Araştırma Makalesi
BibTex RIS Kaynak Göster

Van Kedilerinde Bulbus Oculi’nin Bilgisayarlı Tomografi ve Manyetik Rezonans Görüntüleme ile morfometrik özelliklerinin incelenmesi

Yıl 2021, Cilt: 68 Sayı: 4, 397 - 406, 27.09.2021
https://doi.org/10.33988/auvfd.785014

Öz

Özet: Bu çalışma, Türkiye’de Van ili yöresinde yetiştirilen ve ismini buradan alan Van kedilerinde bulbus oculi’nin bilgisayarlı tomografi (CT) ve manyetik rezonans görüntüleme (MR) ile morfometrik ve volümetrik ölçülerini elde etmek, ve bu ölçüm değerlerinin cinsiyetler arasındaki biyometrik farklılıklarını ortaya koymak amacıyla yapıldı. Çalışmada 8 dişi, 8 erkek olmak üzere toplam 16 adet erişkin Van Kedisi kullanıldı. Hayvanlar ketamin- xylazin kombinasyonu ile anesteziye alındı. Anestezi altındaki hayvanlar CT ve MR cihazı ile taranarak görüntüleri elde edildi. Daha sonra bu görüntülerden iş istasyonundaki yazılım programı (Syngo CT Software) kullanılarak bulbus oculi’nin morfometrik ve volümetrik ölçümleri hesaplandı ve istatistiki analizi yapıldı. Morfometrik ve volümetrik analiz sonuçlarına bakıldığında, W (vücut ağırlığı) ve ACL (sol ön kamera) değerlerinin erkek kedilerde; DVLL (sol lens’in dorsoventral uzunluğu) değerinin ise, dişi kedilerde daha yüksek olduğu tespit edildi. Cinsiyetler arasındaki bu farkların istatistik olarak önemli düzeyde olduğu gözlendi (P < 0.05). Bulbus oculi ve lens’e ait volümetrik ölçüm değerleri sırasıyla ortalama 4.60 ± 0.27 cm3 ve 0.67 ± 0.09 cm3 olarak belirlendi. Sonuç olarak, Van kedilerinde bulbus oculi’nin biyometrik değerlerinin istatistiksel olarak erkek ve dişiler arasındaki farklılıkları CT ve MR kullanılarak tespit edildi. Sunulan çalışmanın bu kedilerle ilgili oftalmatolojik uygulamalara ve anatomi eğitimi alan öğrencilere katkı sağlayacağı düşünülmektedir.

