Araştırma Makalesi
PDF Zotero Mendeley EndNote BibTex Kaynak Göster

Three-dimensional bone modeling of forelimb joints in New Zealand Rabbit: A Micro-Computed Tomography study

Yıl 2021, Cilt 68, Sayı 4, 355 - 363, 27.09.2021
https://doi.org/10.33988/auvfd.762615

Öz

In this study, it was aimed to obtain 3-dimensional (3D) digital and printed models of healthy forelimb joints using micro-computed tomography (µCT) technique in New Zealand Rabbit, which is frequently preferred in experimental orthopedic studies. Moreover, it was aimed to provide morphometric measurements on the shoulder and elbow joints over 3D digital models. A total of 14 adults (7 female, 7 male) New Zealand Rabbits were used in the study. After imaging the forelimbs with the µCT device, 3D digital and printed models were obtained. Biometric measurements of shoulder and elbow joints were performed over 3D digital models and the data obtained from female and male rabbits were evaluated statistically. The anatomical structure on the 3D joint models was very detailed due to the low section thickness and high detector quality. 3D printed models produced as a result of the 3D printing process were quite durable, odorless, and clean. No anatomical differences were observed between 3D printed models and 3D digital models. In this study, it is thought that the anatomical and morphometric data obtained from laboratory rabbits will contribute to scientists take part both in experimental orthopedic intervention and clinical anatomy education.

