Araştırma Makalesi
BibTex RIS Kaynak Göster

THE EFFECT OF THE AMOUNT OF HNT AND PLA ON THE PROPERTIES OF POLYLACTIC ACID/ POLY (STYRENE-CO-METHYL METHACRYLATE)/HALLOYSITE NANOCOMPOSITES

Yıl 2023, Cilt: 31 Sayı: 3, 873 - 881, 16.12.2023
https://doi.org/10.31796/ogummf.1311032

Öz

In this study, Poly(styrene-co-methylmethacrylate) (P(St-co-MMA)) was synthesized from styrene and methylmethacrylate monomers by emulsion polymerization method. Modified halloysite nanotube (m-HNT), a nano-reinforcing material modified with dimethyl sulfoxide (DMSO), and Polylactic acid (PLA) were added to (P(St-co-MMA)) to give it biodegradable property. PLA/P(St-co-MMA)/MMA using 5% and 10% m-HNT containing 30:70 and 50:50 mass ratios of PLA/P(St-co-MMA) by in-situ and solution blending methods HNT nanocomposite synthesis was carried out. The % monomer conversions and viscosity average molecular weights were calculated, and characterization studies were carried out. Thermal properties of copolymers and nanocomposites were observed by Thermogravimetric Analysis (TGA), structural properties were observed by Scanning Electron Microscopy (SEM) and mechanical properties were observed by Shore D. For observe the effect of PLA on the nanocomposite, the plated samples were buried in cactus and humus soils. Finally, the effects of amount of HNT and PLA and nanocomposite synthesis methods on the properties of nanocomposites were investigated. In characterization studies, it was observed that the properties of nanocomposites increased with increasing HNT addition. It has been observed that nanocomposites produced by solution blending method exhibit better properties in terms of mechanical strength, but nanocomposite synthesis methods used in thermal resistance are not superior to each other. It was observed that the increase in the amount of PLA negatively affected the mechanical and thermal strength, but it was found to have a positive effect on biodegradation.

