Derleme
BibTex RIS Kaynak Göster

Rumen physiology: microorganisms, fermentation and manipulation

Yıl 2021, Cilt: 68 Sayı: 4, 423 - 434, 27.09.2021
https://doi.org/10.33988/auvfd.960447

Öz

Ruminants are unique mammals that can convert the energy in roughage to edible products for humans. Hence, rumen fermentation has been excessively on the scope of researchers for long years. Advances in rumen fermentation are a vital concern to provide food with good quality for the growing population of man. This review focuses on physiology of rumen fermentation and the recent advances in the field.

Kaynakça

  • Asanuma N, Iwamoto M, Hino T, et al (1999): Effect of the addition of fumarate on methane production by ruminal microorganisms in vitro. J Dairy Sci, 82, 780-787.
  • Attwood GT, Kelly WJ, Altermann EH, et al (2008): Application of rumen microbial genome information to livestock systems in the postgenomic era. Aust J Exp Agric, 48, 695-700.
  • Bansal S, Goel G (2015): Commercial application of rumen microbial enzymes. 281-291. In: AK Puniya, R Singh, DN Kamra (Eds), Rumen Microbiology: From Evolution to Revolution. Springer, New Delhi.
  • Beauchemin KA, Kreuzer M, O'mara F, et al (2008): Nutritional management for enteric methane abatement: a review. Austr J Exp Agric, 48, 21-27.
  • Becerril R, Gómez-Lus R, Goni, P, et al (2007): Combination of analytical and microbiological techniques to study the antimicrobial activity of a new active food packaging containing cinnamon or oregano against E. coli and S. aureus. Analytical and Bioanalytical Chemistry, 388, 1003-1011.
  • Benchaar C, Pomar C, Chiquette J (2001): Evaluation of diet strategies to reduce methane production in ruminants: A modelling approach. Can J Anim Sci, 81, 563-574.
  • Burt, S. (2004): Essential oils: their antibacterial properties and potential applications in foods-a review. Int J Food Microbiol, 94, 223-253.
  • Callaway TR, Edrington TS, Rychlik JL, et al (2003): Ionophores: their use as ruminant growth promotants and impact on food safety. Curr Issues Intest Microbiol, 4, 43-51.
  • Castillo-González AR, Burrola-Barraza ME, Domínguez-Viveros J, et al (2014): Rumen microorganisms and fermentation. Arch Med Vet, 46, 349-361.
  • Cecava MJ (1995): Rumen physiology and energy requirements. 3-24. In: T Petty, M Cecava (Eds), Beef Cattle Feeding and Nutrition. Academic Press, California.
  • Chaucheyras F, Fonty G, Bertin G, et al (1995): Effects of live Saccharomyces cerevisiae cells on zoospore germination, growth, and cellulolytic activity of the rumen anaerobic fungus, Neocallimastix frontalis MCH3. Curr Microbiol, 31, 201-205.
  • Chen G, Russell JB (1989): More monensin-sensitive, ammonia-producing bacteria from the rumen. Appl Environ Microbiol, 55, 1052-1057.
  • Chesson A, Forsberg CW (1997): Polysaccharide degradation by rumen microorganisms. 329-381. In: PN Hobson, CS Stewart (Eds), The rumen microbial ecosystem. Springer, Dordrecht.
  • Choudhury PK, Salem AZM, Jena R, et al (2015): Rumen Microbiology: An Overview, 3-16. In: AK Puniya, R Singh, DN Kamra (Eds), Rumen Microbiology: From Evolution to Revolution. Springer, New Delhi.
  • Chung YH, He ML, McGinn SM, et al (2011): Linseed suppresses enteric methane emissions from cattle fed barley silage, but not from those fed grass hay. Anim Feed Sci Technol, 166, 321-329.
  • Clark H, Pinares-Patiño C, De Klein C (2005): Methane and nitrous oxide emissions from grazed grasslands. 279-293. In: DA McGilloway (Ed), Grassland: A Global Resource, Wageningen Academic Publishers, Wageningen.
  • Clauss M, Hofmann RR, Streich WJ, et al (2010): Convergence in the macroscopic anatomy of the reticulum in wild ruminant species of different feeding types and a new resulting hypothesis on reticular function. J Zool, 281, 26-38.
  • Cobellis G, Trabalza-Marinucci M, Yu Z (2016): Critical evaluation of essential oils as rumen modifiers in ruminant nutrition: A review. Sci Total Environ, 545, 556-568.
  • Cotta MA (1988): Amylolytic activity of selected species of ruminal bacteria. Appl Environ Microbiol, 54, 772-776.
  • Czerkawski JW (1986): An Introduction to Rumen Studies. Pergamon Press, Oxford.
  • De Araújo DAM, Freitas C, Cruz JS (2011): Essential oils components as a new path to understand ion channel molecular pharmacology. Life Sci, 89, 540-544.
  • Demirtaş A, Pişkin İ (2013): Isırgan otu (Urtica dioica L.), papatya (Matricaria chamomilla L.) ve hayıt meyvesi (Vitex agnus-castus L.) ekstraktlarının normal koşullarda ve asidoz koşullarında rumen mikrobiyal fermentasyonuna in vitro etkileri. Doktora Tezi. Ankara Üniversitesi Sağlık Bilimleri Enstitüsü, Ankara.
  • Demirtas A, Musa SAA, Pekcan M, et al (2020): Effects of cleavers (Galium aparine) and yarrow (Achillea millefolium) extracts on rumen microbial fermentation in in-vitro semi-continuous culture system (Rusitec). Kafkas Univ Vet Fak Derg, 26, 385-390.
  • Doreau M, Ferlay A (1995): Effect of dietary lipids on nitrogen metabolism in the rumen: a review. Livest Prod Sci, 43, 97-110.
  • Eckard RJ, Grainger C, De Klein CAM (2010): Options for the abatement of methane and nitrous oxide from ruminant production: a review. Livest Sci, 130, 47-56.
  • Ellis JL, Dijkstra J, Kebreab E, et al (2008): Aspects of rumen microbiology central to mechanistic modelling of methane production in cattle. J Agric Sci, 146, 213-233.
