyvan E (2016): Isolation and characterisation of Staphylococcus aureus strains isolated from beef, sheep and chicken meat. Ankara Üniv Vet Fak Derg, 63, 333-338.
  • 32. Palombo EA (2011): Traditional Medicinal Plant Extracts and Natural Products with Activity against Oral Bacteria: Potential Application in the Prevention and Treatment of Oral Diseases. Evid Based Complement Alternat Med, 2011, 680354.
  • 33. Porter JA, Morey A, Monu EA (2020): Antimicrobial efficacy of white mustard essential oil and carvacrol against Salmonella in refrigerated ground chicken. Poult Sci, 99, 5091-5095.
  • 34. Rudramurthy GR, Swamy MK, Sinniah UR, et al (2016): Nanoparticles: Alternatives Against Drug-Resistant Pathogenic Microbes. Molecules, 21, 836.
  • 35. Sagdic O, Ozkan G, Ozcan M, et al (2005): A study on inhibitory effects of Sigla tree (Liquidambar orientalis Mill. var. orientalis) storax against several bacteria. Phytother Res, 19, 549-551.
  • 36. Sandikci Altunatmaz S, Yilmaz Aksu F, Issa G (2016): Antimicrobial effects of curcumin against L. monocytogenes, S. aureus, S. Typhimurium and E. coli O157: H7 pathogens in minced meat. Vet Med (Praha), 61, 256-262.
  • 37. Silva J, Abebe W, Sousa SM, et al (2003): Analgesic and anti-inflammatory effects of essential oils of Eucalyptus. J Ethnopharmacol, 89, 277-283.
  • 38. Silva ACD, Santos PDF, Palazzi NC, et al (2017): Production and characterization of curcumin microcrystals and evaluation of the antimicrobial and sensory aspects in minimally processed carrots. Food Funct, 8, 1851-1858.
  • 39. Stanić Z (2017): Curcumin, a Compound from Natural Sources, a True Scientific Challenge - A Review. Plant Foods Hum Nutr, 72, 1-12.
  • 40. Tariq S, Wani S, Rasool W, et al (2019): A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microb Pathog, 134, 103580.
  • 41. Tutun H, Koç N, Kart A (2018): Plant essential oils used against some bee diseases. Turkish Journal of Agriculture-Food Science and Technology, 6, 34-45.
  • 42. Tyagi P, Singh M, Kumari H, et al (2015): Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PLoS One, 10, e0121313.
  • 43. Ugurlu E, Secmen O (2008): Medicinal plants popularly used in the villages of Yunt Mountain(Manisa-Turkey). Fitoterapia, 79, 126-131.
  • 44. Ultee A, Kets EP, Smid EJ (1999): Mechanisms of action of carvacrol on the food-borne pathogen Bacillus cereus. Appl Environ Microbiol, 65, 4606-4610.
  • 45. Ultee A, Bennik MHJ, Moezelaar R (2002): The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl Environ Microbiol, 68, 1561-1568.
  • 46. Wells J, Butterfield J (1999): Incidence of Salmonella on fresh fruits and vegetables affected by fungal rots or physical injury. Plant Dis, 83, 722-726.
  • 47. White PL, Naugle AL, Jackson CR, et al (2007): Salmonella Enteritidis in meat, poultry, and pasteurized egg products regulated by the US Food Safety and Inspection Service, 1998 through 2003. J Food Prot, 70 , 582-591.
  • 48. World-Health-Organization (2021): Food safety. Available at https://www.who.int/news-room/fact-sheets/detail/food-safety. (Accessed January 10, 2021).

Ayrıntılar

Birincil Dil İngilizce
Konular Veteriner Hekimlik
Bölüm Araştırma Makalesi
Yazarlar

Erhan KEYVAN (Sorumlu Yazar)
MEHMET AKİF ERSOY ÜNİVERSİTESİ
0000-0002-2981-437X
Türkiye


Hidayet TUTUN
BURDUR MEHMET AKİF ERSOY ÜNİVERSİTESİ
0000-0001-9512-8637
Türkiye


Hatice Ahu KAHRAMAN
BURDUR MEHMET AKİF ERSOY ÜNİVERSİTESİ
0000-0001-6600-239X
Türkiye


Erdi ŞEN
BURDUR MEHMET AKİF ERSOY UNIVERSITY
0000-0002-5140-3833
Türkiye


Ahu DEMİRTAŞ
BURDUR MEHMET AKİF ERSOY ÜNİVERSİTESİ
0000-0003-2942-6243
Türkiye


Soner DÖNMEZ
BURDUR MEHMET AKİF ERSOY ÜNİVERSİTESİ
0000-0003-0328-6481
Türkiye


Ali Özhan AKYÜZ
BURDUR MEHMET AKİF ERSOY ÜNİVERSİTESİ
0000-0001-9746-9873
Türkiye

Destekleyen Kurum TÜBİTAK
Proje Numarası 119O672
Teşekkür This work was supported by TUBITAK (The Scientific and Technological Research Council of Turkey) in the framework of the Career Development Program (3501) (grant number: 119O672).
Yayımlanma Tarihi 31 Aralık 2022
Yayınlandığı Sayı Yıl 2022, Cilt , Sayı