Kaynakça

  • Basan, S. (2013). Polimer kimyası. Ankara: Gazi Kitabevi.
  • Bhanvase, B. A., Sonawane, S. H., Pinjari, D. V., Gogate, P. R. & Pandit, A. B. (2014). Kinetic studies of semibatch emulsion copolymerization of methyl methacrylate and styrene in the presence of high intensity ultrasound and initiator. Chemical Enginnering and Processing, 85, 168-177.Doi: https://doi.org/10.1016/j.cep.2014.08.014
  • Buruga, K. & Kalathi, J. T. (2018). A facile synthesis of halloysite nanotubes based polymer nonocomposites for glass coating application. Journal of Alloys and Compounds, 735, 1807-1817. Doi: https://doi.org/10.1016/j.jallcom.2017.11.211
  • Buruga, K. & Kalathi, J. T. (2019). Synthesis of poly (styrene-co-methyl methacrylate) nanospheres by ultrasound-mediated pickering nanoemulsion polymerization. Journal of Polymer Research, 26, 210. Doi: https://doi.org/10.1007/s10965-019-1871-9
  • Chen, Z., Song, C., Bai, R., Wei, Z. & Zhang, F. (2012). Effects of mesoporous SBA-15 contents on the properties of polystyrene composites via in-situ emulsion polymerization. Journal of Polymer Research, 19, 9846-9854. Doi: https://doi.org/10.1007/s10965-012-9846-0
  • Ertaş, M., Altuntas, E. & Cavdar, A. D. (2019). Effects of halloysite nanotube on the performance of natural fiber filled poly(lactic acid) composites. Polymer Composites, 1-10. Doi: https://doi.org/10.1002/pc.25284
  • Fukushima, K., Abbate, C., Tabuani, D., Gennari, M. & Camino, G. (2009). Biodegradation of poly (lactic acid) and its nanocomposites. Polymer Degradation and Stability, 94, 1646-1655. Doi: https://doi.org/10.1016/j.polymdegradstab.2009.07.001
  • Fukushima, K., Tabuani, D., Arena, M., Gennari, M. & Camino, G. (2013). Effect of clay type and loading on thermal, mechanical properties and biodegradation of poly(lactic acid) nanocomposites. Reactive and Functional Polymers, 73, 540–549. Doi: https://doi.org/10.1016/j.reactfunctpolym.2013.01.003
  • Gürler, N. (2019). Çapraz bağlı nişasta ve iki tabakalı polilaktik asit (PLA) biyofilmlerinin hazırlanarak, yapısal, mekanik ve kontrollü kompost ortamında biyobozunumlarının incelenmesi (Doktora Tezi). Dicle Üniversitesi Fen Bilimleri Enstitüsü, Diyarbakır.
  • Hamad, K., Kaseem, M. & Deri, F. (2010). Rheological and mechanical properties of poly(lactic acid)/polystyrene polymer blend. Polymer Bulletin, 65, 509–519. Doi: https://doi.org/10.1007/s00289-010-0354-2
  • Khezri, K., Haddadi-Asl, V., Mamaqani, H. & Kalajahi M. (2012). Synthesis of clay-dispersed poly (styrene-co-methyl methacrylate) nanocomposite via miniemulsion atom transfer radical polymerization: A reverse approach. Journal of Applied Polymer Science, 124, 2278-2286. Doi: https://doi.org/10.1002/app.35279
  • Mendoza-Duarte, M. E., Estrada-Moreno, I. A., Garcia-Casillas, P. E. & Vega-Rios, A. (2021). Stiff-elongated balance of PLA-based polymer blends. Polymers, 13, 4279. Doi: https://doi.org/10.3390/polym13244279
  • Nofar, M., Salehiyan, R. & Ray, S. S. (2021). Influence of nanoparticle and their selective localization on the structure and properties of polylactide-based blend nanocomposites. Composites Part B, 215, 108845. Doi:https://doi.org/10.1016/j.compositesb.2021.108845
  • Ramani A. & Dahoe A. E. (2014). On flame retardancy in polycaprolactam composites by aluminium diethylphosphinate and melamine polyphosphate in conjunction with organically modified montmorillonite nanoclay. Polymer Degradation and Stability, 105, 1-11. Doi: https://doi.org/10.1016/j.polymdegradstab.2014.03.020
  • Silis, H. T. (2019). Yarı kesikli bir reaktörde poli(stiren-ko-metilmetakrilat)/halloysit nanokompozit sentezi ve karakterizasyonu (Yüksek Lisans Tezi). Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • Solorio-Rodríguez, L. E. & Vega-Rios, A. (2019). Filament extrusion and its 3D printing of poly (lactic acid) / poly (styrene-co-methyl methacrylate) blends. Applied Sciences, 9, 5153. Doi: https://doi.org/10.3390/app9235153
  • Teo, Z. X. & Chow, W. S. (2016). Impact, thermal, and morphological properties of poly(lactic acid)/poly(methyl methacrylate)/halloysite nanotube nanocomposites. Polymer-Plastics Technology and Engineering, 55(14), 1474-1480. Doi:https://doi.org/10.1080/03602559.2015.1132464
  • Tuna, S. & Akkoyun, M. (2022). Correlation Between Surface, Thermal, Mechanical and Morphological Properties of Polylactic Acid/Polypropylene and Polylactic Acid/Polyamide 6 Blends. International Journal of Engineering Research and Development, 14(1), 84-94. Doi: https://doi.org/10.29137/umagd.950070
  • Yalçınkaya, S. E. (2008). Nanokil–polimer kompozitlerinin sentez ve karakterizasyonu (Yüksek Lisans Tezi). Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • Zhao, H., Cui, Z., Sun, X., Turng, L. H. & Peng, X. (2013). Morphology and properties of injection molded solid and microcellular polylactic acid/polyhydroxybutyrate-valerate (PLA/ PHBV) blends. Industrial & Engineering Chemistry Research, 52, 2569−2581. Doi: https://doi.org/10.1021/ie301573y

POLİLAKTİK ASİT/ POLİ (STİREN-KO-METİL METAKRİLAT) /HALLOYSİT NANOKOMPOZİTLERİNİN ÖZELLİKLERİ ÜZERİNE HALLOYSİT VE POLİLAKTİK ASİT MİKTARININ ETKİSİ

Yıl 2023, Cilt: 31 Sayı: 3, 873 - 881, 16.12.2023
https://doi.org/10.31796/ogummf.1311032