Kaynakça

  • Bakıcı C, Akgün RO, Oto Ç (2019): The applicability and efficiency of 3 dimensional printing models of hyoid bone in comparative veterinary anatomy education. Vet Hekim Der Derg, 90, 71-75.
  • Berco M, Rigali PH, Miner RM, et al (2009): Accuracy and reliability of linear cephalometric measurements from cone-beam computed tomography scans of a dry human skull. Am J Orthod Dentofac, 136, 1-9.
  • Bouxsein ML, Boyd SK, Christiansen BA, et al (2010): Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res, 25, 1468-1486.
  • Brazina D, Fojtik R, Rombova Z (2014): 3D visualization in teaching anatomy. Procedia Soc Behav Sci, 143, 367-371.
  • Estai M, Bunt S (2016): Best teaching practices in anatomy education: A critical review. Ann Anat, 208, 151-157.
  • Fasel JHD, Aguiar D, Kiss-Bodolay D, et al (2016): Adapting anatomy teaching to surgical trends: a combination of classical dissection, medical imaging, and 3D-printing technologies. Surg Radiol Anat, 38, 361-367.
  • Freitas EP, Noritomi PY, Silva JVL (2011): Use of Rapid Prototyping and 3D Reconstruction in Veterinary Medicine. In: ME Hoque (Ed), Advanced Applications of Rapid Prototyping Technology in Modern Engineering. InTech, China.
  • Gribel BF, Gribel MN, Frazao DC, et al (2011): Accuracy and reliability of craniometric measurements on lateral cephalometry and 3D measurements on CBCT scans. Angle Orthod, 81, 26-35.
  • Jamali AA, Deuel C, Perreira A, et al (2007): Linear and angular measurements of computer-generated models: Are they accurate, valid, and reliable? Comput Aided Surg, 12, 278-285.
  • Jiang Y, Zhao J, White DL, et al (2000): Micro CT and micro MR imaging of 3D architecture of animal skeleton. J Musculoskel Neuron Interact, 1, 45-51.
  • Jones DG (2019): Three-dimensional printing in anatomy education: Assessing potential ethical dimensions. Anat Sci Educ, 12, 435-443.
  • Keleş A, Alçi̇n H (2015): Mikro bilgisayarlı tomografi ve endodontik araştırmalardaki yeri. Türkiye Klinikleri J Endod-Special Topics, 1, 32-39.
  • Kim M, Huh KH, Yi WJ, et al (2012): Evaluation of accuracy of 3D reconstruction images using multi-detector CT and cone-beam CT. Imaging Sci Dent, 42, 25-33.
  • Labruyere J, Schwarz T (2013): CT and MRI in veterinary patients: an update on recent advances. In Pract, 35, 546-563.
  • Lagravere MO, Carey J, Toogood RW, et al (2008): Three- dimensional accuracy of measurements made with software on cone-beam computed tomography images. Am J Orthod Dentofac, 134, 112-116.
  • Li F, Liu C, Song X, et al (2018): Production of accurate skeletal models of domestic animals using three-dimensional scanning and printing technology. Anat Sci Educ, 11, 73-80.
  • Martini L, Fini M, Giavaresi G, et al (2001): Sheep model in orthopedic research: A literature review. Comp Med, 51, 292- 299.
  • Mitsouras D, Liacouras P, Imanzadeh A, et al (2015): Medical 3D printing for the radiologist. Radiographics, 35, 1965- 1988.
  • Moreira CR, Sales MAO, Lopes PML, et al (2009): Assessment of linear and angular measurements on three- dimensional cone- beam computed tomographic images. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 108, 430-436.
  • Murgitroyd E, Madurska M, Gonzalez J, et al (2015): 3D digital anatomy modelling - Practical or pretty? The Surgeon, 13, 177-180.
  • Naff KA, Craig S (2012): The Domestic Rabbit, Oryctolagus Cuniculus: Origins and History. In: MA Suckow, KA Stevens, PP Wilson (Eds), The Laboratory Rabbit, Guinea Pig, Hamster and Other Rodents. Academic Press, London.
  • Nomina Anatomica Veterinaria (2017): Prepared by the international committes on veterinary gross anatomical nomenclature and authorized by the general assambly of the world association of veterinary anatomists (6th ed.). Hanover, Germany, Ghent, Belgium, Columbia, MO, Rio de Janeiro, Brazil: The Editorial Committee.
  • Özkadi̇f S, Eken E (2015): Contribution of virtual anatomic models to medical education. Atatürk Üniversitesi Vet Bil Derg, 10, 46-54.
  • Özkadi̇f S, Eken E, Beşoluk K, et al (2015): Three-dimensional reconstruction of New Zealand rabbit antebrachium by multidetector computed tomography. Iran J Vet Res, 16, 205-209.
  • Pazvant G, Kahveci̇oğlu KO (2009): Tavşanlarda ön ve arka bacak uzun kemiklerinin homotipik varyasyonları üzerinde araştırmalar. İstanbul Üniv Vet Fak Derg, 35, 23-39.
  • Preece D, Williams SB, Lam R, et al (2013): “Let’s Get Physical”: Advantages of a physical model over 3D computer models and textbooks in learning imaging anatomy. Anat Sci Educ, 6, 216-224.
  • Pujol S, Baldwin M, Nassiri J, et al (2016): Using 3D modeling techniques to enhance teaching of difficult anatomical concepts. Acad Radiol, 4, 507-516.
  • Remzi OA, Caner B, Okan E, et al (2019): Accuracy and Reliability of Measurements Obtained from 3-Dimensional Rabbit Mandible Model: A Micro-Computed Tomography Study. Acta Vet-Beograd, 69, 192-200.
  • Rengier F, Mehndiratta A, Tengg-Kobligk H, et al (2010): 3D printing based on imaging data: review of medical applications. Int J Cars, 5, 335-341.
  • Ventola CL (2014): Medical applications for 3D printing: Current and projected uses. Pharm Ther, 39, 704-711.
  • Von Den Driesch A (1976): A Guide to the Measurement of Animal Bones from Archaeological Sites. Pea Body Museum Bulletin 1. Harward University, Massachusetts

Yeni Zelanda Tavşanı’ında ön bacak eklemlerinin üç boyutlu kemik modellenmesi: Mikro Bilgisayarlı Tomografi çalışması

Yıl 2021, Cilt 68, Sayı 4, 355 - 363, 27.09.2021
https://doi.org/10.33988/auvfd.762615