Kaynak Göster

Bibtex @araştırma makalesi { auvfd911244, journal = {Ankara Üniversitesi Veteriner Fakültesi Dergisi}, eissn = {1308-2817}, address = {}, publisher = {Ankara Üniversitesi}, year = {2022}, pages = { - }, doi = {10.33988/auvfd.911244}, title = {Determination of Time Dependent Antibacterial Activities of Curcumin, Carvacrol and Styrax Liquidus on Salmonella Enteritidis}, key = {cite}, author = {Keyvan, Erhan and Tutun, Hidayet and Kahraman, Hatice Ahu and Şen, Erdi and Demirtaş, Ahu and Dönmez, Soner and Akyüz, Ali Özhan} }
APA Keyvan, E. , Tutun, H. , Kahraman, H. A. , Şen, E. , Demirtaş, A. , Dönmez, S. & Akyüz, A. Ö. (2022). Determination of Time Dependent Antibacterial Activities of Curcumin, Carvacrol and Styrax Liquidus on Salmonella Enteritidis . Ankara Üniversitesi Veteriner Fakültesi Dergisi , , . DOI: 10.33988/auvfd.911244
MLA Keyvan, E. , Tutun, H. , Kahraman, H. A. , Şen, E. , Demirtaş, A. , Dönmez, S. , Akyüz, A. Ö. "Determination of Time Dependent Antibacterial Activities of Curcumin, Carvacrol and Styrax Liquidus on Salmonella Enteritidis" . Ankara Üniversitesi Veteriner Fakültesi Dergisi (2022 ): <http://vetjournal.ankara.edu.tr/tr/pub/issue/48904/911244>
Chicago Keyvan, E. , Tutun, H. , Kahraman, H. A. , Şen, E. , Demirtaş, A. , Dönmez, S. , Akyüz, A. Ö. "Determination of Time Dependent Antibacterial Activities of Curcumin, Carvacrol and Styrax Liquidus on Salmonella Enteritidis". Ankara Üniversitesi Veteriner Fakültesi Dergisi (2022 ):
RIS TY - JOUR T1 - Determination of Time Dependent Antibacterial Activities of Curcumin, Carvacrol and Styrax Liquidus on Salmonella Enteritidis AU - Erhan Keyvan , Hidayet Tutun , Hatice Ahu Kahraman , Erdi Şen , Ahu Demirtaş , Soner Dönmez , Ali Özhan Akyüz Y1 - 2022 PY - 2022 N1 - doi: 10.33988/auvfd.911244 DO - 10.33988/auvfd.911244 T2 - Ankara Üniversitesi Veteriner Fakültesi Dergisi JF - Journal JO - JOR SP - EP - VL - IS - SN - -1308-2817 M3 - doi: 10.33988/auvfd.911244 UR - https://doi.org/10.33988/auvfd.911244 Y2 - 2021 ER -
EndNote %0 Ankara Üniversitesi Veteriner Fakültesi Dergisi Determination of Time Dependent Antibacterial Activities of Curcumin, Carvacrol and Styrax Liquidus on Salmonella Enteritidis %A Erhan Keyvan , Hidayet Tutun , Hatice Ahu Kahraman , Erdi Şen , Ahu Demirtaş , Soner Dönmez , Ali Özhan Akyüz %T Determination of Time Dependent Antibacterial Activities of Curcumin, Carvacrol and Styrax Liquidus on Salmonella Enteritidis %D 2022 %J Ankara Üniversitesi Veteriner Fakültesi Dergisi %P -1308-2817 %V %N %R doi: 10.33988/auvfd.911244 %U 10.33988/auvfd.911244
ISNAD Keyvan, Erhan , Tutun, Hidayet , Kahraman, Hatice Ahu , Şen, Erdi , Demirtaş, Ahu , Dönmez, Soner , Akyüz, Ali Özhan . "Determination of Time Dependent Antibacterial Activities of Curcumin, Carvacrol and Styrax Liquidus on Salmonella Enteritidis". Ankara Üniversitesi Veteriner Fakültesi Dergisi / (Aralık 2022): - . https://doi.org/10.33988/auvfd.911244
AMA Keyvan E. , Tutun H. , Kahraman H. A. , Şen E. , Demirtaş A. , Dönmez S. , Akyüz A. Ö. Determination of Time Dependent Antibacterial Activities of Curcumin, Carvacrol and Styrax Liquidus on Salmonella Enteritidis. Ankara Univ Vet Fak Derg. 2022; -.
Vancouver Keyvan E. , Tutun H. , Kahraman H. A. , Şen E. , Demirtaş A. , Dönmez S. , Akyüz A. Ö. Determination of Time Dependent Antibacterial Activities of Curcumin, Carvacrol and Styrax Liquidus on Salmonella Enteritidis. Ankara Üniversitesi Veteriner Fakültesi Dergisi. 2022; -.
IEEE E. Keyvan , H. Tutun , H. A. Kahraman , E. Şen , A. Demirtaş , S. Dönmez ve A. Ö. Akyüz , "Determination of Time Dependent Antibacterial Activities of Curcumin, Carvacrol and Styrax Liquidus on Salmonella Enteritidis", Ankara Üniversitesi Veteriner Fakültesi Dergisi, Ara. 2022, doi:10.33988/auvfd.911244