Öz

Bu çalışmada stiren ve metilmetakrilat monomerlerinden emülsiyon polimerizasyonu yöntemi ile Poli(stiren-ko-metilmetakrilat) (P(St-ko-MMA)) sentezlenmiştir. (P(St-ko-MMA))’ya kullanım ömrü süresince mekanik ve termal özelliklerinin geliştirilmesi amacıyla dimetil sülfoksit (DMSO) ile modifiye edilmiş nano takviye malzemesi olan modifiye halloysit nanotüp (m-HNT) ve biyobozunur özellik kazandırmak amacıyla Polilaktik asit (PLA) katılmıştır. In-situ ve çözelti harmanlama yöntemleri ile kütlece 30:70 ve 50:50 oranlarında PLA/P(St-ko-MMA) içeren kütlece %5 ve %10 oranlarında m-HNT kullanılarak PLA/P(St-ko-MMA)/HNT nanokompozit sentezi gerçekleştirilmiştir. Kopolimer ve nanokompozitlerin % monomer dönüşümleri ve viskozite ortalama molekül ağırlıkları hesaplanmış ardından karakterizasyon çalışmaları gerçekleştirilmiştir. Kopolimer ve nanokompozitlerin termal özellikleri Termogravimetrik Analiz (TGA), yapısal özellikleri Taramalı Elektron Mikroskobu (SEM) ve mekanik özellikleri Shore D ile gözlemlenmiştir. PLA’nın nanokompozit üzerindeki etkisini gözlemleyebilmek için plaka haline getirilen numuneler kaktüs toprağı ve humuslu toprağa gömülmüştür. Çalışmanın sonunda HNT ve PLA miktarındaki değişimlerin ve nanokompozit sentezleme yöntemlerinin nanokompozitlerin özellikleri üzerindeki etkileri incelenmiştir. Karakterizasyon çalışmalarında nanokompozitlerin artan HNT katkısı ile özelliklerinin arttığı görülmüştür. Çözelti harmanlama yöntemi ile üretilen nanokompozitlerin mekanik dayanım konusunda daha iyi özellikler sergilediği fakat termal dayanım konusunda kullanılan nanokompozit sentezi yöntemlerinin birbirine üstünlüğü olmadığı görülmüştür. PLA miktarının artışı mekanik ve termal dayanımı negatif yönde etkilediği görülmüş fakat biyobozunma konusunda pozitif etkisi olduğu saptanmıştır.