Kaynakça

  • Acer N, Sahin B, Ucar T, et al (2009): Unbiased estimation of the eyeball volume using the Cavalieri principle on computed tomography images. J Craniofac Surg, 20, 233-237.
  • Brenton H, Hernandez J, Bello F, et al (2007): Using multimedia and web 3D to enhance anatomy teaching. Comput Educ, 49, 32-53.
  • Chandrakumar SS, Zur Linden A, Owen M, et al (2019): Computed tomography measurements of intraocular structures of the feline eye. Vet Rec, 184, 651.
  • Chiwitt CHL, Baines SJ, Mahoney P, et al (2017): Ocular biometry by computed tomography in different dog breeds. Vet Ophthalmol, 20, 411-419.
  • Collins SP, Matheson JS, Hamor RE, et al (2013): Comparison of the diagnostic quality of computed tomography images of normal ocular and orbital structures acquired with and without the use of general anesthesia in the cat. Vet Ophthalmol, 16, 352-358.
  • Cottrill NB, Banks WJ, Pechman RD (1989): Ultrasonographic and biometric evaluation of the eye and orbit of dogs. Am J Vet Res, 50, 898-903.
  • Daniel GB, Mitchell SK (1999): The eye and orbit. Clin Tech Small Anim Pract, 14, 160-169.
  • Demircioğlu İ, Yılmaz B (2019): İvesi koyunlarında (Ovis aries) bulbus oculi’nin morfometrik yapısının incelenmesi. Dicle Üniv Vet Fak Derg, 12, 108-111.
  • Dursun N (2008): Veterinary Anatomy III. Medisan Publisher, Ankara, Turkey.
  • Dyce KM, Sack WO, Wensing CJG (2010): Textbook of Veterinary Anatomy. 332-345. 4th Edition, Saunders Elsevier Inc, Missouri, United States.
  • Fornazari GA, Montiani-Ferreira F, de Barros Filho IR, et al (2016): The eye of the Barbary Sheep or Aoudad (Ammotragus lervia): Reference values for selected ophthalmic diagnostic tests, morphologic and biometric observations. Open Vet J, 6, 102-113.
  • Gilger BC, Davidson MG, Howard PB (1998): Keratometry, ultrasonic biometry, and prediction of intraocular lens power in the feline eye. Am J Vet Res, 59, 131-134.
  • Hollis AR, Dixon JJ, Berlato D, et al (2019): Computed tomographic dimensions of the normal adult equine eye. Vet Ophthalmol, 22, 651-659.
  • Igbinedion BO, Ogbeide OU (2013): Measurement of normal ocular volume by the use of computed tomography. Niger J Clin Pract, 16, 315-319.
  • Kalra MK, Maher MM, Toth TL, et al (2004): Strategies for CT radiation dose optimization. Radiology, 230, 619-628.
  • Kassab A (2012): Ultrasonographic and macroscopic anatomy of the enucleated eyes of the Buffalo (Bos bubalis) and the One-Humped Camel (Camelus dromedarius) of different ages. Anat Histol Embryol, 41, 7-11.
  • Larsen JS (1971): The sagittal growth of the eye. II: ultrasonic measurement of the axial diameter of the lens and the anterior segment from birth to puberty. Acta Ophthalmol, 49, 427-440.
  • Liebich HG, König HE (2007): Eye (organum visus). 571-591. In: HE König, HG Liebich (Ed), Veterinary Anatomy of Domestic Mammals: Text Book and Colour Atlas. 3rd Edition, Schattauer, Germany.
  • Mirshahi A, Shafigh SH, Azizzadeh M (2014): Ultrasonographic biometry of the normal eye of the Persian cat. Aust Vet J, 92, 246-249.
  • Nomina Anatomica Veterinaria (2017): Prepared by the international committees on veterinary gross anatomical nomenclature and authorized by the general assembly of the world association of veterinary anatomists (6th Edition). The Editorial Committee Hanover (Germany), Ghent (Belgium), Columbia, MO (U.S.A.), Rio de Janeiro (Brazil).
  • Odabasioglu F, Ates CT (2000): Van Cats. 1st Edition, Selcuk University Printing Office, Konya, Turkey.
  • Ohlerth S, Scharf G (2007): Computed tomography in small animals-basic principles and state of the art applications. Vet J, 173, 254-71.
  • Olopade JO, Kwari HD, Agbashe IO, et al (2005): Morphometric study of the eyeball of three breeds of goats in Nigeria. Int J Morphol, 23, 377-380.
  • Patruno M, Perazzi A, Martinello T, et al (2017): Morphological description of limbal epithelium: searchingfor stem cells crypts in the dog, cat, pig, cow, sheep and horse. Vet Res Commun, 41, 169-173.
  • Paunksnis A, Svaldenienė E, Paunksnienė M, et al (2001): Ultrasonographic evaluation of the eye parameters in dogs of different age. Ultragarsas, 9, 48-51.
  • Pereira GC, Allemann N (2007): Ocular biometry, refractive error and correlation with height, age, gender and years of formal education. Arq Bras Oftalmol, 70, 487-493.
  • Potter JT, Hallowell DG, Bowen IM (2008): Ultrasonographic anatomy of the bovine eye. Vet Radiol Ultrasound, 49, 172-175.
  • Prokop M (2003): General principles of MDCT. Eur J Radiol, 45, S4-S10.
  • Ribeiro AP, Silva ML, Rosa JP, et al (2009): Ultrasonographic and echobiometric findings in the eyes of Saanen goats of different ages. Vet Ophthalmol, 12, 313-317.
  • Salgüero R, Johnson V, Williams D, et al (2015): CT dimensions, volumes and densities of normal canine eyes. Vet Rec, 176, 386.
  • Schiffer SP, Rantanen NW, Leary GA, et al (1982): Biometric study of the canine eye, using A-mode ultrasonography. Am J Vet Res, 43, 826-830.
  • Squarzoni R, Perlmann E, Antunes A, et al (2010): Ultrasonographic aspects and biometry of Striped owl’s eyes (Rhinoptynx clamator). Vet Ophthalmol, 13, 86-90.
  • Thrall DE (2007): Principles of computed tomography and magnetic resonance imaging. 20-77. In: Textbook of Veterinary Diagnostic Radiology. 5th Edition, Saunders Elsevier, St. Louis.
  • Toni MC, Meirelles AÉ, Gava FN, et al (2010): Rabbits’eye globe sonographic biometry. Vet Ophthalmol, 13, 384-386.
  • Tuntivanich N, Petersen-Jones SM, Steibel JP, et al (2007): Postnatal development of canine axial globe length measured by B-scan ultrasonography. Vet Ophthalmol, 10, 2-5.
  • Vosough D, Shojaei B, Molazem M (2009): Magnetic resonance imaging of feline eye. Iran J Vet Res, 10, 66-69.
  • Williams DL (2004): Lens morphometry determined by B-mode ultrasonography of the normal and cataractous canine lens. Vet Ophthalmol, 7, 91-95.
  • Wisner ER, Zwingenberger AL (2015): Atlas of Small Animal CT and MRI: Orbit. 69-85. Willey-Blackwell Publishing, USA.
  • Yilmaz O, Soyguder Z, Yavuz A, et al (2020): Three-dimensional computed tomographic examination of pelvic cavity in Van Cats and its morphometric investigation. Anat Histol Embryol, 49, 60-66.
  • Zhou X, Qu J, Xie R, et al (2006): Normal development of refractive state and ocular dimensions in guinea pigs. Vision Res, 46, 2815-2823

