Araştırma Makalesi
BibTex RIS Kaynak Göster

Enhancing Biogas Production with The Addition of Nano-catalysts

Yıl 2024, Cilt: 11 Sayı: 2, 643 - 654
https://doi.org/10.18596/jotcsa.1368040

Öz

: The province of Burdur is at the forefront of the livestock industry, especially with dairy cattle. it is a necessity for Burdur province to use animal manure, convert it into methane gas, and use it as fuel. In this study, a laboratory-scale biodigester was set up to produce biogas from cattle feces taken from Burdur Mehmet Akif Ersoy University Cattle Farm. γ-Fe2O3, meso-Fe2O3, and meso-Co3O4 nanoparticles (NPs) were synthesized and used as catalysts for biogas production. Structural characterizations of catalysts were carried out via FT-IR and XRD techniques. The TEM was used to investigate particle size distributions and morphology. The average particle sizes of the nanoparticles were determined to be in the range of 20-165 nm. The bio-digester was kept at a constant temperature of 35 °C for 20 days. It has been determined that the obtained biogas has a high methane content of 83–86%. The biogas volume was obtained to be 1.360 L/kg for γ-Fe2O3, 1.390 L/kg for meso-Fe2O3, and 625-1.250 L/kg for Co3O4.

Etik Beyan

We (all authors) declare that Ethics Committee Approval is not required for this publication.

Destekleyen Kurum

Burdur Mehmet Akif Ersoy University Scientific Research Projects Coordinatorship

Proje Numarası

0715-MP-21

Teşekkür

The authors also would like to thank Assoc. Prof. Dr. Ruken Esra Demirdöğen for her valuable contribution.