Kaynakça

  • Basan, S. (2013). Polimer kimyası. Ankara: Gazi Kitabevi.
  • Bhanvase, B. A., Sonawane, S. H., Pinjari, D. V., Gogate, P. R. & Pandit, A. B. (2014). Kinetic studies of semibatch emulsion copolymerization of methyl methacrylate and styrene in the presence of high intensity ultrasound and initiator. Chemical Enginnering and Processing, 85, 168-177.Doi: https://doi.org/10.1016/j.cep.2014.08.014
  • Buruga, K. & Kalathi, J. T. (2018). A facile synthesis of halloysite nanotubes based polymer nonocomposites for glass coating application. Journal of Alloys and Compounds, 735, 1807-1817. Doi: https://doi.org/10.1016/j.jallcom.2017.11.211
  • Buruga, K. & Kalathi, J. T. (2019). Synthesis of poly (styrene-co-methyl methacrylate) nanospheres by ultrasound-mediated pickering nanoemulsion polymerization. Journal of Polymer Research, 26, 210. Doi: https://doi.org/10.1007/s10965-019-1871-9
  • Chen, Z., Song, C., Bai, R., Wei, Z. & Zhang, F. (2012). Effects of mesoporous SBA-15 contents on the properties of polystyrene composites via in-situ emulsion polymerization. Journal of Polymer Research, 19, 9846-9854. Doi: https://doi.org/10.1007/s10965-012-9846-0
  • Ertaş, M., Altuntas, E. & Cavdar, A. D. (2019). Effects of halloysite nanotube on the performance of natural fiber filled poly(lactic acid) composites. Polymer Composites, 1-10. Doi: https://doi.org/10.1002/pc.25284
  • Fukushima, K., Abbate, C., Tabuani, D., Gennari, M. & Camino, G. (2009). Biodegradation of poly (lactic acid) and its nanocomposites. Polymer Degradation and Stability, 94, 1646-1655. Doi: https://doi.org/10.1016/j.polymdegradstab.2009.07.001
  • Fukushima, K., Tabuani, D., Arena, M., Gennari, M. & Camino, G. (2013). Effect of clay type and loading on thermal, mechanical properties and biodegradation of poly(lactic acid) nanocomposites. Reactive and Functional Polymers, 73, 540–549. Doi: https://doi.org/10.1016/j.reactfunctpolym.2013.01.003
  • Gürler, N. (2019). Çapraz bağlı nişasta ve iki tabakalı polilaktik asit (PLA) biyofilmlerinin hazırlanarak, yapısal, mekanik ve kontrollü kompost ortamında biyobozunumlarının incelenmesi (Doktora Tezi). Dicle Üniversitesi Fen Bilimleri Enstitüsü, Diyarbakır.
  • Hamad, K., Kaseem, M. & Deri, F. (2010). Rheological and mechanical properties of poly(lactic acid)/polystyrene polymer blend. Polymer Bulletin, 65, 509–519. Doi: https://doi.org/10.1007/s00289-010-0354-2
  • Khezri, K., Haddadi-Asl, V., Mamaqani, H. & Kalajahi M. (2012). Synthesis of clay-dispersed poly (styrene-co-methyl methacrylate) nanocomposite via miniemulsion atom transfer radical polymerization: A reverse approach. Journal of Applied Polymer Science, 124, 2278-2286. Doi: https://doi.org/10.1002/app.35279
  • Mendoza-Duarte, M. E., Estrada-Moreno, I. A., Garcia-Casillas, P. E. & Vega-Rios, A. (2021). Stiff-elongated balance of PLA-based polymer blends. Polymers, 13, 4279. Doi: https://doi.org/10.3390/polym13244279
  • Nofar, M., Salehiyan, R. & Ray, S. S. (2021). Influence of nanoparticle and their selective localization on the structure and properties of polylactide-based blend nanocomposites. Composites Part B, 215, 108845. Doi:https://doi.org/10.1016/j.compositesb.2021.108845
  • Ramani A. & Dahoe A. E. (2014). On flame retardancy in polycaprolactam composites by aluminium diethylphosphinate and melamine polyphosphate in conjunction with organically modified montmorillonite nanoclay. Polymer Degradation and Stability, 105, 1-11. Doi: https://doi.org/10.1016/j.polymdegradstab.2014.03.020
  • Silis, H. T. (2019). Yarı kesikli bir reaktörde poli(stiren-ko-metilmetakrilat)/halloysit nanokompozit sentezi ve karakterizasyonu (Yüksek Lisans Tezi). Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • Solorio-Rodríguez, L. E. & Vega-Rios, A. (2019). Filament extrusion and its 3D printing of poly (lactic acid) / poly (styrene-co-methyl methacrylate) blends. Applied Sciences, 9, 5153. Doi: https://doi.org/10.3390/app9235153
  • Teo, Z. X. & Chow, W. S. (2016). Impact, thermal, and morphological properties of poly(lactic acid)/poly(methyl methacrylate)/halloysite nanotube nanocomposites. Polymer-Plastics Technology and Engineering, 55(14), 1474-1480. Doi:https://doi.org/10.1080/03602559.2015.1132464
  • Tuna, S. & Akkoyun, M. (2022). Correlation Between Surface, Thermal, Mechanical and Morphological Properties of Polylactic Acid/Polypropylene and Polylactic Acid/Polyamide 6 Blends. International Journal of Engineering Research and Development, 14(1), 84-94. Doi: https://doi.org/10.29137/umagd.950070
  • Yalçınkaya, S. E. (2008). Nanokil–polimer kompozitlerinin sentez ve karakterizasyonu (Yüksek Lisans Tezi). Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • Zhao, H., Cui, Z., Sun, X., Turng, L. H. & Peng, X. (2013). Morphology and properties of injection molded solid and microcellular polylactic acid/polyhydroxybutyrate-valerate (PLA/ PHBV) blends. Industrial & Engineering Chemistry Research, 52, 2569−2581. Doi: https://doi.org/10.1021/ie301573y
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Polimer Bilimi ve Teknolojileri
Bölüm Araştırma Makaleleri
Yazarlar

Dilan İskender 0000-0002-5482-1854

Ayla Altınten 0000-0002-2048-8811

Erken Görünüm Tarihi 16 Aralık 2023
Yayımlanma Tarihi 16 Aralık 2023
Kabul Tarihi 17 Ekim 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 31 Sayı: 3