  • Eun JS, Beauchemin KA (2007): Assessment of the efficacy of varying experimental exogenous fibrolytic enzymes using in vitro fermentation characteristics. Anim Feed Sci Technol, 132, 298-315.
  • Faverdin P (1999): The effect of nutrients on feed intake in ruminants. Proc Nutr Soc, 58, 523-531
  • Fox NJ, Smith LA, Houdijk JGM, et al (2018): Ubiquitous parasites drive a 33% increase in methane yield from livestock. Int J Parasitol, 48, 1017-1021.
  • Gencoglu H, Turkmen II (2006): Effects of forage source on chewing and rumen fermentation in lactating dairy cows. Rev Med Vet, 157, 463.
  • Gilbert RA, Klieve AV (2015): Ruminal Viruses (Bacteriophages, Archaeaphages). 121-141. In: AK Puniya, R Singh, DN Kamra (Eds), Rumen Microbiology: From Evolution to Revolution. Springer, New Delhi.
  • Gonelimali FD, Lin J, Miao W et al (2018): Antimicrobial properties and mechanism of action of some plant extracts against food pathogens and spoilage microorganisms. Front Microbiol, 9, 1639.
  • Greathead H (2003): Plants and plant extracts for improving animal productivity. Proc Nutr Soc, 62, 279-290.
  • Guan H, Wittenberg KM, Ominski KH et al (2006): Efficacy of ionophores in cattle diets for mitigation of enteric methane. J Anim Sci, 84, 1896-1906.
  • Gür G, Öztürk H (2021): Ruminantlarda metan salinimini azaltma stratejileri. Veteriner Farmakoloji ve Toksikoloji Derneği Bülteni, 12, 43-54.
  • Hammer KA, Carson CF (2011): Antibacterial and antifungal activities of essential oils. 255 – 293. In: G Bergsson, H Hilmarsson, H Thormar, (Eds), Lipids and Essential Oils. John Wiley & Sons, New Delhi.
  • Haque N, Saraswat ML, Sahoo A (2001): Methane production and energy balance in crossbred male calves fed on rations containing different ratios of green sorghum and wheat straw. Indian J Anim Sci, 71, 797-799.
  • Haque MN (2018): Dietary manipulation: a sustainable way to mitigate methane emissions from ruminants. J Anim Sci Technol, 60, 15.
  • Hegarty RS, Klieve AV (1999): Opportunities for biological control of ruminal methanogenesis. Aust J Agric Res, 50, 1315-1320.
  • Hungate RE (1950): The anaerobic mesophilic cellulolytic bacteria. Bacteriol Rev, 14, 1-49.
  • Hungate RE (1960): I. Microbial ecology of the rumen. Bacteriol Rev, 24, 353-364.
  • Hungate RE, Mah RA, Simesen M (1961): Rates of production of individual volatile fatty acids in the rumen of lactating cows. Appl Microbiol, 9, 554-561.
  • Jalc D, Ceresnakova Z (2002): Effect of plant oils and malate on rumen fermentation in vitro. Czech J Anim Sci 47, 106-111.
  • Janssen PH, Kirs M (2008): Structure of the archaeal community of the rumen. Appl Environ Microbiol, 74, 3619-3625.
  • Joblin KN (1999): Ruminal acetogens and their potential to lower ruminant methane emissions. Aust J Agric Res, 50, 1307-1314.
  • Johnson KA, Johnson DE (1995): Methane emissions from cattle. J Anim Sci, 73, 2483-2492.
  • Kamra DN (2005): Rumen microbial ecosystem. Curr Sci India, 89, 124-135.
  • Karcol J, Kasarda R, Šimko M (2017): Effect of feeding of different sources of NPN on production performance of dairy cows. Acta Fytotech Zootech, 19, 163-166.
  • Klieve AV, Bauchop T (1988): Morphological diversity of ruminal bacteriophages from sheep and cattle. Appl Environ Microbiol, 54, 1637-1641.
  • Krehbiel CR (2014): Invited review: applied nutrition of ruminants: fermentation and digestive physiology. Prof Anim Sci, 30, 129-139.
  • Kung JRL, AO Hession (1995): Preventing in vitro lactate accumulation in ruminal fermentations by inoculation with Megasphaera elsdenii. J Anim Sci, 73, 250-256.
  • Lambers H, Chapin FS, Pons TL (2008): Plant physiological ecology. Second Edition, Springer, New York.
  • Lila ZA, Mohammed N, Yasui T, et al (2004): Effects of a twin strain of Saccharomyces cerevisiae live cells on mixed ruminal microorganism fermentation in vitro. J Anim Sci, 82, 1847-1854.
  • Lovett DK, Lovell S, Stack L, et al (2003): Effect of forage/concentrate ratio and dietary coconut oil level on methane output and performance of finishing beef heifers. Livest Prod Sci, 84, 135-146.
  • Maia MR, Chaudhary LC, Figueres L, et al (2007): Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie Van Leeuwenhoek, 91, 303-314.
  • McAllister TA, Bae HD, Jones GA, et al (1994): Microbial attachment and feed digestion in the rumen. J Anim Sci, 72, 3004-3018.
  • McAllister TA, Cheng KJ, Okine EK, et al (1996): Dietary, environmental and microbiological aspects of methane production in ruminants. Can J Anim Sci, 76, 231-243.
  • McAllister TA, Newbold CJ (2008): Redirecting rumen fermentation to reduce methanogenesis. Aust J Exp Agric, 48, 7-13
  • McSweeney C, Mackie R (2012): Commission on genetic resources for food and agriculture. microorganisms and ruminant digestion: state of knowledge, trends and future prospects. Background Study Paper (FAO), 61, 1-62.
  • Membrive CMB (2016): Anatomy and Physiology of the Rumen. 1-38. In: D Millen, M De Beni Arrigoni, R Lauritano Pacheco (Eds), Rumenology. Springer, Cham.
  • Mohammed N, Lila ZA, Ajisaka N, et al (2004): Inhibition of ruminal microbial methane production by β‐cyclodextrin iodopropane, malate and their combination in vitro. J Anim Physiol Anim Nutr, 88, 188-195.
  • Morgavi DP, Forano E, Martin C, et al (2010): Microbial ecosystem and methanogenesis in ruminants. Anim, 4, 1024-1036.
  • Nagaraja TG, Towne G, Beharka AA (1992): Moderation of ruminal fermentation by ciliated protozoa in cattle fed a high-grain diet. Appl Environ Microbial, 58, 2410-2414.
