Araştırma Makalesi
BibTex RIS Kaynak Göster

Biyogaz Sistemlerinden Elde Edilen Sıvı Fermente Gübrenin Tuz Stresi Altındaki Rokanın (Eruca sativa L. cv. Bengi) Çimlenmesine ve Bazı Büyüme Parametrelerine Etkisi

Yıl 2023, Cilt: 5 Sayı: 1, 29 - 35, 23.06.2023
https://doi.org/10.55979/tjse.1313191

Öz

Bu çalışmada sıvı fermente gübre uygulamasının tuz stresi altında çimlendirilen rokanın tohum çimlenmesi ve bazı büyüme parametrelerine etkilerini ortaya koymak amaçlanmıştır. Bitkisel materyal olarak roka (roket; Eruca sativa L. cv. Bengi) tohumları kullanılmıştır. Sıvı fermente gübre ile ön uygulama (1 saat) yapılan tohumlar tuz stresi bulunan petrilerde yedi gün boyunca çimlenmeye bırakılmıştır. Çalışma; üç tuz (0, 75 ve 150 mM NaCl), dört ön uygulama (Saf su ve sıvı fermente gübre (%1, %5, %15)) ve üç tekrarlı olacak şekilde yapılmıştır. 7. günün sonunda çeşitli çimlenme ve büyüme parametreleri (güne bağlı çimlenme oranı (%), çimlenme-hipokotil oranı (%), radikula-hipokotil uzunluğu, taze-kuru ağırlık ve su içeriği (%)) bakımından incelenmiştir. Artan tuzluluğa bağlı olarak tohumlarda çimlenme oranları ve büyüme parametrelerinde azalma meydana gelmiştir. Bununla birlikte sıvı fermente gübre uygulamasının çimlenme oranı (%5 ön uygulamada), taze (%15 ön uygulama) ve kuru ağırlıkta (%1 ve %15 ön uygulama) olumlu etkileri gözlenmiştir. Çalışma sonucunda sıvı fermente gübre uygulamasının kısmen de olsa farklı parametrelerde ve farklı tuz seviyelerinde stresin etkilerini hafifletici rol oynadığı tespit edilmiştir.

Destekleyen Kurum

Burdur Mehmet Akif Ersoy Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Proje Numarası

0898-YL-23

Teşekkür

Bu çalışma 0898-YL-23 no’lu yüksek lisans tez projesinden üretilmiş ve proje Burdur Mehmet Akif Ersoy Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü tarafından desteklenmiştir.