Kaynakça

  • 1. Kona A, Bertoldi P, Kılkış Ş. Covenant of Mayors: Local Energy Generation, Methodology, Policies and Good Practice Examples. Energies [Internet]. 2019 Mar 13;12(6):985. Available from: <URL>.
  • 2. Dabe SJ, Prasad PJ, Vaidya AN, Purohit HJ. Technological pathways for bioenergy generation from municipal solid waste: Renewable energy option. Environ Prog Sustain Energy [Internet]. 2019 Mar 25;38(2):654–71. Available from: <URL>.
  • 3. Mikalauskiene A, Štreimikis J, Mikalauskas I, Stankūnienė G, Dapkus R. Comparative Assessment of Climate Change Mitigation Policies in Fuel Combustion Sector of Lithuania and Bulgaria. Energies [Internet]. 2019 Feb 7;12(3):529. Available from: <URL>.
  • 4. Holdmann GP, Wies RW, Vandermeer JB. Renewable Energy Integration in Alaska’s Remote Islanded Microgrids: Economic Drivers, Technical Strategies, Technological Niche Development, and Policy Implications. Proc IEEE [Internet]. 2019 Sep;107(9):1820–37. Available from: <URL>.
  • 5. Viancelli A, Schneider TM, Demczuk T, Delmoral APG, Petry B, Collato MM, et al. Unlocking the value of biomass: Exploring microbial strategies for biogas and volatile fatty acids generation. Bioresour Technol Reports [Internet]. 2023 Sep;23:101552. Available from: <URL>.
  • 6. Havukainen J, Uusitalo V, Niskanen A, Kapustina V, Horttanainen M. Evaluation of methods for estimating energy performance of biogas production. Renew Energy [Internet]. 2014 Jun;66:232–40. Available from: <URL>.
  • 7. Yusuf MOL, Ify NL. The effect of waste paper on the kinetics of biogas yield from the co-digestion of cow dung and water hyacinth. Biomass and Bioenergy [Internet]. 2011 Mar;35(3):1345–51. Available from: <URL>.
  • 8. Koniuszewska I, Korzeniewska E, Harnisz M, Czatzkowska M. Intensification of biogas production using various technologies: A review. Int J Energy Res [Internet]. 2020 Jun 25;44(8):6240–58. Available from: <URL>.
  • 9. Barozzi M, Contini S, Raboni M, Torretta V, Casson Moreno V, Copelli S. Integration of Recursive Operability Analysis, FMECA and FTA for the Quantitative Risk Assessment in biogas plants: Role of procedural errors and components failures. J Loss Prev Process Ind [Internet]. 2021 Jul;71:104468. Available from: <URL>.
  • 10. Shakil Hussain SM, Kamal MS, Hossain MK. Recent Developments in Nanostructured Palladium and Other Metal Catalysts for Organic Transformation. J Nanomater [Internet]. 2019 Oct 20;2019:1562130. Available from: <URL>.
  • 11. Srivastava N, Srivastava KR, Bantun F, Mohammad A, Singh R, Pal DB, et al. Improved production of biogas via microbial digestion of pressmud using CuO/Cu2O based nanocatalyst prepared from pressmud and sugarcane bagasse waste. Bioresour Technol [Internet]. 2022 Oct;362:127814. Available from: <URL>.
  • 12. Ribeaucourt D, Bissaro B, Guallar V, Yemloul M, Haon M, Grisel S, et al. Comprehensive Insights into the Production of Long Chain Aliphatic Aldehydes Using a Copper-Radical Alcohol Oxidase as Biocatalyst. ACS Sustain Chem Eng [Internet]. 2021 Mar 29;9(12):4411–21. Available from: <URL>.
  • 13. Ozyilmaz E, Alhiali A, Caglar O, Yilmaz M. Preparation of regenerable magnetic nanoparticles for cellulase immobilization: Improvement of enzymatic activity and stability. Biotechnol Prog [Internet]. 2021 Mar 22;37(4):e3145. Available from: <URL>.
  • 14. Watanabe T, Takawane S, Baba Y, Akaiwa J, Kondo A, Ohba T. Superior Thermal Stability and High Photocatalytic Activity of Titanium Dioxide Nanocatalysts in Carbon Nanotubes. J Phys Chem C [Internet]. 2023 Aug 31;127(34):16861–9. Available from: <URL>.