Examining the morphometric features of bulbus oculi in Van cats by using computed tomography and magnetic resonance imaging

Yıl 2021, Cilt: 68 Sayı: 4, 397 - 406, 27.09.2021
https://doi.org/10.33988/auvfd.785014

Öz

This study was conducted to obtain the morphometric and volumetric measurements of bulbus oculi of Van cats, growing around the city of Van in Turkey and named after here, by using computed tomography (CT) and magnetic resonance imaging (MRI), and to reveal the biometric differences of these measurement values between the sexes. A total of 16 adult Van cats including 8 females and 8 males were used in the study. The animals were anesthetized with the combination of xylazine and ketamine. The anesthetized animals were scanned by using CT and MRI devices and their images were obtained. Then, the morphometric and volumetric measurements of bulbus oculi were calculated from these images using the software (Syngo CT Software) in the workstation and their statistical analysis was performed. Upon the examination of the morphometric and volumetric analysis results, it was determined that while W (bodyweight) and ACL (Left Anterior Chamber) values were higher in male cats, DVLL (Dorsoventral length of the left lens) value was higher in female cats. These differences between the sexes were statistically significant (P<0.05). The volumetric measurement values of bulbus oculi and lens were determined to be averagely 4.60 ± 0.27 cm3 and 0.67 ± 0.09 cm3, respectively. In conclusion, the statistical differences of biometric values of bulbus oculi between male and female Van cats were determined by using CT and MRI. It is thought that the present study would contribute to the ophthalmological applications and the students receiving anatomy education.