Kaynakça

  • Ahammed, G. J., Li, Y., Li, X., Han, W. Y., & Chen, S. (2018). Epigallocatechin-3-gallate alleviates salinity-retarded seed germination and oxidative stress in tomato. Journal of plant growth regulation, 37, 1349-1356. https://doi.org/10.1007/s00344-018-9849-0
  • Ahanger, M. A., Aziz, U., Alsahli, A. A., Alyemeni, M. N., & Ahmad, P. (2019). Influence of exogenous salicylic acid and nitric oxide on growth, photosynthesis, and ascorbate-glutathione cycle in salt stressed Vigna angularis. Biomolecules, 10(1), 42. https://doi.org/10.3390/biom10010042
  • Ahmed, M. A., Ibrahim, O. M., & Elham, A. B. (2010). Effect of bio and mineral phosphorus fertilizer on the growth, productivity and nutritional value of fenugreek (Trigonella foenum graecum L.) in Newly Cultivated Land. Research Journal of Agriculture and Biological Sciences, 6(3), 339-48.
  • Aina, O. E., Amoo, S. O., Mugivhisa, L. L., & Olowoyo, J. O. (2019). Effect of organic and inorganic sources of nutrients on the bioactive compounds and antioxidant activity of tomato. Applied Ecology and Environmental Research, 17(2), 3681-3694. http://dx.doi.org/10.15666/aeer/1702_36813694
  • Arthurson, V. (2009). Closing the global energy and nutrient cycles through application of biogas residue to agricultural land–potential benefits and drawbacks. Energies, 2(2), 226-242. https://doi.org/10.3390/en20200226
  • Baltepe, Ş., & Mert, H. (1973). Cucurbita Türlerinin Hipokotil Büyümesi üzerine Giberellik Asit ve İndol Asetik asitin etkileri. Tübitak IV. Bilim Kongresi, Ankara.
  • Baştabak, B. (2019). Biyogaz Sistemlerinden Elde Edilen Fermente Gübrenin Marul Yetiştiriciliğinde Bitki Gelişimine Etkilerinin İncelenmesi. (Yüksek Lisans Tezi, Ege Üniversitesi, Fen Bilimleri Enstitüsü)
  • Bidabadi, S. S., Dehghanipoodeh, S., & Wright, G. C. (2017). Vermicompost leachate reduces some negative effects of salt stress in pomegranate. International Journal of Recycling of Organic Waste in Agriculture, 6, 255-263. https://doi.org/10.1007/s40093-017-0173-7
  • Borsani, O., Valpuesta, V., Botella, M. A. (2003). Devoloping Salt Tolerant Plants in a New Century: A Molecular Biology Approach. Plant Cell, Tissue and Organ Culture, 73(2), 101-115. https://doi.org/10.1023/A:1022849200433
  • Bozcuk, S. (1978). Domates (Lycopersicum esculentum Mill.), arpa (Hordeum vulgare L.) ve pamuk (Gossypium hirsitum L.) bitkilerinin büyüme ve gelişmesinde tuz-kinetin etkileşimi üzerinde araştırmalar. (Doçentlik tezi, Hacettepe Üniversitesi, Fen Fakültesi)
  • Bray, E. A. (1988). Draught- and ABA-induced Changes in Polypeptide and mRNA Acumulation in Tomato Leaves. Plant Physiology, 88(4), 1210-1214. https://doi.org/10.1104/pp.88.4.1210
  • Cesur, A., & Tabur, S. (2011). Chromotoxic effects of exogenous hydrogen peroxide (H2O2) in barley seeds exposed to salt stress. Acta physiologiae plantarum, 33, 705-709. https://doi.org/10.1007/s11738-010-0594-7
  • Çulha, Ş., & Çakırlar, H. (2011). Tuzluluğun bitkiler üzerine etkileri ve tuz tolerans mekanizmaları. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 11(2), 11-34.
  • Demirbaş, M., & Aydin, R. (2020). 21. Yüzyılın en büyük tehdidi: küresel iklim değişikliği. Ecological Life Sciences, 15(4), 163-179. https://doi.org/10.12739/NWSA.2020.15.4.5A0143
  • Dölarslan, M., & Ebru, G. (2012). Toprak bitki ilişkileri açısından tuzluluk. Türk Bilimsel Derlemeler Dergisi, 2, 56-59.
  • Duan, E. (2013). Bazı deniz makroalglerinden (Ulva sp. Cystoseira sp. ve Corallina sp.) fermente sıvı organik gübre üretimi ve taze fasülye (Phaseolus vulgaris) verimine etkisinin belirlenmesi (Yüksek lisans tezi, Giresun Üniversitesi Fen Bilimleri Enstitüsü).
  • Efe, E, Bek, Y. & Şahin, M. (2000). SPSS’te Çözümleri ile İstatistik Yöntemler II, No. 10.
  • Fallahi, H. R., Fadaeian, G., Gholami, M., Daneshkhah, O., Hosseini, F. S., Aghhavani-Shajari, M., & Samadzadeh, A. (2015). Germination response of grasspea (Lathyrus sativus L.) and arugula (Eruca sativa L.) to osmotic and salinity stresses. Plant Breeding and Seed Science, 71(1), 97. https://doi.org/10.1515/plass-2015-0025
  • Fagerström, A., Al Seadi, T., Rasi, S., & Briseid, T. (2018). The role of anaerobic digestion and biogas in the circular economy,24s.
  • Hepsibha, B. T., & Geetha, A. (2019). Physicochemical characterization of traditionally fermented liquid manure from fish waste (Gunapaselam). Indian Journal of Traditional Knowledge, 18(4), 830-836.
  • Heydecker, W., & Gibbins, B. M. (1978). The'priming'of seeds.[Conference paper]. Acta Horticulturae (Netherlands). no. 83.
  • Hniličková, H., Hnilička, F., Martinkova, J., & Kraus, K. (2017). Effects of salt stress on water status, photosynthesis and chlorophyll fluorescence of rocket. Plant, Soil and Environment, 63(8), 362-367. https://doi.org/10.17221/398/2017-PSE
  • Ibrahim, E. A. (2016). Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology, 192, 38-46. https://doi.org/10.1016/j.jplph.2015.12.011
  • Jia, W., Wang, Y., Zhang, S., Zhang, J. (2002). Salt-stress-Induced ABA accumulation is more sensitively triggered in roots than in shoots. Journal of Experimental Botany, 53(378), 2201-2206. https://doi.org/10.1093/jxb/erf079