  • Nagaraja TG, Newbold CJ, Van Nevel CJ, et al (1997): Manipulation of ruminal fermentation. 523-632. In: PN Hobson, CS Stewart (Eds), The rumen microbial ecosystem. Springer, Dordrecht.
  • Nagaraja TG (2016): Microbiology of the rumen. 39-61. In: D Millen, M De Beni Arrigoni, R Lauritano Pacheco (Eds), Rumenology. Springer, Cham.
  • Nehme R, Andrés S, Pereira RB, et al (2021): Essential oils in livestock: From health to food quality. Antioxidants, 10, 330.
  • Newbold CJ, McIntosh FM, Wallace RJ (1998): Changes in the microbial population of a rumen-simulating fermenter in response to yeast culture. Can J Anim Sci, 78, 241-244.
  • Oeztuerk H (2009): Effects of live and autoclaved yeast cultures on ruminal fermentation in vitro. J Anim Feed Sci, 18, 142-150.
  • Orpin CG, Joblin KN (1997): The Rumen Anaerobic Fungi. 140-195. In: PN Hobson, CS Stewart (Eds), The rumen microbial ecosystem. Springer, Dordrecht.
  • Öztürk H (2007): Küresel isınmada ruminantların rolü. Vet Hek Der Derg, 78, 17-21.
  • Öztürk H (2008): Effects of inulin on rumen metabolism in vitro. Ankara Univ Vet Fak Derg, 55, 79-82
  • Öztürk H (2008): Ruminant beslemede probiyotik mayalar. Vet Hekim Der Derg, 79, 37-42.
  • Öztürk H, Salgirli Demirbas Y, Aydin FG, et al (2015): Effects of hydrolyzed and live yeasts on rumen microbial fermentation in a semi-continuous culture system (Rusitec), Turkish J Vet Anim Sci, 39, 556-559.
  • Öztürk H (2019): Veteriner fizyoloji. Ankara Nobel Tıp Kitabevleri, Ankara.
  • Patra AK (2012): An overview of antimicrobial properties of different classes of phytochemicals. 1-32. In: AK Patra (Ed), Dietary phytochemicals and microbes. Springer, Dordrecht.
  • Pinares-Patiño CS, Ulyatt MJ, Lassey KR, et al (2003): Persistence of differences between sheep in methane emission under generous grazing conditions. J Agric Sci, 140, 227-233.
  • Ribeiro Pereira LG, Machado FS, Campos MM, et al (2015): Enteric methane mitigation strategies in ruminants: a review. Rev Colomb de Cienc Pecu, 28, 124-143.
  • Romero E, Augulis R, Novoderezhkin V, et al (2014): Quantum coherence in photosynthesis for efficient solar-energy conversion. Nat Phys, 10, 676-682.
  • Russell JB, Muck RE, Weimer PJ (2009): Quantitative analysis of cellulose degradation and growth of cellulolytic bacteria in the rumen. FEMS Microbiol Ecol, 67, 183-197.
  • Saad NY, Muller CD, Lobstein A (2013): Major bioactivities and mechanism of action of essential oils and their components. Flavour Fragr J, 28, 269-279.
  • Sabo, VA, Knezevic P (2019): Antimicrobial activity of Eucalyptus camaldulensis Dehn. plant extracts and essential oils: A review. Industrial Crops and Products, 132, 413-429.
  • Shimojo M, Bungo T, Imura Y, et al (2000): Basic avoidance of food competition among ruminants, non-ruminants and humans-a simple analytic description. J Fac Agric Kyushu Univ, 44, 293-298.
  • Steele MA, Penner GB, Chaucheyras-Durand F (2016): Development and physiology of the rumen and the lower gut: targets for improving gut health. J Dairy Sci, 99, 4955-4966.
  • Stern MD, Varga GA, Clark JH, et al (1994): Evaluation of Chemical and Physical Properties of Feeds That Affect Protein Metabolism in the Rumen. J Dairy Sci, 77, 2762-2786.
  • Stewart CS, Flint HJ, Bryant MP (1997): The rumen bacteria. 10-72. In: PN Hobson, CS Stewart (Eds), The rumen microbial ecosystem. Springer, Dordrecht.
  • Teather RM, Forster RJ (1998): Manipulating the rumen microflora with bacteriocins to improve ruminant production. Can J Anim Sci, 78, 57-69.
  • Therion JJ, Kistner A, Kornelius JH (1982): Effect of pH on growth rates of rumen amylolytic and lactilytic bacteria. Appl Environ Microbiol, 44, 428-434.
  • Thirumalesh T, Krishnamoorthy U (2013): Rumen microbial biomass synthesis and its Importance in Ruminant Production. Int J Livest Res, 3, 5-26.
  • Ungerfeld, EM (2013): A theoretical comparison between two ruminal electron sinks. Front Microbiol, 4, 319.
  • Van Zijderveld SM, Gerrits WJJ, Dijkstra J, et al (2011): Persistency of methane mitigation by dietary nitrate supplementation in dairy cows. J Dairy Sci, 94, 4028-4038.
  • Wallace RJ (1985): Synergism between different species of proteolytic rumen bacteria. Curr Microbiol, 12, 59-63.
  • Wendy JU, Ruth B, Margaret LD, et al (2015): Biology and diseases of ruminants (sheep, goats, and cattle). 623-694. In: Anderson C, Glen O, Kathleen RPC, Mark TW, James GF (Eds), Laboratory animal medicine (Third Edition). Elsevier Publishing Press, Boston.
  • White BA, Lamed R, Bayer EA, et al (2014): Biomass utilization by gut microbiomes. Annu Rev Microbiol, 68, 279-296.
  • Wright ADG, Kennedy P, O’neill CJ, et al (2004): Reducing methane emissions in sheep by immunization against rumen methanogens. Vaccine, 22, 3976-3985.
  • Xu J, Hou Y, Yang H, et al (2014): Effects of forage sources on rumen fermentation characteristics, performance, and microbial protein synthesis in midlactation cows. Asian-Australas J Anim Sci, 27, 667-673.
  • Yokoyama MT, Johnson KA (1988): Microbiology of the rumen and intestine. 125-144. In: DC Church (Ed), The ruminant animal: digestive physiology and nutrition. Prentice Hall, New Jersey.
  • Zhou M, Chen Y, Guan, LL (2015): Rumen bacteria. 79-95. In: AK Puniya, R Singh, DN Kamra (Eds), Rumen Microbiology: From Evolution to Revolution. Springer, New Delhi.

