Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 13 Sayı: 4, 2945 - 2957, 01.12.2023
https://doi.org/10.21597/jist.1313391

Öz

Kaynakça

  • Abdeljewad, T. (2015). On conformable fractional calculus. Journal of Computational and Applied Mathematics, 279, 57–66.
  • Agarwal, R., Bohner, M., O'Regan, D., & Peterson, A. (2002). Dynamic equations on time scales: a survey. Journal of Computational and Applied Mathematics, 141(1-2), 1-26.
  • Anderson, D. R., & Georgiev, S. G. (2020). Conformable Dynamic Equations on Time Scales. Chapman and Hall/CRC.
  • Anderson, D. R., & Ulness, D. J. (2015). Newly defined conformable derivatives. Advances in Dynamical Systems and Applications, 10(2), 109-137.
  • Aulbach, B., & Hilger. S. (1990). A unified approach to continuous and discrete Dynamics. in: Qualitative Theory of Differential Equations (Szeged, 1988), 37–56, Colloq. Math. Soc. János Bolyai, 53 North-Holland, Amsterdam.
  • Benkhettou, N., Brito da Cruz, A. M. C., & Torres, D. F. M. (2015). A fractional calculus on arbitrary time scales: Fractional differentiation and fractional integration. Signal Processing, 107, 230– 237.
  • Benkhettou, N., Hassani, S., & Torres, D. F. M. (2016). A conformable fractional calculus on arbitrary time scales. Journal of King Saud University (Science), 28(1), 93-98.
  • Bohner, M., & Peterson, A. (2001). Dynamic equations on time scales, An introduction with applications. Boston, MA: Birkhauser.
  • Bohner, M., & Peterson, A. (2004). Advances in Dynamic Equations on Time Scales. Boston: Birkhauser.
  • Bohner, M., & Svetlin, G. (2016). Multivariable dynamic calculus on time scales. Springer.
  • Gulsen, T., Yilmaz, E., & Goktas, S. (2017). Conformable fractional Dirac system on time scales. Journal of Inequalities and Applications, 2017(1), 161.
  • Gülşen, T., Yilmaz, E., & Kemaloğlu, H. (2018). Conformable fractional Sturm-Liouville equation and some existence results on time scales. Turkish Journal of Mathematics, 42(3), 1348-1360.
  • Hilger, S. (1990). Analysis on measure chains a unified approach to continuous and discrete calculus. Results in mathematics, 18(1).
  • Katugampola, U. (2014). A new fractional derivative with classical properties, arXiv:1410.6535v2.
  • Khalil, R., Horani, M. Al., Yousef, A., & Sababheh, M. (2014). A new definition of fractional derivative. Journal of Computational and Applied Mathematics, 264, 57–66.
  • Li, Y., Ang, K. H., Chong, G. C. (2006). PID control system analysis and design. IEEE Control Systems Magazine, 26(1), 32-41.
  • Ortigueira, M. D., & Machado, J. T. (2015). What is a fractional derivative?. Journal of computational Physics, 293, 4-13.
  • Segi Rahmat, M. R. (2019). A new definition of conformable fractional derivative on arbitrary time scales. Advances in Difference Equations, 2019 (1), 1-16.
  • Yilmaz, E., Gulsen, T., & Panakhov, E. S. (2022). Existence Results for a Conformable Type Dirac System on Time Scales in Quantum Physics, Applied and Computational Mathematics an International Journal, 21(3), 279-291.

Self-Adjoint Sturm-Liouville Dynamic Problem via Proportional Derivative

Yıl 2023, Cilt: 13 Sayı: 4, 2945 - 2957, 01.12.2023
https://doi.org/10.21597/jist.1313391

Öz

The concept of a conformable derivative on time scales is a relatively new development in the field of fractional calculus. Traditional fractional calculus deals with derivatives and integrals of non-integer order on continuous time domains. However, time scale calculus extends these concepts to more general time domains that include both continuous and discrete points. The conformable derivative on time scales has several properties that make it advantageous in certain applications. For example, it satisfies a chain rule and has a simple relationship with the conformable integral, which facilitates the development of differential equations involving fractional order dynamics. It also allows for the analysis of systems with both continuous and discrete data points, making it suitable for modeling and control applications in various fields, including physics, engineering, and finance. In this study, the Sturm-Liouville problem and its properties are examined on an arbitrary time scale using the proportional derivative, a more general form of the fractional derivative. Important spectral properties such as self-adjointness, Green formula, Lagrange identity, Abel formula, and orthogonality of eigenfunctions for this problem are expressed in proportional derivatives on an arbitrary time scale.