  • Jilani, M. I., Ali, A., Rehman, R., & Nisar, S. S. S. (2015). Health benefits of Arugula: A review. International Journal of Chemical and Biochemical Sciences, 8, 65-70.
  • Kabar, K. (1987). Alleviation of salinity stress by plant growth regulators on seed germination. Journal of Plant Physiology, 128(1-2), 179-183. https://doi.org/10.1016/S0176-1617(87)80193-1
  • Kabar, K. (1997). Comparison of Reversal of Abscisic Acid-induced Inhibition of Seed Germination and Seedling Growth of Some Gramineae and Liliaceae Members by Kinetin and Gibberellic Acid. Turkish Journal of Botany, 21, 203-210.
  • Kanber, R., Kırda, C., & Tekinel, O. (1992). Sulama suyu niteliği ve sulamada tuzluluk sorunları. ÇÜ Ziraat Fakültesi Genel Yayın, 21.
  • Kenanoğlu, B. B. (2016). Tohumların çimlendirilmesinde farklı organik ön çimlendirme (Ozmotik Koşullandırma) uygulamalarının kullanımı. Yüzüncü Yıl Üniversitesi Fen Bilim. Enstitüsü Dergisi, 21, 124–134.
  • Kumar, S., Malav, L. C., Malav, M. K., & Khan, S. A. (2015). Biogas slurry: source of nutrients for eco-friendly agriculture. International Journal of Extensive Research, 2(2), 42-46.
  • Kusvuran, S., Ellialtioglu, S., & Polat, Z. (2013). Applications of salt and drought stress on the antioxidative enzyme activities and malondialdehyde content in callus tissues of pumpkin genotypes. Journal of Food, Agriculture & Environment, 11(2), 496-500.
  • Kuşçu, H., Çayğaracı, A., & Ndayizeye, J. D. D. (2018). Tuz stresinin bazı kinoa (Chenopodium quinoa Willd.) çeşitlerinin çimlenme özellikleri üzerine etkisi. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 32(1), 89-99.
  • Leskovar, D., & Othman, Y. A. (2018). Organic and conventional farming differentially influenced soil respiration, physiology, growth and head quality of artichoke cultivars. Journal of soil science and plant nutrition, 18(3), 865-880. https://doi.org/10.4067/S071895162018005002502
  • Liu, Y., Wang, Q., Zhang, Y., Cui, J., Chen, G., Xie, B., & Liu, H. (2014). Synergistic and antagonistic effects of salinity and pH on germination in switchgrass (Panicum virgatum L.). PloS one, 9(1), e85282. DOI: https://doi.org/10.1371/journal.pone.0085282
  • Matthews, S., & Khajeh-Hosseini, M. (2007). Length of the lag period of germination and metabolic repair explain vigour differences in seed lots of maize (Zea mays). Seed Science and Technology, 35: 200-212. https://doi.org/10.15258/sst.2007.35.1.18
  • Phibunwatthanawong, T., & Riddech, N. (2019). Liquid organic fertilizer production for growing vegetables under hydroponic condition. International Journal of Recycling of Organic Waste in Agriculture, 8, 369-380. https://doi.org/10.1007/s40093-019-0257-7
  • Pill, W. G., Necker, A. D. (2001). The effects of seed treatments on germination and establishment of Kentucky bluegrass (Poapratense L.). Seed Science and Technology. 29, 65-72.
  • Pita Villamil, J. M., Perez-Garcia, F., & Martinez-Laborde, J. B. (2002). Time of seed collection and germination in rocket, Eruca vesicaria (L.) Cav. (Brassicaceae). Genetic Resources and Crop Evolution, 49, 47-51. https://doi.org/10.1023/A:1013875614186
  • Polat, T., & Okant, M. (2022). Tarımda son trendler tasarlama. Ankara. 296s.
  • Schopfer, P., Bajracharya, D., Plachy, C. (1979). Control of Seed Germination by Abscisic Acid: I. Time Course of Action in Sinapis alba L. Plant Physiology, 64(5), 822-827. https://doi.org/10.1104/pp.64.5.822
  • Tabur, S., & Demir, K. (2009). Cytogenetic response of 24-epibrassinolide on the root meristem cells of barley seeds under salinity. Plant Growth Regulation, 58, 119-123. https://doi.org/10.1007/s10725-008-9357-5
  • Theuerl, S., Herrmann, C., Heiermann, M., Grundmann, P., Landwehr, N., Kreidenweis, U., & Prochnow, A. (2019). The future agricultural biogas plant in Germany: A vision. Energies, 12(3), 396. https://doi.org/10.3390/en12030396
  • Tort, N., Türkyılmaz, B. (2003). Physiological Effects of NaCl on Two Barley (Hordeum vulgare L.) Cultivars. Turkish Journal Of Field Crops, 8, 68-75.
  • Turner, N. C. (1981). Techniques and experimental approaches for the measurement of plant water status. Plant and soil, 58(1-3), 339-366.
  • TÜİK. (2021). Türkiye İstatistik Kurumu. Bitkisel üretim istatistikleri. Türkiye İstatistik Kurumu, Ankara. Yasir, T. A., Khan, A., Skalicky, M., Wasaya, A., Rehmani, M. I. A., Sarwar, N., Mubeen, K., Aziz, M., Hassan, M. M.,
  • Hassan, F. A. S., Iqbal, M. A., Brestic, M., Islam, M. S., Danish, S., & El Sabagh, A. (2021). Exogenous Sodium Nitroprusside Mitigates Salt Stress in Lentil (Lens culinaris Medik.) by Affecting the Growth, Yield, and Biochemical Properties. Molecules, 26(9), 2576. https://doi.org/10.3390/molecules26092576
  • Zeevaart, J. A., & Creelman, R. A. (1988). Metabolism and physiology of abscisic acid. Annual review of plant physiology and plant molecular biology, 39(1), 439-473.
  • Zhao, Y., Yang, Q. S., Yang, S., Zhao, H. M., Duan, Q. S., Yang, Y. X., & Qin, X. D. (2014). Effects of biogas slurry pretreatment on germination and seedling growth of Vicia faba L. Advanced Materials Research, 955, 208-212. https://doi.org/10.4028/www.scientific.net/AMR.955-959.208