  • 15. Gómez-Gualdrón DA, McKenzie GD, Alvarado JFJ, Balbuena PB. Dynamic Evolution of Supported Metal Nanocatalyst/Carbon Structure during Single-Walled Carbon Nanotube Growth. ACS Nano [Internet]. 2012 Jan 24;6(1):720–35. Available from: <URL>.
  • 16. Bhanja P, Bhaumik A. Materials with Nanoscale Porosity: Energy and Environmental Applications. Chem Rec [Internet]. 2019 Feb 2;19(2–3):333–46. Available from: <URL>.
  • 17. Zhou L, Zheng J, Ye E, Liu Y, He C. Nanocatalysis with sustainability. In: Li Z, Zheng J, Ye E, editors. Nanoscience and Nanotechnology Series, Sustainable Nanotechnology [Internet]. London: 10.1039/9781839165771; 2022. p. 220–54. Available from: <URL>.
  • 18. Touchy AS, Siddiki SMAH. Green Chemical Synthesis in the Presence of Nanoparticles as Catalysts. In: Singh NB, Susan ABH, Chaudhary RG, editors. Emerging Applications of Nanomaterials. Millersville: Materials Research Forum LLC; 2023. p. 42–74.
  • 19. Bharathi P, Dayana R, Rangaraju M, Varsha V, Subathra M, Gayathri, et al. Biogas Production from Food Waste Using Nanocatalyst. R L, editor. J Nanomater [Internet]. 2022 Jul 31;2022:7529036. Available from: <URL>.
  • 20. Awogbemi O, Kallon DV Von. Recent advances in the application of nanomaterials for improved biodiesel, biogas, biohydrogen, and bioethanol production. Fuel [Internet]. 2024 Feb;358:130261. Available from: <URL>.
  • 21. Jayanthi SA, Nathan DMGT, Jayashainy J, Sagayaraj P. A novel hydrothermal approach for synthesizing α-Fe2O3, γ-Fe2O3 and Fe3O4 mesoporous magnetic nanoparticles. Mater Chem Phys [Internet]. 2015 Jul;162:316–25. Available from: <URL>.
  • 22. Li D, Wu X, Xiao T, Tao W, Yuan M, Hu X, et al. Hydrothermal synthesis of mesoporous Co3O4 nanobelts by means of a compound precursor. J Phys Chem Solids [Internet]. 2012 Feb;73(2):169–75. Available from: <URL>.
  • 23. Zhang L, Papaefthymiou GC, Ying JY. Synthesis and Properties of γ-Fe2O3 Nanoclusters within Mesoporous Aluminosilicate Matrices. J Phys Chem B [Internet]. 2001 Aug 1;105(31):7414–23. Available from: <URL>.
  • 24. Demir Ö, Ateş N. Manyetik Nanopartiküllerin Anaerobik Çürütücüde Biyogaz Üretimi Üzerine Etkileri. Çukurova Üniversitesi Mühendislik Fakültesi Derg [Internet]. 2021 Aug 16;36(2):283–96. Available from: <URL>.
  • 25. Yılmazer M, Seçilmiş H. Gaz kromatografisi headspace sistemi ile süt ürünlerinde bazı aroma bileşenlerinin analizi. In: Türkiye 9 Gıda Kongresi. 2006. p. 24–6.
  • 26. Omoniyi TE, Olorunnisola AO. Experimental characterisation of bagasse biomass material for energy production. Int J Eng Technol. 2014;4(10):582–9. Available from: <URL>.
  • 27. Beutler M, Wiltshire KH, Meyer B, Moldaenke C, Luring C, Meyerhofer M, Hansen UP. APHA (2005), Standard Methods for the Examination of Water and Wastewater, Washington DC: American Public Health Association. 2014;
  • 28. Huang Y, Zhang D, Oshita K, Takaoka M, Ying M, Sun Z, et al. Crude oil recovery from oily sludge using liquefied dimethyl ether extraction: A comparison with conventional extraction methods. Energy and Fuels [Internet]. 2021 Nov 4 [cited 2024 Feb 27];35(21):17810–9. Available from: <URL>.
  • 29. Parsianpour E, Gholami M, Shahbazi N, Samavat F. Influence of thermal annealing on the structural and optical properties of maghemite (γ‐Fe2O3) nanoparticle thin films. Surf Interface Anal [Internet]. 2015 May 12;47(5):612–7. Available from: <URL>.
  • 30. Mishra D, Arora R, Lahiri S, Amritphale SS, Chandra N. Synthesis and characterization of iron oxide nanoparticles by solvothermal method. Prot Met Phys Chem Surfaces [Internet]. 2014 Sep 12;50(5):628–31. Available from: <URL>.