Rumen Fizyolojisi: Mikroorganizmaları, Fermantasyonu ve Manipülasyon

Yıl 2021, Cilt: 68 Sayı: 4, 423 - 434, 27.09.2021
https://doi.org/10.33988/auvfd.960447

Öz

Ruminantlar, bitki yapısal unsurlarından oluşan kaba yemin tüketilebilir ürünlere dönüştürülmesinde eşsiz hayvanlardır. Bu nedenle, rumen fermentasyonu konusu bilim insanları tarafından uzun yıllardır yoğun bir şekilde araştırılmaktadır. Rumen fermentasyon performansında elde edilen ilerlemeler nüfusu hızla artan insanlığın kaliteli gıda ihtiyacının karşılanmasında hayati öneme sahiptir. Bu derlemede rumen fermentasyonu fizyolojisi ve son zamanlarda ki ilerlemeler ele alınmıştır.

Kaynakça

  • Asanuma N, Iwamoto M, Hino T, et al (1999): Effect of the addition of fumarate on methane production by ruminal microorganisms in vitro. J Dairy Sci, 82, 780-787.
  • Attwood GT, Kelly WJ, Altermann EH, et al (2008): Application of rumen microbial genome information to livestock systems in the postgenomic era. Aust J Exp Agric, 48, 695-700.
  • Bansal S, Goel G (2015): Commercial application of rumen microbial enzymes. 281-291. In: AK Puniya, R Singh, DN Kamra (Eds), Rumen Microbiology: From Evolution to Revolution. Springer, New Delhi.
  • Beauchemin KA, Kreuzer M, O'mara F, et al (2008): Nutritional management for enteric methane abatement: a review. Austr J Exp Agric, 48, 21-27.
  • Becerril R, Gómez-Lus R, Goni, P, et al (2007): Combination of analytical and microbiological techniques to study the antimicrobial activity of a new active food packaging containing cinnamon or oregano against E. coli and S. aureus. Analytical and Bioanalytical Chemistry, 388, 1003-1011.
  • Benchaar C, Pomar C, Chiquette J (2001): Evaluation of diet strategies to reduce methane production in ruminants: A modelling approach. Can J Anim Sci, 81, 563-574.
  • Burt, S. (2004): Essential oils: their antibacterial properties and potential applications in foods-a review. Int J Food Microbiol, 94, 223-253.
  • Callaway TR, Edrington TS, Rychlik JL, et al (2003): Ionophores: their use as ruminant growth promotants and impact on food safety. Curr Issues Intest Microbiol, 4, 43-51.
  • Castillo-González AR, Burrola-Barraza ME, Domínguez-Viveros J, et al (2014): Rumen microorganisms and fermentation. Arch Med Vet, 46, 349-361.
  • Cecava MJ (1995): Rumen physiology and energy requirements. 3-24. In: T Petty, M Cecava (Eds), Beef Cattle Feeding and Nutrition. Academic Press, California.
  • Chaucheyras F, Fonty G, Bertin G, et al (1995): Effects of live Saccharomyces cerevisiae cells on zoospore germination, growth, and cellulolytic activity of the rumen anaerobic fungus, Neocallimastix frontalis MCH3. Curr Microbiol, 31, 201-205.
  • Chen G, Russell JB (1989): More monensin-sensitive, ammonia-producing bacteria from the rumen. Appl Environ Microbiol, 55, 1052-1057.
  • Chesson A, Forsberg CW (1997): Polysaccharide degradation by rumen microorganisms. 329-381. In: PN Hobson, CS Stewart (Eds), The rumen microbial ecosystem. Springer, Dordrecht.
  • Choudhury PK, Salem AZM, Jena R, et al (2015): Rumen Microbiology: An Overview, 3-16. In: AK Puniya, R Singh, DN Kamra (Eds), Rumen Microbiology: From Evolution to Revolution. Springer, New Delhi.
  • Chung YH, He ML, McGinn SM, et al (2011): Linseed suppresses enteric methane emissions from cattle fed barley silage, but not from those fed grass hay. Anim Feed Sci Technol, 166, 321-329.
  • Clark H, Pinares-Patiño C, De Klein C (2005): Methane and nitrous oxide emissions from grazed grasslands. 279-293. In: DA McGilloway (Ed), Grassland: A Global Resource, Wageningen Academic Publishers, Wageningen.
  • Clauss M, Hofmann RR, Streich WJ, et al (2010): Convergence in the macroscopic anatomy of the reticulum in wild ruminant species of different feeding types and a new resulting hypothesis on reticular function. J Zool, 281, 26-38.
  • Cobellis G, Trabalza-Marinucci M, Yu Z (2016): Critical evaluation of essential oils as rumen modifiers in ruminant nutrition: A review. Sci Total Environ, 545, 556-568.
  • Cotta MA (1988): Amylolytic activity of selected species of ruminal bacteria. Appl Environ Microbiol, 54, 772-776.