The Effect of Liquid Fermented Fertilizer Derived from Biogas Systems on Germination and Some Growth Parameters of Arugula (Eruca sativa L. cv. Bengi) Under Salt Stress

Yıl 2023, Cilt: 5 Sayı: 1, 29 - 35, 23.06.2023
https://doi.org/10.55979/tjse.1313191

Öz

The aim of this study was to investigate the effects of liquid fermented fertilizer application on germination and some growth parameters of arugula under salt stress conditions. Arugula (or rocket; Eruca sativa L. cv. Bengi) seeds were used as the plant material. Pre-treatment with liquid fermented fertilizer (1 hour) was applied to the seeds, which were then subjected to germination for seven days under salt stress conditions. The study was conducted with three salts (0, 75, and 150 mM NaCl), four pre-treatments (pure water and liquid fermented fertilizer at 1%, 5%, and 15% concentrations), and three replications. Various germination and growth parameters (percentage of germination over time, germination-hypocotyl percentage, radicle-hypocotyl length, fresh and dry weight, and water content percentage) were examined at the end of the 7th day. Depending on the increased salinity, the germination rates and growth parameters of the seeds decreased. However, positive effects of liquid fermented fertilizer application were observed on germination rate (5% pre-application), fresh (15% pre-application) and dry weight (1% and 15% pre-application). As a result of the study, it was determined that the application of liquid fermented fertilizers played a role in mitigating the effects of stress in partially different parameters and different salt levels.