  • 31. Jagadale AD, Kumbhar VS, Lokhande CD. Supercapacitive activities of potentiodynamically deposited nanoflakes of cobalt oxide (Co3O4) thin film electrode. J Colloid Interface Sci [Internet]. 2013 Sep;406:225–30. Available from: <URL>.
  • 32. Wang S, Jena U, Das KC. Biomethane production potential of slaughterhouse waste in the United States. Energy Convers Manag [Internet]. 2018 Oct;173:143–57. Available from: <URL>.
  • 33. Wang P, Wang H, Qiu Y, Ren L, Jiang B. Microbial characteristics in anaerobic digestion process of food waste for methane production–A review. Bioresour Technol [Internet]. 2018 Jan;248:29–36. Available from: <URL>.
  • 34. Nguyen D, Khanal SK. A little breath of fresh air into an anaerobic system: How microaeration facilitates anaerobic digestion process. Biotechnol Adv [Internet]. 2018 Nov;36(7):1971–83. Available from: <URL>.
  • 35. Hendriks ATWM, van Lier JB, de Kreuk MK. Growth media in anaerobic fermentative processes: The underestimated potential of thermophilic fermentation and anaerobic digestion. Biotechnol Adv [Internet]. 2018 Jan;36(1):1–13. Available from: <URL>.
  • 36. Li Y, Chen Y, Wu J. Enhancement of methane production in anaerobic digestion process: A review. Appl Energy [Internet]. 2019 Apr;240:120–37. Available from: <URL>.
  • 37. Venkiteshwaran K, Bocher B, Maki J, Zitomer D. Relating Anaerobic Digestion Microbial Community and Process Function : Supplementary Issue: Water Microbiology. Microbiol Insights [Internet]. 2015 Jan 20;8(S2):37–44. Available from: <URL>.
  • 38. Bai X, Zong R, Li C, Liu D, Liu Y, Zhu Y. Enhancement of visible photocatalytic activity via Ag@C3N4 core–shell plasmonic composite. Appl Catal B Environ [Internet]. 2014 Apr;147:82–91. Available from: <URL>.
  • 39. Appels L, Baeyens J, Degrève J, Dewil R. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci [Internet]. 2008 Dec;34(6):755–81. Available from: <URL>.
  • 40. Cuetos MJ, Martinez EJ, Moreno R, Gonzalez R, Otero M, Gomez X. Enhancing anaerobic digestion of poultry blood using activated carbon. J Adv Res [Internet]. 2017 May;8(3):297–307. Available from: <URL>.
  • 41. Tsapekos P, Alvarado-Morales M, Tong J, Angelidaki I. Nickel spiking to improve the methane yield of sewage sludge. Bioresour Technol [Internet]. 2018 Dec;270:732–7. Available from: <URL>.
  • 42. Abdelsalam E, Samer M, Attia YA, Abdel-Hadi MA, Hassan HE, Badr Y. Influence of zero valent iron nanoparticles and magnetic iron oxide nanoparticles on biogas and methane production from anaerobic digestion of manure. Energy [Internet]. 2017 Feb;120:842–53. Available from: <URL>.
  • 43. Łebkowska M, Rutkowska-Narożniak A, Pajor E, Pochanke Z. Effect of a static magnetic field on formaldehyde biodegradation in wastewater by activated sludge. Bioresour Technol [Internet]. 2011 Oct;102(19):8777–82. Available from: <URL>.
  • 44. Ni SQ, Ni J, Yang N, Wang J. Effect of magnetic nanoparticles on the performance of activated sludge treatment system. Bioresour Technol [Internet]. 2013 Sep;143:555–61. Available from: <URL>.
  • 45. Verma A, Stellacci F. Effect of Surface Properties on Nanoparticle–Cell Interactions. Small [Internet]. 2010 Jan 4;6(1):12–21. Available from: <URL>.
  • 46. Jiang W, Kim BYS, Rutka JT, Chan WCW. Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol [Internet]. 2008 Mar 2;3(3):145–50. Available from: <URL>.
  • 47. Liu Y, Zhang Y, Quan X, Chen S, Zhao H. Applying an electric field in a built-in zero valent iron – Anaerobic reactor for enhancement of sludge granulation. Water Res [Internet]. 2011 Jan;45(3):1258–66. Available from: <URL>.
Yıl 2024, Cilt: 11 Sayı: 2, 643 - 654
https://doi.org/10.18596/jotcsa.1368040