  • Czerkawski JW (1986): An Introduction to Rumen Studies. Pergamon Press, Oxford.
  • De Araújo DAM, Freitas C, Cruz JS (2011): Essential oils components as a new path to understand ion channel molecular pharmacology. Life Sci, 89, 540-544.
  • Demirtaş A, Pişkin İ (2013): Isırgan otu (Urtica dioica L.), papatya (Matricaria chamomilla L.) ve hayıt meyvesi (Vitex agnus-castus L.) ekstraktlarının normal koşullarda ve asidoz koşullarında rumen mikrobiyal fermentasyonuna in vitro etkileri. Doktora Tezi. Ankara Üniversitesi Sağlık Bilimleri Enstitüsü, Ankara.
  • Demirtas A, Musa SAA, Pekcan M, et al (2020): Effects of cleavers (Galium aparine) and yarrow (Achillea millefolium) extracts on rumen microbial fermentation in in-vitro semi-continuous culture system (Rusitec). Kafkas Univ Vet Fak Derg, 26, 385-390.
  • Doreau M, Ferlay A (1995): Effect of dietary lipids on nitrogen metabolism in the rumen: a review. Livest Prod Sci, 43, 97-110.
  • Eckard RJ, Grainger C, De Klein CAM (2010): Options for the abatement of methane and nitrous oxide from ruminant production: a review. Livest Sci, 130, 47-56.
  • Ellis JL, Dijkstra J, Kebreab E, et al (2008): Aspects of rumen microbiology central to mechanistic modelling of methane production in cattle. J Agric Sci, 146, 213-233.
  • Eun JS, Beauchemin KA (2007): Assessment of the efficacy of varying experimental exogenous fibrolytic enzymes using in vitro fermentation characteristics. Anim Feed Sci Technol, 132, 298-315.
  • Faverdin P (1999): The effect of nutrients on feed intake in ruminants. Proc Nutr Soc, 58, 523-531
  • Fox NJ, Smith LA, Houdijk JGM, et al (2018): Ubiquitous parasites drive a 33% increase in methane yield from livestock. Int J Parasitol, 48, 1017-1021.
  • Gencoglu H, Turkmen II (2006): Effects of forage source on chewing and rumen fermentation in lactating dairy cows. Rev Med Vet, 157, 463.
  • Gilbert RA, Klieve AV (2015): Ruminal Viruses (Bacteriophages, Archaeaphages). 121-141. In: AK Puniya, R Singh, DN Kamra (Eds), Rumen Microbiology: From Evolution to Revolution. Springer, New Delhi.
  • Gonelimali FD, Lin J, Miao W et al (2018): Antimicrobial properties and mechanism of action of some plant extracts against food pathogens and spoilage microorganisms. Front Microbiol, 9, 1639.
  • Greathead H (2003): Plants and plant extracts for improving animal productivity. Proc Nutr Soc, 62, 279-290.
  • Guan H, Wittenberg KM, Ominski KH et al (2006): Efficacy of ionophores in cattle diets for mitigation of enteric methane. J Anim Sci, 84, 1896-1906.
  • Gür G, Öztürk H (2021): Ruminantlarda metan salinimini azaltma stratejileri. Veteriner Farmakoloji ve Toksikoloji Derneği Bülteni, 12, 43-54.
  • Hammer KA, Carson CF (2011): Antibacterial and antifungal activities of essential oils. 255 – 293. In: G Bergsson, H Hilmarsson, H Thormar, (Eds), Lipids and Essential Oils. John Wiley & Sons, New Delhi.
  • Haque N, Saraswat ML, Sahoo A (2001): Methane production and energy balance in crossbred male calves fed on rations containing different ratios of green sorghum and wheat straw. Indian J Anim Sci, 71, 797-799.
  • Haque MN (2018): Dietary manipulation: a sustainable way to mitigate methane emissions from ruminants. J Anim Sci Technol, 60, 15.
  • Hegarty RS, Klieve AV (1999): Opportunities for biological control of ruminal methanogenesis. Aust J Agric Res, 50, 1315-1320.
  • Hungate RE (1950): The anaerobic mesophilic cellulolytic bacteria. Bacteriol Rev, 14, 1-49.
  • Hungate RE (1960): I. Microbial ecology of the rumen. Bacteriol Rev, 24, 353-364.
  • Hungate RE, Mah RA, Simesen M (1961): Rates of production of individual volatile fatty acids in the rumen of lactating cows. Appl Microbiol, 9, 554-561.
  • Jalc D, Ceresnakova Z (2002): Effect of plant oils and malate on rumen fermentation in vitro. Czech J Anim Sci 47, 106-111.
  • Janssen PH, Kirs M (2008): Structure of the archaeal community of the rumen. Appl Environ Microbiol, 74, 3619-3625.
  • Joblin KN (1999): Ruminal acetogens and their potential to lower ruminant methane emissions. Aust J Agric Res, 50, 1307-1314.