Kaynakça

  • Abdeljewad, T. (2015). On conformable fractional calculus. Journal of Computational and Applied Mathematics, 279, 57–66.
  • Agarwal, R., Bohner, M., O'Regan, D., & Peterson, A. (2002). Dynamic equations on time scales: a survey. Journal of Computational and Applied Mathematics, 141(1-2), 1-26.
  • Anderson, D. R., & Georgiev, S. G. (2020). Conformable Dynamic Equations on Time Scales. Chapman and Hall/CRC.
  • Anderson, D. R., & Ulness, D. J. (2015). Newly defined conformable derivatives. Advances in Dynamical Systems and Applications, 10(2), 109-137.
  • Aulbach, B., & Hilger. S. (1990). A unified approach to continuous and discrete Dynamics. in: Qualitative Theory of Differential Equations (Szeged, 1988), 37–56, Colloq. Math. Soc. János Bolyai, 53 North-Holland, Amsterdam.
  • Benkhettou, N., Brito da Cruz, A. M. C., & Torres, D. F. M. (2015). A fractional calculus on arbitrary time scales: Fractional differentiation and fractional integration. Signal Processing, 107, 230– 237.
  • Benkhettou, N., Hassani, S., & Torres, D. F. M. (2016). A conformable fractional calculus on arbitrary time scales. Journal of King Saud University (Science), 28(1), 93-98.
  • Bohner, M., & Peterson, A. (2001). Dynamic equations on time scales, An introduction with applications. Boston, MA: Birkhauser.
  • Bohner, M., & Peterson, A. (2004). Advances in Dynamic Equations on Time Scales. Boston: Birkhauser.
  • Bohner, M., & Svetlin, G. (2016). Multivariable dynamic calculus on time scales. Springer.
  • Gulsen, T., Yilmaz, E., & Goktas, S. (2017). Conformable fractional Dirac system on time scales. Journal of Inequalities and Applications, 2017(1), 161.
  • Gülşen, T., Yilmaz, E., & Kemaloğlu, H. (2018). Conformable fractional Sturm-Liouville equation and some existence results on time scales. Turkish Journal of Mathematics, 42(3), 1348-1360.
  • Hilger, S. (1990). Analysis on measure chains a unified approach to continuous and discrete calculus. Results in mathematics, 18(1).
  • Katugampola, U. (2014). A new fractional derivative with classical properties, arXiv:1410.6535v2.
  • Khalil, R., Horani, M. Al., Yousef, A., & Sababheh, M. (2014). A new definition of fractional derivative. Journal of Computational and Applied Mathematics, 264, 57–66.
  • Li, Y., Ang, K. H., Chong, G. C. (2006). PID control system analysis and design. IEEE Control Systems Magazine, 26(1), 32-41.
  • Ortigueira, M. D., & Machado, J. T. (2015). What is a fractional derivative?. Journal of computational Physics, 293, 4-13.
  • Segi Rahmat, M. R. (2019). A new definition of conformable fractional derivative on arbitrary time scales. Advances in Difference Equations, 2019 (1), 1-16.
  • Yilmaz, E., Gulsen, T., & Panakhov, E. S. (2022). Existence Results for a Conformable Type Dirac System on Time Scales in Quantum Physics, Applied and Computational Mathematics an International Journal, 21(3), 279-291.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yazılım Mühendisliği (Diğer)
Bölüm Matematik / Mathematics
Yazarlar

Tuba Gülşen 0000-0002-2288-8050

Mehmet Acar Bu kişi benim 0000-0003-1280-8034

Erken Görünüm Tarihi 30 Kasım 2023
Yayımlanma Tarihi 1 Aralık 2023
Gönderilme Tarihi 12 Haziran 2023
Kabul Tarihi 10 Ağustos 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 13 Sayı: 4

Kaynak Göster

APA Gülşen, T., & Acar, M. (2023). Self-Adjoint Sturm-Liouville Dynamic Problem via Proportional Derivative. Journal of the Institute of Science and Technology, 13(4), 2945-2957. https://doi.org/10.21597/jist.1313391
AMA Gülşen T, Acar M. Self-Adjoint Sturm-Liouville Dynamic Problem via Proportional Derivative. Iğdır Üniv. Fen Bil Enst. Der. Aralık 2023;13(4):2945-2957. doi:10.21597/jist.1313391
Chicago Gülşen, Tuba, ve Mehmet Acar. “Self-Adjoint Sturm-Liouville Dynamic Problem via Proportional Derivative”. Journal of the Institute of Science and Technology 13, sy. 4 (Aralık 2023): 2945-57. https://doi.org/10.21597/jist.1313391.
EndNote Gülşen T, Acar M (01 Aralık 2023) Self-Adjoint Sturm-Liouville Dynamic Problem via Proportional Derivative. Journal of the Institute of Science and Technology 13 4 2945–2957.
IEEE T. Gülşen ve M. Acar, “Self-Adjoint Sturm-Liouville Dynamic Problem via Proportional Derivative”, Iğdır Üniv. Fen Bil Enst. Der., c. 13, sy. 4, ss. 2945–2957, 2023, doi: 10.21597/jist.1313391.
ISNAD Gülşen, Tuba - Acar, Mehmet. “Self-Adjoint Sturm-Liouville Dynamic Problem via Proportional Derivative”. Journal of the Institute of Science and Technology 13/4 (Aralık 2023), 2945-2957. https://doi.org/10.21597/jist.1313391.
JAMA Gülşen T, Acar M. Self-Adjoint Sturm-Liouville Dynamic Problem via Proportional Derivative. Iğdır Üniv. Fen Bil Enst. Der. 2023;13:2945–2957.
MLA Gülşen, Tuba ve Mehmet Acar. “Self-Adjoint Sturm-Liouville Dynamic Problem via Proportional Derivative”. Journal of the Institute of Science and Technology, c. 13, sy. 4, 2023, ss. 2945-57, doi:10.21597/jist.1313391.
Vancouver Gülşen T, Acar M. Self-Adjoint Sturm-Liouville Dynamic Problem via Proportional Derivative. Iğdır Üniv. Fen Bil Enst. Der. 2023;13(4):2945-57.