Öz

Proje Numarası

0715-MP-21

Kaynakça

  • 1. Kona A, Bertoldi P, Kılkış Ş. Covenant of Mayors: Local Energy Generation, Methodology, Policies and Good Practice Examples. Energies [Internet]. 2019 Mar 13;12(6):985. Available from: <URL>.
  • 2. Dabe SJ, Prasad PJ, Vaidya AN, Purohit HJ. Technological pathways for bioenergy generation from municipal solid waste: Renewable energy option. Environ Prog Sustain Energy [Internet]. 2019 Mar 25;38(2):654–71. Available from: <URL>.
  • 3. Mikalauskiene A, Štreimikis J, Mikalauskas I, Stankūnienė G, Dapkus R. Comparative Assessment of Climate Change Mitigation Policies in Fuel Combustion Sector of Lithuania and Bulgaria. Energies [Internet]. 2019 Feb 7;12(3):529. Available from: <URL>.
  • 4. Holdmann GP, Wies RW, Vandermeer JB. Renewable Energy Integration in Alaska’s Remote Islanded Microgrids: Economic Drivers, Technical Strategies, Technological Niche Development, and Policy Implications. Proc IEEE [Internet]. 2019 Sep;107(9):1820–37. Available from: <URL>.
  • 5. Viancelli A, Schneider TM, Demczuk T, Delmoral APG, Petry B, Collato MM, et al. Unlocking the value of biomass: Exploring microbial strategies for biogas and volatile fatty acids generation. Bioresour Technol Reports [Internet]. 2023 Sep;23:101552. Available from: <URL>.
  • 6. Havukainen J, Uusitalo V, Niskanen A, Kapustina V, Horttanainen M. Evaluation of methods for estimating energy performance of biogas production. Renew Energy [Internet]. 2014 Jun;66:232–40. Available from: <URL>.
  • 7. Yusuf MOL, Ify NL. The effect of waste paper on the kinetics of biogas yield from the co-digestion of cow dung and water hyacinth. Biomass and Bioenergy [Internet]. 2011 Mar;35(3):1345–51. Available from: <URL>.
  • 8. Koniuszewska I, Korzeniewska E, Harnisz M, Czatzkowska M. Intensification of biogas production using various technologies: A review. Int J Energy Res [Internet]. 2020 Jun 25;44(8):6240–58. Available from: <URL>.
  • 9. Barozzi M, Contini S, Raboni M, Torretta V, Casson Moreno V, Copelli S. Integration of Recursive Operability Analysis, FMECA and FTA for the Quantitative Risk Assessment in biogas plants: Role of procedural errors and components failures. J Loss Prev Process Ind [Internet]. 2021 Jul;71:104468. Available from: <URL>.
  • 10. Shakil Hussain SM, Kamal MS, Hossain MK. Recent Developments in Nanostructured Palladium and Other Metal Catalysts for Organic Transformation. J Nanomater [Internet]. 2019 Oct 20;2019:1562130. Available from: <URL>.
  • 11. Srivastava N, Srivastava KR, Bantun F, Mohammad A, Singh R, Pal DB, et al. Improved production of biogas via microbial digestion of pressmud using CuO/Cu2O based nanocatalyst prepared from pressmud and sugarcane bagasse waste. Bioresour Technol [Internet]. 2022 Oct;362:127814. Available from: <URL>.
  • 12. Ribeaucourt D, Bissaro B, Guallar V, Yemloul M, Haon M, Grisel S, et al. Comprehensive Insights into the Production of Long Chain Aliphatic Aldehydes Using a Copper-Radical Alcohol Oxidase as Biocatalyst. ACS Sustain Chem Eng [Internet]. 2021 Mar 29;9(12):4411–21. Available from: <URL>.
  • 13. Ozyilmaz E, Alhiali A, Caglar O, Yilmaz M. Preparation of regenerable magnetic nanoparticles for cellulase immobilization: Improvement of enzymatic activity and stability. Biotechnol Prog [Internet]. 2021 Mar 22;37(4):e3145. Available from: <URL>.
  • 14. Watanabe T, Takawane S, Baba Y, Akaiwa J, Kondo A, Ohba T. Superior Thermal Stability and High Photocatalytic Activity of Titanium Dioxide Nanocatalysts in Carbon Nanotubes. J Phys Chem C [Internet]. 2023 Aug 31;127(34):16861–9. Available from: <URL>.
  • 15. Gómez-Gualdrón DA, McKenzie GD, Alvarado JFJ, Balbuena PB. Dynamic Evolution of Supported Metal Nanocatalyst/Carbon Structure during Single-Walled Carbon Nanotube Growth. ACS Nano [Internet]. 2012 Jan 24;6(1):720–35. Available from: <URL>.