Öz

Bu çalışmada, deneysel ortopedik çalışmalarda sıklıkla tercih edilen Yeni Zelanda Tavşanı’nda sağlıklı ön bacak eklemlerinin mikro bilgisayarlı tomografi (μBT) tekniği ile elde edilen görüntülerinden 3B dijital modellerinin oluşturulması, modeller üzerinde omuz ile dirsek eklemlerine ait morfometrik ölçümlerin sağlanması ve bu modellerden 3B yazıcılar kullanılarak 3B baskı modellerinin üretilmesi amaçlanmıştır. Çalışmada toplamda 14 adet (7 dişi, 7 erkek) erişkin Yeni Zelanda Tavşanı kullanıldı. Ön bacakları μBT cihazı ile görüntülenip görüntülerden 3B dijital ve baskı modelleri elde edildi. 3B dijital modeller üzerinden omuz ile dirsek eklemlerine ait biyometrik ölçümleri gerçekleştirildi. Dişi ve erkek tavşanlara ait elde edilen veriler istatistiki açıdan değerlendirildi. Kesit kalınlığının düşük ve dedektör kalitesinin yüksek olması sebebiyle 3B eklem modellerindeki anatomik yapı oldukça detaylıydı. Üç boyutlu baskılama işlemi sonucunda üretilen 3B baskı modelleri son derece dayanıklı, kokusuz ve temizdi. 3B baskı modelleri ile 3B dijital modeller arasında herhangi bir anatomik farklılık gözlenmedi. Bu çalışmada laboratuvar tavşanlarına ait elde edilen anatomik ve morfometrik verilerin hem deneysel amaçlı ortopedik girişimlerde bulunan hem de klinik anatomi eğitimlerinde rol alan bilim insanlarına katkı sağlayacağı düşünülmektedir.

Kaynakça

  • Bakıcı C, Akgün RO, Oto Ç (2019): The applicability and efficiency of 3 dimensional printing models of hyoid bone in comparative veterinary anatomy education. Vet Hekim Der Derg, 90, 71-75.
  • Berco M, Rigali PH, Miner RM, et al (2009): Accuracy and reliability of linear cephalometric measurements from cone-beam computed tomography scans of a dry human skull. Am J Orthod Dentofac, 136, 1-9.
  • Bouxsein ML, Boyd SK, Christiansen BA, et al (2010): Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res, 25, 1468-1486.
  • Brazina D, Fojtik R, Rombova Z (2014): 3D visualization in teaching anatomy. Procedia Soc Behav Sci, 143, 367-371.
  • Estai M, Bunt S (2016): Best teaching practices in anatomy education: A critical review. Ann Anat, 208, 151-157.
  • Fasel JHD, Aguiar D, Kiss-Bodolay D, et al (2016): Adapting anatomy teaching to surgical trends: a combination of classical dissection, medical imaging, and 3D-printing technologies. Surg Radiol Anat, 38, 361-367.
  • Freitas EP, Noritomi PY, Silva JVL (2011): Use of Rapid Prototyping and 3D Reconstruction in Veterinary Medicine. In: ME Hoque (Ed), Advanced Applications of Rapid Prototyping Technology in Modern Engineering. InTech, China.
  • Gribel BF, Gribel MN, Frazao DC, et al (2011): Accuracy and reliability of craniometric measurements on lateral cephalometry and 3D measurements on CBCT scans. Angle Orthod, 81, 26-35.
  • Jamali AA, Deuel C, Perreira A, et al (2007): Linear and angular measurements of computer-generated models: Are they accurate, valid, and reliable? Comput Aided Surg, 12, 278-285.
  • Jiang Y, Zhao J, White DL, et al (2000): Micro CT and micro MR imaging of 3D architecture of animal skeleton. J Musculoskel Neuron Interact, 1, 45-51.
  • Jones DG (2019): Three-dimensional printing in anatomy education: Assessing potential ethical dimensions. Anat Sci Educ, 12, 435-443.
  • Keleş A, Alçi̇n H (2015): Mikro bilgisayarlı tomografi ve endodontik araştırmalardaki yeri. Türkiye Klinikleri J Endod-Special Topics, 1, 32-39.