  • Johnson KA, Johnson DE (1995): Methane emissions from cattle. J Anim Sci, 73, 2483-2492.
  • Kamra DN (2005): Rumen microbial ecosystem. Curr Sci India, 89, 124-135.
  • Karcol J, Kasarda R, Šimko M (2017): Effect of feeding of different sources of NPN on production performance of dairy cows. Acta Fytotech Zootech, 19, 163-166.
  • Klieve AV, Bauchop T (1988): Morphological diversity of ruminal bacteriophages from sheep and cattle. Appl Environ Microbiol, 54, 1637-1641.
  • Krehbiel CR (2014): Invited review: applied nutrition of ruminants: fermentation and digestive physiology. Prof Anim Sci, 30, 129-139.
  • Kung JRL, AO Hession (1995): Preventing in vitro lactate accumulation in ruminal fermentations by inoculation with Megasphaera elsdenii. J Anim Sci, 73, 250-256.
  • Lambers H, Chapin FS, Pons TL (2008): Plant physiological ecology. Second Edition, Springer, New York.
  • Lila ZA, Mohammed N, Yasui T, et al (2004): Effects of a twin strain of Saccharomyces cerevisiae live cells on mixed ruminal microorganism fermentation in vitro. J Anim Sci, 82, 1847-1854.
  • Lovett DK, Lovell S, Stack L, et al (2003): Effect of forage/concentrate ratio and dietary coconut oil level on methane output and performance of finishing beef heifers. Livest Prod Sci, 84, 135-146.
  • Maia MR, Chaudhary LC, Figueres L, et al (2007): Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie Van Leeuwenhoek, 91, 303-314.
  • McAllister TA, Bae HD, Jones GA, et al (1994): Microbial attachment and feed digestion in the rumen. J Anim Sci, 72, 3004-3018.
  • McAllister TA, Cheng KJ, Okine EK, et al (1996): Dietary, environmental and microbiological aspects of methane production in ruminants. Can J Anim Sci, 76, 231-243.
  • McAllister TA, Newbold CJ (2008): Redirecting rumen fermentation to reduce methanogenesis. Aust J Exp Agric, 48, 7-13
  • McSweeney C, Mackie R (2012): Commission on genetic resources for food and agriculture. microorganisms and ruminant digestion: state of knowledge, trends and future prospects. Background Study Paper (FAO), 61, 1-62.
  • Membrive CMB (2016): Anatomy and Physiology of the Rumen. 1-38. In: D Millen, M De Beni Arrigoni, R Lauritano Pacheco (Eds), Rumenology. Springer, Cham.
  • Mohammed N, Lila ZA, Ajisaka N, et al (2004): Inhibition of ruminal microbial methane production by β‐cyclodextrin iodopropane, malate and their combination in vitro. J Anim Physiol Anim Nutr, 88, 188-195.
  • Morgavi DP, Forano E, Martin C, et al (2010): Microbial ecosystem and methanogenesis in ruminants. Anim, 4, 1024-1036.
  • Nagaraja TG, Towne G, Beharka AA (1992): Moderation of ruminal fermentation by ciliated protozoa in cattle fed a high-grain diet. Appl Environ Microbial, 58, 2410-2414.
  • Nagaraja TG, Newbold CJ, Van Nevel CJ, et al (1997): Manipulation of ruminal fermentation. 523-632. In: PN Hobson, CS Stewart (Eds), The rumen microbial ecosystem. Springer, Dordrecht.
  • Nagaraja TG (2016): Microbiology of the rumen. 39-61. In: D Millen, M De Beni Arrigoni, R Lauritano Pacheco (Eds), Rumenology. Springer, Cham.
  • Nehme R, Andrés S, Pereira RB, et al (2021): Essential oils in livestock: From health to food quality. Antioxidants, 10, 330.
  • Newbold CJ, McIntosh FM, Wallace RJ (1998): Changes in the microbial population of a rumen-simulating fermenter in response to yeast culture. Can J Anim Sci, 78, 241-244.
  • Oeztuerk H (2009): Effects of live and autoclaved yeast cultures on ruminal fermentation in vitro. J Anim Feed Sci, 18, 142-150.
  • Orpin CG, Joblin KN (1997): The Rumen Anaerobic Fungi. 140-195. In: PN Hobson, CS Stewart (Eds), The rumen microbial ecosystem. Springer, Dordrecht.
  • Öztürk H (2007): Küresel isınmada ruminantların rolü. Vet Hek Der Derg, 78, 17-21.
  • Öztürk H (2008): Effects of inulin on rumen metabolism in vitro. Ankara Univ Vet Fak Derg, 55, 79-82
  • Öztürk H (2008): Ruminant beslemede probiyotik mayalar. Vet Hekim Der Derg, 79, 37-42.
  • Öztürk H, Salgirli Demirbas Y, Aydin FG, et al (2015): Effects of hydrolyzed and live yeasts on rumen microbial fermentation in a semi-continuous culture system (Rusitec), Turkish J Vet Anim Sci, 39, 556-559.