  • 16. Bhanja P, Bhaumik A. Materials with Nanoscale Porosity: Energy and Environmental Applications. Chem Rec [Internet]. 2019 Feb 2;19(2–3):333–46. Available from: <URL>.
  • 17. Zhou L, Zheng J, Ye E, Liu Y, He C. Nanocatalysis with sustainability. In: Li Z, Zheng J, Ye E, editors. Nanoscience and Nanotechnology Series, Sustainable Nanotechnology [Internet]. London: 10.1039/9781839165771; 2022. p. 220–54. Available from: <URL>.
  • 18. Touchy AS, Siddiki SMAH. Green Chemical Synthesis in the Presence of Nanoparticles as Catalysts. In: Singh NB, Susan ABH, Chaudhary RG, editors. Emerging Applications of Nanomaterials. Millersville: Materials Research Forum LLC; 2023. p. 42–74.
  • 19. Bharathi P, Dayana R, Rangaraju M, Varsha V, Subathra M, Gayathri, et al. Biogas Production from Food Waste Using Nanocatalyst. R L, editor. J Nanomater [Internet]. 2022 Jul 31;2022:7529036. Available from: <URL>.
  • 20. Awogbemi O, Kallon DV Von. Recent advances in the application of nanomaterials for improved biodiesel, biogas, biohydrogen, and bioethanol production. Fuel [Internet]. 2024 Feb;358:130261. Available from: <URL>.
  • 21. Jayanthi SA, Nathan DMGT, Jayashainy J, Sagayaraj P. A novel hydrothermal approach for synthesizing α-Fe2O3, γ-Fe2O3 and Fe3O4 mesoporous magnetic nanoparticles. Mater Chem Phys [Internet]. 2015 Jul;162:316–25. Available from: <URL>.
  • 22. Li D, Wu X, Xiao T, Tao W, Yuan M, Hu X, et al. Hydrothermal synthesis of mesoporous Co3O4 nanobelts by means of a compound precursor. J Phys Chem Solids [Internet]. 2012 Feb;73(2):169–75. Available from: <URL>.
  • 23. Zhang L, Papaefthymiou GC, Ying JY. Synthesis and Properties of γ-Fe2O3 Nanoclusters within Mesoporous Aluminosilicate Matrices. J Phys Chem B [Internet]. 2001 Aug 1;105(31):7414–23. Available from: <URL>.
  • 24. Demir Ö, Ateş N. Manyetik Nanopartiküllerin Anaerobik Çürütücüde Biyogaz Üretimi Üzerine Etkileri. Çukurova Üniversitesi Mühendislik Fakültesi Derg [Internet]. 2021 Aug 16;36(2):283–96. Available from: <URL>.
  • 25. Yılmazer M, Seçilmiş H. Gaz kromatografisi headspace sistemi ile süt ürünlerinde bazı aroma bileşenlerinin analizi. In: Türkiye 9 Gıda Kongresi. 2006. p. 24–6.
  • 26. Omoniyi TE, Olorunnisola AO. Experimental characterisation of bagasse biomass material for energy production. Int J Eng Technol. 2014;4(10):582–9. Available from: <URL>.
  • 27. Beutler M, Wiltshire KH, Meyer B, Moldaenke C, Luring C, Meyerhofer M, Hansen UP. APHA (2005), Standard Methods for the Examination of Water and Wastewater, Washington DC: American Public Health Association. 2014;
  • 28. Huang Y, Zhang D, Oshita K, Takaoka M, Ying M, Sun Z, et al. Crude oil recovery from oily sludge using liquefied dimethyl ether extraction: A comparison with conventional extraction methods. Energy and Fuels [Internet]. 2021 Nov 4 [cited 2024 Feb 27];35(21):17810–9. Available from: <URL>.
  • 29. Parsianpour E, Gholami M, Shahbazi N, Samavat F. Influence of thermal annealing on the structural and optical properties of maghemite (γ‐Fe2O3) nanoparticle thin films. Surf Interface Anal [Internet]. 2015 May 12;47(5):612–7. Available from: <URL>.
  • 30. Mishra D, Arora R, Lahiri S, Amritphale SS, Chandra N. Synthesis and characterization of iron oxide nanoparticles by solvothermal method. Prot Met Phys Chem Surfaces [Internet]. 2014 Sep 12;50(5):628–31. Available from: <URL>.
  • 31. Jagadale AD, Kumbhar VS, Lokhande CD. Supercapacitive activities of potentiodynamically deposited nanoflakes of cobalt oxide (Co3O4) thin film electrode. J Colloid Interface Sci [Internet]. 2013 Sep;406:225–30. Available from: <URL>.
  • 32. Wang S, Jena U, Das KC. Biomethane production potential of slaughterhouse waste in the United States. Energy Convers Manag [Internet]. 2018 Oct;173:143–57. Available from: <URL>.