  • Kim M, Huh KH, Yi WJ, et al (2012): Evaluation of accuracy of 3D reconstruction images using multi-detector CT and cone-beam CT. Imaging Sci Dent, 42, 25-33.
  • Labruyere J, Schwarz T (2013): CT and MRI in veterinary patients: an update on recent advances. In Pract, 35, 546-563.
  • Lagravere MO, Carey J, Toogood RW, et al (2008): Three- dimensional accuracy of measurements made with software on cone-beam computed tomography images. Am J Orthod Dentofac, 134, 112-116.
  • Li F, Liu C, Song X, et al (2018): Production of accurate skeletal models of domestic animals using three-dimensional scanning and printing technology. Anat Sci Educ, 11, 73-80.
  • Martini L, Fini M, Giavaresi G, et al (2001): Sheep model in orthopedic research: A literature review. Comp Med, 51, 292- 299.
  • Mitsouras D, Liacouras P, Imanzadeh A, et al (2015): Medical 3D printing for the radiologist. Radiographics, 35, 1965- 1988.
  • Moreira CR, Sales MAO, Lopes PML, et al (2009): Assessment of linear and angular measurements on three- dimensional cone- beam computed tomographic images. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 108, 430-436.
  • Murgitroyd E, Madurska M, Gonzalez J, et al (2015): 3D digital anatomy modelling - Practical or pretty? The Surgeon, 13, 177-180.
  • Naff KA, Craig S (2012): The Domestic Rabbit, Oryctolagus Cuniculus: Origins and History. In: MA Suckow, KA Stevens, PP Wilson (Eds), The Laboratory Rabbit, Guinea Pig, Hamster and Other Rodents. Academic Press, London.
  • Nomina Anatomica Veterinaria (2017): Prepared by the international committes on veterinary gross anatomical nomenclature and authorized by the general assambly of the world association of veterinary anatomists (6th ed.). Hanover, Germany, Ghent, Belgium, Columbia, MO, Rio de Janeiro, Brazil: The Editorial Committee.
  • Özkadi̇f S, Eken E (2015): Contribution of virtual anatomic models to medical education. Atatürk Üniversitesi Vet Bil Derg, 10, 46-54.
  • Özkadi̇f S, Eken E, Beşoluk K, et al (2015): Three-dimensional reconstruction of New Zealand rabbit antebrachium by multidetector computed tomography. Iran J Vet Res, 16, 205-209.
  • Pazvant G, Kahveci̇oğlu KO (2009): Tavşanlarda ön ve arka bacak uzun kemiklerinin homotipik varyasyonları üzerinde araştırmalar. İstanbul Üniv Vet Fak Derg, 35, 23-39.
  • Preece D, Williams SB, Lam R, et al (2013): “Let’s Get Physical”: Advantages of a physical model over 3D computer models and textbooks in learning imaging anatomy. Anat Sci Educ, 6, 216-224.
  • Pujol S, Baldwin M, Nassiri J, et al (2016): Using 3D modeling techniques to enhance teaching of difficult anatomical concepts. Acad Radiol, 4, 507-516.
  • Remzi OA, Caner B, Okan E, et al (2019): Accuracy and Reliability of Measurements Obtained from 3-Dimensional Rabbit Mandible Model: A Micro-Computed Tomography Study. Acta Vet-Beograd, 69, 192-200.
  • Rengier F, Mehndiratta A, Tengg-Kobligk H, et al (2010): 3D printing based on imaging data: review of medical applications. Int J Cars, 5, 335-341.
  • Ventola CL (2014): Medical applications for 3D printing: Current and projected uses. Pharm Ther, 39, 704-711.
  • Von Den Driesch A (1976): A Guide to the Measurement of Animal Bones from Archaeological Sites. Pea Body Museum Bulletin 1. Harward University, Massachusetts