  • Öztürk H (2019): Veteriner fizyoloji. Ankara Nobel Tıp Kitabevleri, Ankara.
  • Patra AK (2012): An overview of antimicrobial properties of different classes of phytochemicals. 1-32. In: AK Patra (Ed), Dietary phytochemicals and microbes. Springer, Dordrecht.
  • Pinares-Patiño CS, Ulyatt MJ, Lassey KR, et al (2003): Persistence of differences between sheep in methane emission under generous grazing conditions. J Agric Sci, 140, 227-233.
  • Ribeiro Pereira LG, Machado FS, Campos MM, et al (2015): Enteric methane mitigation strategies in ruminants: a review. Rev Colomb de Cienc Pecu, 28, 124-143.
  • Romero E, Augulis R, Novoderezhkin V, et al (2014): Quantum coherence in photosynthesis for efficient solar-energy conversion. Nat Phys, 10, 676-682.
  • Russell JB, Muck RE, Weimer PJ (2009): Quantitative analysis of cellulose degradation and growth of cellulolytic bacteria in the rumen. FEMS Microbiol Ecol, 67, 183-197.
  • Saad NY, Muller CD, Lobstein A (2013): Major bioactivities and mechanism of action of essential oils and their components. Flavour Fragr J, 28, 269-279.
  • Sabo, VA, Knezevic P (2019): Antimicrobial activity of Eucalyptus camaldulensis Dehn. plant extracts and essential oils: A review. Industrial Crops and Products, 132, 413-429.
  • Shimojo M, Bungo T, Imura Y, et al (2000): Basic avoidance of food competition among ruminants, non-ruminants and humans-a simple analytic description. J Fac Agric Kyushu Univ, 44, 293-298.
  • Steele MA, Penner GB, Chaucheyras-Durand F (2016): Development and physiology of the rumen and the lower gut: targets for improving gut health. J Dairy Sci, 99, 4955-4966.
  • Stern MD, Varga GA, Clark JH, et al (1994): Evaluation of Chemical and Physical Properties of Feeds That Affect Protein Metabolism in the Rumen. J Dairy Sci, 77, 2762-2786.
  • Stewart CS, Flint HJ, Bryant MP (1997): The rumen bacteria. 10-72. In: PN Hobson, CS Stewart (Eds), The rumen microbial ecosystem. Springer, Dordrecht.
  • Teather RM, Forster RJ (1998): Manipulating the rumen microflora with bacteriocins to improve ruminant production. Can J Anim Sci, 78, 57-69.
  • Therion JJ, Kistner A, Kornelius JH (1982): Effect of pH on growth rates of rumen amylolytic and lactilytic bacteria. Appl Environ Microbiol, 44, 428-434.
  • Thirumalesh T, Krishnamoorthy U (2013): Rumen microbial biomass synthesis and its Importance in Ruminant Production. Int J Livest Res, 3, 5-26.
  • Ungerfeld, EM (2013): A theoretical comparison between two ruminal electron sinks. Front Microbiol, 4, 319.
  • Van Zijderveld SM, Gerrits WJJ, Dijkstra J, et al (2011): Persistency of methane mitigation by dietary nitrate supplementation in dairy cows. J Dairy Sci, 94, 4028-4038.
  • Wallace RJ (1985): Synergism between different species of proteolytic rumen bacteria. Curr Microbiol, 12, 59-63.
  • Wendy JU, Ruth B, Margaret LD, et al (2015): Biology and diseases of ruminants (sheep, goats, and cattle). 623-694. In: Anderson C, Glen O, Kathleen RPC, Mark TW, James GF (Eds), Laboratory animal medicine (Third Edition). Elsevier Publishing Press, Boston.
  • White BA, Lamed R, Bayer EA, et al (2014): Biomass utilization by gut microbiomes. Annu Rev Microbiol, 68, 279-296.
  • Wright ADG, Kennedy P, O’neill CJ, et al (2004): Reducing methane emissions in sheep by immunization against rumen methanogens. Vaccine, 22, 3976-3985.
  • Xu J, Hou Y, Yang H, et al (2014): Effects of forage sources on rumen fermentation characteristics, performance, and microbial protein synthesis in midlactation cows. Asian-Australas J Anim Sci, 27, 667-673.
  • Yokoyama MT, Johnson KA (1988): Microbiology of the rumen and intestine. 125-144. In: DC Church (Ed), The ruminant animal: digestive physiology and nutrition. Prentice Hall, New Jersey.
  • Zhou M, Chen Y, Guan, LL (2015): Rumen bacteria. 79-95. In: AK Puniya, R Singh, DN Kamra (Eds), Rumen Microbiology: From Evolution to Revolution. Springer, New Delhi.
Toplam 97 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Veteriner Cerrahi
Bölüm Derleme
Yazarlar