  • 33. Wang P, Wang H, Qiu Y, Ren L, Jiang B. Microbial characteristics in anaerobic digestion process of food waste for methane production–A review. Bioresour Technol [Internet]. 2018 Jan;248:29–36. Available from: <URL>.
  • 34. Nguyen D, Khanal SK. A little breath of fresh air into an anaerobic system: How microaeration facilitates anaerobic digestion process. Biotechnol Adv [Internet]. 2018 Nov;36(7):1971–83. Available from: <URL>.
  • 35. Hendriks ATWM, van Lier JB, de Kreuk MK. Growth media in anaerobic fermentative processes: The underestimated potential of thermophilic fermentation and anaerobic digestion. Biotechnol Adv [Internet]. 2018 Jan;36(1):1–13. Available from: <URL>.
  • 36. Li Y, Chen Y, Wu J. Enhancement of methane production in anaerobic digestion process: A review. Appl Energy [Internet]. 2019 Apr;240:120–37. Available from: <URL>.
  • 37. Venkiteshwaran K, Bocher B, Maki J, Zitomer D. Relating Anaerobic Digestion Microbial Community and Process Function : Supplementary Issue: Water Microbiology. Microbiol Insights [Internet]. 2015 Jan 20;8(S2):37–44. Available from: <URL>.
  • 38. Bai X, Zong R, Li C, Liu D, Liu Y, Zhu Y. Enhancement of visible photocatalytic activity via Ag@C3N4 core–shell plasmonic composite. Appl Catal B Environ [Internet]. 2014 Apr;147:82–91. Available from: <URL>.
  • 39. Appels L, Baeyens J, Degrève J, Dewil R. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci [Internet]. 2008 Dec;34(6):755–81. Available from: <URL>.
  • 40. Cuetos MJ, Martinez EJ, Moreno R, Gonzalez R, Otero M, Gomez X. Enhancing anaerobic digestion of poultry blood using activated carbon. J Adv Res [Internet]. 2017 May;8(3):297–307. Available from: <URL>.
  • 41. Tsapekos P, Alvarado-Morales M, Tong J, Angelidaki I. Nickel spiking to improve the methane yield of sewage sludge. Bioresour Technol [Internet]. 2018 Dec;270:732–7. Available from: <URL>.
  • 42. Abdelsalam E, Samer M, Attia YA, Abdel-Hadi MA, Hassan HE, Badr Y. Influence of zero valent iron nanoparticles and magnetic iron oxide nanoparticles on biogas and methane production from anaerobic digestion of manure. Energy [Internet]. 2017 Feb;120:842–53. Available from: <URL>.
  • 43. Łebkowska M, Rutkowska-Narożniak A, Pajor E, Pochanke Z. Effect of a static magnetic field on formaldehyde biodegradation in wastewater by activated sludge. Bioresour Technol [Internet]. 2011 Oct;102(19):8777–82. Available from: <URL>.
  • 44. Ni SQ, Ni J, Yang N, Wang J. Effect of magnetic nanoparticles on the performance of activated sludge treatment system. Bioresour Technol [Internet]. 2013 Sep;143:555–61. Available from: <URL>.
  • 45. Verma A, Stellacci F. Effect of Surface Properties on Nanoparticle–Cell Interactions. Small [Internet]. 2010 Jan 4;6(1):12–21. Available from: <URL>.
  • 46. Jiang W, Kim BYS, Rutka JT, Chan WCW. Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol [Internet]. 2008 Mar 2;3(3):145–50. Available from: <URL>.
  • 47. Liu Y, Zhang Y, Quan X, Chen S, Zhao H. Applying an electric field in a built-in zero valent iron – Anaerobic reactor for enhancement of sludge granulation. Water Res [Internet]. 2011 Jan;45(3):1258–66. Available from: <URL>.
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Geçiş Metal Kimyası, Katı Hal Kimyası, İnorganik Malzemeler
Bölüm ARAŞTIRMA MAKALELERİ
Yazarlar

Fatih Emen 0000-0002-4974-2940

Aslıhan Cesur Turgut 0000-0002-5824-971X

Şevkinaz Doğan 0000-0001-6180-7586

Proje Numarası 0715-MP-21
Yayımlanma Tarihi
Gönderilme Tarihi 28 Eylül 2023
Kabul Tarihi 18 Şubat 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 11 Sayı: 2

Kaynak Göster

Vancouver Emen F, Cesur Turgut A, Doğan Ş. Enhancing Biogas Production with The Addition of Nano-catalysts. JOTCSA. 11(2):643-54.