Kaynak Göster

APA İskender, D., & Altınten, A. (2023). POLİLAKTİK ASİT/ POLİ (STİREN-KO-METİL METAKRİLAT) /HALLOYSİT NANOKOMPOZİTLERİNİN ÖZELLİKLERİ ÜZERİNE HALLOYSİT VE POLİLAKTİK ASİT MİKTARININ ETKİSİ. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 31(3), 873-881. https://doi.org/10.31796/ogummf.1311032
AMA İskender D, Altınten A. POLİLAKTİK ASİT/ POLİ (STİREN-KO-METİL METAKRİLAT) /HALLOYSİT NANOKOMPOZİTLERİNİN ÖZELLİKLERİ ÜZERİNE HALLOYSİT VE POLİLAKTİK ASİT MİKTARININ ETKİSİ. ESOGÜ Müh Mim Fak Derg. Aralık 2023;31(3):873-881. doi:10.31796/ogummf.1311032
Chicago İskender, Dilan, ve Ayla Altınten. “POLİLAKTİK ASİT/ POLİ (STİREN-KO-METİL METAKRİLAT) /HALLOYSİT NANOKOMPOZİTLERİNİN ÖZELLİKLERİ ÜZERİNE HALLOYSİT VE POLİLAKTİK ASİT MİKTARININ ETKİSİ”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 31, sy. 3 (Aralık 2023): 873-81. https://doi.org/10.31796/ogummf.1311032.
EndNote İskender D, Altınten A (01 Aralık 2023) POLİLAKTİK ASİT/ POLİ (STİREN-KO-METİL METAKRİLAT) /HALLOYSİT NANOKOMPOZİTLERİNİN ÖZELLİKLERİ ÜZERİNE HALLOYSİT VE POLİLAKTİK ASİT MİKTARININ ETKİSİ. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 31 3 873–881.
IEEE D. İskender ve A. Altınten, “POLİLAKTİK ASİT/ POLİ (STİREN-KO-METİL METAKRİLAT) /HALLOYSİT NANOKOMPOZİTLERİNİN ÖZELLİKLERİ ÜZERİNE HALLOYSİT VE POLİLAKTİK ASİT MİKTARININ ETKİSİ”, ESOGÜ Müh Mim Fak Derg, c. 31, sy. 3, ss. 873–881, 2023, doi: 10.31796/ogummf.1311032.
ISNAD İskender, Dilan - Altınten, Ayla. “POLİLAKTİK ASİT/ POLİ (STİREN-KO-METİL METAKRİLAT) /HALLOYSİT NANOKOMPOZİTLERİNİN ÖZELLİKLERİ ÜZERİNE HALLOYSİT VE POLİLAKTİK ASİT MİKTARININ ETKİSİ”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 31/3 (Aralık 2023), 873-881. https://doi.org/10.31796/ogummf.1311032.
JAMA İskender D, Altınten A. POLİLAKTİK ASİT/ POLİ (STİREN-KO-METİL METAKRİLAT) /HALLOYSİT NANOKOMPOZİTLERİNİN ÖZELLİKLERİ ÜZERİNE HALLOYSİT VE POLİLAKTİK ASİT MİKTARININ ETKİSİ. ESOGÜ Müh Mim Fak Derg. 2023;31:873–881.
MLA İskender, Dilan ve Ayla Altınten. “POLİLAKTİK ASİT/ POLİ (STİREN-KO-METİL METAKRİLAT) /HALLOYSİT NANOKOMPOZİTLERİNİN ÖZELLİKLERİ ÜZERİNE HALLOYSİT VE POLİLAKTİK ASİT MİKTARININ ETKİSİ”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, c. 31, sy. 3, 2023, ss. 873-81, doi:10.31796/ogummf.1311032.
Vancouver İskender D, Altınten A. POLİLAKTİK ASİT/ POLİ (STİREN-KO-METİL METAKRİLAT) /HALLOYSİT NANOKOMPOZİTLERİNİN ÖZELLİKLERİ ÜZERİNE HALLOYSİT VE POLİLAKTİK ASİT MİKTARININ ETKİSİ. ESOGÜ Müh Mim Fak Derg. 2023;31(3):873-81.

20873 13565 13566 15461 13568  14913