Kaynakça

  • Acer N, Sahin B, Ucar T, et al (2009): Unbiased estimation of the eyeball volume using the Cavalieri principle on computed tomography images. J Craniofac Surg, 20, 233-237.
  • Brenton H, Hernandez J, Bello F, et al (2007): Using multimedia and web 3D to enhance anatomy teaching. Comput Educ, 49, 32-53.
  • Chandrakumar SS, Zur Linden A, Owen M, et al (2019): Computed tomography measurements of intraocular structures of the feline eye. Vet Rec, 184, 651.
  • Chiwitt CHL, Baines SJ, Mahoney P, et al (2017): Ocular biometry by computed tomography in different dog breeds. Vet Ophthalmol, 20, 411-419.
  • Collins SP, Matheson JS, Hamor RE, et al (2013): Comparison of the diagnostic quality of computed tomography images of normal ocular and orbital structures acquired with and without the use of general anesthesia in the cat. Vet Ophthalmol, 16, 352-358.
  • Cottrill NB, Banks WJ, Pechman RD (1989): Ultrasonographic and biometric evaluation of the eye and orbit of dogs. Am J Vet Res, 50, 898-903.
  • Daniel GB, Mitchell SK (1999): The eye and orbit. Clin Tech Small Anim Pract, 14, 160-169.
  • Demircioğlu İ, Yılmaz B (2019): İvesi koyunlarında (Ovis aries) bulbus oculi’nin morfometrik yapısının incelenmesi. Dicle Üniv Vet Fak Derg, 12, 108-111.
  • Dursun N (2008): Veterinary Anatomy III. Medisan Publisher, Ankara, Turkey.
  • Dyce KM, Sack WO, Wensing CJG (2010): Textbook of Veterinary Anatomy. 332-345. 4th Edition, Saunders Elsevier Inc, Missouri, United States.
  • Fornazari GA, Montiani-Ferreira F, de Barros Filho IR, et al (2016): The eye of the Barbary Sheep or Aoudad (Ammotragus lervia): Reference values for selected ophthalmic diagnostic tests, morphologic and biometric observations. Open Vet J, 6, 102-113.
  • Gilger BC, Davidson MG, Howard PB (1998): Keratometry, ultrasonic biometry, and prediction of intraocular lens power in the feline eye. Am J Vet Res, 59, 131-134.
  • Hollis AR, Dixon JJ, Berlato D, et al (2019): Computed tomographic dimensions of the normal adult equine eye. Vet Ophthalmol, 22, 651-659.
  • Igbinedion BO, Ogbeide OU (2013): Measurement of normal ocular volume by the use of computed tomography. Niger J Clin Pract, 16, 315-319.
  • Kalra MK, Maher MM, Toth TL, et al (2004): Strategies for CT radiation dose optimization. Radiology, 230, 619-628.
  • Kassab A (2012): Ultrasonographic and macroscopic anatomy of the enucleated eyes of the Buffalo (Bos bubalis) and the One-Humped Camel (Camelus dromedarius) of different ages. Anat Histol Embryol, 41, 7-11.
  • Larsen JS (1971): The sagittal growth of the eye. II: ultrasonic measurement of the axial diameter of the lens and the anterior segment from birth to puberty. Acta Ophthalmol, 49, 427-440.
  • Liebich HG, König HE (2007): Eye (organum visus). 571-591. In: HE König, HG Liebich (Ed), Veterinary Anatomy of Domestic Mammals: Text Book and Colour Atlas. 3rd Edition, Schattauer, Germany.
  • Mirshahi A, Shafigh SH, Azizzadeh M (2014): Ultrasonographic biometry of the normal eye of the Persian cat. Aust Vet J, 92, 246-249.
  • Nomina Anatomica Veterinaria (2017): Prepared by the international committees on veterinary gross anatomical nomenclature and authorized by the general assembly of the world association of veterinary anatomists (6th Edition). The Editorial Committee Hanover (Germany), Ghent (Belgium), Columbia, MO (U.S.A.), Rio de Janeiro (Brazil).
  • Odabasioglu F, Ates CT (2000): Van Cats. 1st Edition, Selcuk University Printing Office, Konya, Turkey.
  • Ohlerth S, Scharf G (2007): Computed tomography in small animals-basic principles and state of the art applications. Vet J, 173, 254-71.
  • Olopade JO, Kwari HD, Agbashe IO, et al (2005): Morphometric study of the eyeball of three breeds of goats in Nigeria. Int J Morphol, 23, 377-380.
  • Patruno M, Perazzi A, Martinello T, et al (2017): Morphological description of limbal epithelium: searchingfor stem cells crypts in the dog, cat, pig, cow, sheep and horse. Vet Res Commun, 41, 169-173.
  • Paunksnis A, Svaldenienė E, Paunksnienė M, et al (2001): Ultrasonographic evaluation of the eye parameters in dogs of different age. Ultragarsas, 9, 48-51.
  • Pereira GC, Allemann N (2007): Ocular biometry, refractive error and correlation with height, age, gender and years of formal education. Arq Bras Oftalmol, 70, 487-493.
  • Potter JT, Hallowell DG, Bowen IM (2008): Ultrasonographic anatomy of the bovine eye. Vet Radiol Ultrasound, 49, 172-175.
  • Prokop M (2003): General principles of MDCT. Eur J Radiol, 45, S4-S10.
  • Ribeiro AP, Silva ML, Rosa JP, et al (2009): Ultrasonographic and echobiometric findings in the eyes of Saanen goats of different ages. Vet Ophthalmol, 12, 313-317.
  • Salgüero R, Johnson V, Williams D, et al (2015): CT dimensions, volumes and densities of normal canine eyes. Vet Rec, 176, 386.
  • Schiffer SP, Rantanen NW, Leary GA, et al (1982): Biometric study of the canine eye, using A-mode ultrasonography. Am J Vet Res, 43, 826-830.
  • Squarzoni R, Perlmann E, Antunes A, et al (2010): Ultrasonographic aspects and biometry of Striped owl’s eyes (Rhinoptynx clamator). Vet Ophthalmol, 13, 86-90.
  • Thrall DE (2007): Principles of computed tomography and magnetic resonance imaging. 20-77. In: Textbook of Veterinary Diagnostic Radiology. 5th Edition, Saunders Elsevier, St. Louis.
  • Toni MC, Meirelles AÉ, Gava FN, et al (2010): Rabbits’eye globe sonographic biometry. Vet Ophthalmol, 13, 384-386.
  • Tuntivanich N, Petersen-Jones SM, Steibel JP, et al (2007): Postnatal development of canine axial globe length measured by B-scan ultrasonography. Vet Ophthalmol, 10, 2-5.
  • Vosough D, Shojaei B, Molazem M (2009): Magnetic resonance imaging of feline eye. Iran J Vet Res, 10, 66-69.
  • Williams DL (2004): Lens morphometry determined by B-mode ultrasonography of the normal and cataractous canine lens. Vet Ophthalmol, 7, 91-95.
  • Wisner ER, Zwingenberger AL (2015): Atlas of Small Animal CT and MRI: Orbit. 69-85. Willey-Blackwell Publishing, USA.
  • Yilmaz O, Soyguder Z, Yavuz A, et al (2020): Three-dimensional computed tomographic examination of pelvic cavity in Van Cats and its morphometric investigation. Anat Histol Embryol, 49, 60-66.
  • Zhou X, Qu J, Xie R, et al (2006): Normal development of refractive state and ocular dimensions in guinea pigs. Vision Res, 46, 2815-2823
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Veteriner Cerrahi
Bölüm Araştırma Makalesi
Yazarlar