Hakan Öztürk 0000-0003-2913-2069

Gursel Gur 0000-0002-9095-9965

Yayımlanma Tarihi 27 Eylül 2021
Yayımlandığı Sayı Yıl 2021Cilt: 68 Sayı: 4

Kaynak Göster

APA Öztürk, H., & Gur, G. (2021). Rumen physiology: microorganisms, fermentation and manipulation. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 68(4), 423-434. https://doi.org/10.33988/auvfd.960447
AMA Öztürk H, Gur G. Rumen physiology: microorganisms, fermentation and manipulation. Ankara Univ Vet Fak Derg. Eylül 2021;68(4):423-434. doi:10.33988/auvfd.960447
Chicago Öztürk, Hakan, ve Gursel Gur. “Rumen Physiology: Microorganisms, Fermentation and Manipulation”. Ankara Üniversitesi Veteriner Fakültesi Dergisi 68, sy. 4 (Eylül 2021): 423-34. https://doi.org/10.33988/auvfd.960447.
EndNote Öztürk H, Gur G (01 Eylül 2021) Rumen physiology: microorganisms, fermentation and manipulation. Ankara Üniversitesi Veteriner Fakültesi Dergisi 68 4 423–434.
IEEE H. Öztürk ve G. Gur, “Rumen physiology: microorganisms, fermentation and manipulation”, Ankara Univ Vet Fak Derg, c. 68, sy. 4, ss. 423–434, 2021, doi: 10.33988/auvfd.960447.
ISNAD Öztürk, Hakan - Gur, Gursel. “Rumen Physiology: Microorganisms, Fermentation and Manipulation”. Ankara Üniversitesi Veteriner Fakültesi Dergisi 68/4 (Eylül 2021), 423-434. https://doi.org/10.33988/auvfd.960447.
JAMA Öztürk H, Gur G. Rumen physiology: microorganisms, fermentation and manipulation. Ankara Univ Vet Fak Derg. 2021;68:423–434.
MLA Öztürk, Hakan ve Gursel Gur. “Rumen Physiology: Microorganisms, Fermentation and Manipulation”. Ankara Üniversitesi Veteriner Fakültesi Dergisi, c. 68, sy. 4, 2021, ss. 423-34, doi:10.33988/auvfd.960447.
Vancouver Öztürk H, Gur G. Rumen physiology: microorganisms, fermentation and manipulation. Ankara Univ Vet Fak Derg. 2021;68(4):423-34.