Ayrıntılar

Birincil Dil İngilizce
Konular Veteriner Hekimlik
Bölüm Araştırma Makalesi
Yazarlar

Remzi Orkun AKGÜN (Sorumlu Yazar)
Çankırı Karatekin Üniversitesi Diş Hekimliği Fakültesi
0000-0001-6648-7059
Türkiye


İsmail Önder ORHAN
ANKARA UNIVERSITY, ANKARA FACULTY OF VETERINARY MEDICINE
0000-0003-3006-4657
Türkiye


Okan EKİM
ANKARA UNIVERSITY, ANKARA FACULTY OF VETERINARY MEDICINE
0000-0002-3322-4161
Türkiye

Destekleyen Kurum Ankara Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü
Proje Numarası 17L0239013
Teşekkür This study was prepared from PhD thesis entitled “Evaluation of the thoracic limb joints in the New Zealand Rabbit (Oryctolagus cuniculus L.) using different techniques’’ of the first author. The authors would like to thank Dr. Ufuk KAYA from the Department of Biostatistics, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University for the statistical analysis. We also thank Trifolium Company for 3D printing process.
Yayımlanma Tarihi 27 Eylül 2021
Yayınlandığı Sayı Yıl 2021, Cilt 68, Sayı 4

Kaynak Göster

Bibtex @araştırma makalesi { auvfd762615, journal = {Ankara Üniversitesi Veteriner Fakültesi Dergisi}, issn = {}, eissn = {1308-2817}, address = {}, publisher = {Ankara Üniversitesi}, year = {2021}, volume = {68}, pages = {355 - 363}, doi = {10.33988/auvfd.762615}, title = {Three-dimensional bone modeling of forelimb joints in New Zealand Rabbit: A Micro-Computed Tomography study}, key = {cite}, author = {Akgün, Remzi Orkun and Orhan, İsmail Önder and Ekim, Okan} }
APA Akgün, R. O. , Orhan, İ. Ö. & Ekim, O. (2021). Three-dimensional bone modeling of forelimb joints in New Zealand Rabbit: A Micro-Computed Tomography study . Ankara Üniversitesi Veteriner Fakültesi Dergisi , 68 (4) , 355-363 . DOI: 10.33988/auvfd.762615
MLA Akgün, R. O. , Orhan, İ. Ö. , Ekim, O. "Three-dimensional bone modeling of forelimb joints in New Zealand Rabbit: A Micro-Computed Tomography study" . Ankara Üniversitesi Veteriner Fakültesi Dergisi 68 (2021 ): 355-363 <http://vetjournal.ankara.edu.tr/tr/pub/issue/65112/762615>
Chicago Akgün, R. O. , Orhan, İ. Ö. , Ekim, O. "Three-dimensional bone modeling of forelimb joints in New Zealand Rabbit: A Micro-Computed Tomography study". Ankara Üniversitesi Veteriner Fakültesi Dergisi 68 (2021 ): 355-363
RIS TY - JOUR T1 - Three-dimensional bone modeling of forelimb joints in New Zealand Rabbit: A Micro-Computed Tomography study AU - Remzi Orkun Akgün , İsmail Önder Orhan , Okan Ekim Y1 - 2021 PY - 2021 N1 - doi: 10.33988/auvfd.762615 DO - 10.33988/auvfd.762615 T2 - Ankara Üniversitesi Veteriner Fakültesi Dergisi JF - Journal JO - JOR SP - 355 EP - 363 VL - 68 IS - 4 SN - -1308-2817 M3 - doi: 10.33988/auvfd.762615 UR - https://doi.org/10.33988/auvfd.762615 Y2 - 2020 ER -
EndNote %0 Ankara Üniversitesi Veteriner Fakültesi Dergisi Three-dimensional bone modeling of forelimb joints in New Zealand Rabbit: A Micro-Computed Tomography study %A Remzi Orkun Akgün , İsmail Önder Orhan , Okan Ekim %T Three-dimensional bone modeling of forelimb joints in New Zealand Rabbit: A Micro-Computed Tomography study %D 2021 %J Ankara Üniversitesi Veteriner Fakültesi Dergisi %P -1308-2817 %V 68 %N 4 %R doi: 10.33988/auvfd.762615 %U 10.33988/auvfd.762615
ISNAD Akgün, Remzi Orkun , Orhan, İsmail Önder , Ekim, Okan . "Three-dimensional bone modeling of forelimb joints in New Zealand Rabbit: A Micro-Computed Tomography study". Ankara Üniversitesi Veteriner Fakültesi Dergisi 68 / 4 (Eylül 2021): 355-363 . https://doi.org/10.33988/auvfd.762615
AMA Akgün R. O. , Orhan İ. Ö. , Ekim O. Three-dimensional bone modeling of forelimb joints in New Zealand Rabbit: A Micro-Computed Tomography study. Ankara Univ Vet Fak Derg. 2021; 68(4): 355-363.
Vancouver Akgün R. O. , Orhan İ. Ö. , Ekim O. Three-dimensional bone modeling of forelimb joints in New Zealand Rabbit: A Micro-Computed Tomography study. Ankara Üniversitesi Veteriner Fakültesi Dergisi. 2021; 68(4): 355-363.
IEEE R. O. Akgün , İ. Ö. Orhan ve O. Ekim , "Three-dimensional bone modeling of forelimb joints in New Zealand Rabbit: A Micro-Computed Tomography study", Ankara Üniversitesi Veteriner Fakültesi Dergisi, c. 68, sayı. 4, ss. 355-363, Eyl. 2021, doi:10.33988/auvfd.762615