Osman Yılmaz 0000-0003-2013-9213

Fatma Durmaz 0000-0003-3089-7165

Yayımlanma Tarihi 27 Eylül 2021
Yayımlandığı Sayı Yıl 2021Cilt: 68 Sayı: 4

Kaynak Göster

APA Yılmaz, O., & Durmaz, F. (2021). Examining the morphometric features of bulbus oculi in Van cats by using computed tomography and magnetic resonance imaging. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 68(4), 397-406. https://doi.org/10.33988/auvfd.785014
AMA Yılmaz O, Durmaz F. Examining the morphometric features of bulbus oculi in Van cats by using computed tomography and magnetic resonance imaging. Ankara Univ Vet Fak Derg. Eylül 2021;68(4):397-406. doi:10.33988/auvfd.785014
Chicago Yılmaz, Osman, ve Fatma Durmaz. “Examining the Morphometric Features of Bulbus Oculi in Van Cats by Using Computed Tomography and Magnetic Resonance Imaging”. Ankara Üniversitesi Veteriner Fakültesi Dergisi 68, sy. 4 (Eylül 2021): 397-406. https://doi.org/10.33988/auvfd.785014.
EndNote Yılmaz O, Durmaz F (01 Eylül 2021) Examining the morphometric features of bulbus oculi in Van cats by using computed tomography and magnetic resonance imaging. Ankara Üniversitesi Veteriner Fakültesi Dergisi 68 4 397–406.
IEEE O. Yılmaz ve F. Durmaz, “Examining the morphometric features of bulbus oculi in Van cats by using computed tomography and magnetic resonance imaging”, Ankara Univ Vet Fak Derg, c. 68, sy. 4, ss. 397–406, 2021, doi: 10.33988/auvfd.785014.
ISNAD Yılmaz, Osman - Durmaz, Fatma. “Examining the Morphometric Features of Bulbus Oculi in Van Cats by Using Computed Tomography and Magnetic Resonance Imaging”. Ankara Üniversitesi Veteriner Fakültesi Dergisi 68/4 (Eylül 2021), 397-406. https://doi.org/10.33988/auvfd.785014.
JAMA Yılmaz O, Durmaz F. Examining the morphometric features of bulbus oculi in Van cats by using computed tomography and magnetic resonance imaging. Ankara Univ Vet Fak Derg. 2021;68:397–406.
MLA Yılmaz, Osman ve Fatma Durmaz. “Examining the Morphometric Features of Bulbus Oculi in Van Cats by Using Computed Tomography and Magnetic Resonance Imaging”. Ankara Üniversitesi Veteriner Fakültesi Dergisi, c. 68, sy. 4, 2021, ss. 397-06, doi:10.33988/auvfd.785014.
Vancouver Yılmaz O, Durmaz F. Examining the morphometric features of bulbus oculi in Van cats by using computed tomography and magnetic resonance imaging. Ankara Univ Vet Fak Derg. 2021;68(4):397-406.