Proje Numarası

0898-YL-23

Kaynakça

  • Ahammed, G. J., Li, Y., Li, X., Han, W. Y., & Chen, S. (2018). Epigallocatechin-3-gallate alleviates salinity-retarded seed germination and oxidative stress in tomato. Journal of plant growth regulation, 37, 1349-1356. https://doi.org/10.1007/s00344-018-9849-0
  • Ahanger, M. A., Aziz, U., Alsahli, A. A., Alyemeni, M. N., & Ahmad, P. (2019). Influence of exogenous salicylic acid and nitric oxide on growth, photosynthesis, and ascorbate-glutathione cycle in salt stressed Vigna angularis. Biomolecules, 10(1), 42. https://doi.org/10.3390/biom10010042
  • Ahmed, M. A., Ibrahim, O. M., & Elham, A. B. (2010). Effect of bio and mineral phosphorus fertilizer on the growth, productivity and nutritional value of fenugreek (Trigonella foenum graecum L.) in Newly Cultivated Land. Research Journal of Agriculture and Biological Sciences, 6(3), 339-48.
  • Aina, O. E., Amoo, S. O., Mugivhisa, L. L., & Olowoyo, J. O. (2019). Effect of organic and inorganic sources of nutrients on the bioactive compounds and antioxidant activity of tomato. Applied Ecology and Environmental Research, 17(2), 3681-3694. http://dx.doi.org/10.15666/aeer/1702_36813694
  • Arthurson, V. (2009). Closing the global energy and nutrient cycles through application of biogas residue to agricultural land–potential benefits and drawbacks. Energies, 2(2), 226-242. https://doi.org/10.3390/en20200226
  • Baltepe, Ş., & Mert, H. (1973). Cucurbita Türlerinin Hipokotil Büyümesi üzerine Giberellik Asit ve İndol Asetik asitin etkileri. Tübitak IV. Bilim Kongresi, Ankara.
  • Baştabak, B. (2019). Biyogaz Sistemlerinden Elde Edilen Fermente Gübrenin Marul Yetiştiriciliğinde Bitki Gelişimine Etkilerinin İncelenmesi. (Yüksek Lisans Tezi, Ege Üniversitesi, Fen Bilimleri Enstitüsü)
  • Bidabadi, S. S., Dehghanipoodeh, S., & Wright, G. C. (2017). Vermicompost leachate reduces some negative effects of salt stress in pomegranate. International Journal of Recycling of Organic Waste in Agriculture, 6, 255-263. https://doi.org/10.1007/s40093-017-0173-7
  • Borsani, O., Valpuesta, V., Botella, M. A. (2003). Devoloping Salt Tolerant Plants in a New Century: A Molecular Biology Approach. Plant Cell, Tissue and Organ Culture, 73(2), 101-115. https://doi.org/10.1023/A:1022849200433
  • Bozcuk, S. (1978). Domates (Lycopersicum esculentum Mill.), arpa (Hordeum vulgare L.) ve pamuk (Gossypium hirsitum L.) bitkilerinin büyüme ve gelişmesinde tuz-kinetin etkileşimi üzerinde araştırmalar. (Doçentlik tezi, Hacettepe Üniversitesi, Fen Fakültesi)
  • Bray, E. A. (1988). Draught- and ABA-induced Changes in Polypeptide and mRNA Acumulation in Tomato Leaves. Plant Physiology, 88(4), 1210-1214. https://doi.org/10.1104/pp.88.4.1210
  • Cesur, A., & Tabur, S. (2011). Chromotoxic effects of exogenous hydrogen peroxide (H2O2) in barley seeds exposed to salt stress. Acta physiologiae plantarum, 33, 705-709. https://doi.org/10.1007/s11738-010-0594-7
  • Çulha, Ş., & Çakırlar, H. (2011). Tuzluluğun bitkiler üzerine etkileri ve tuz tolerans mekanizmaları. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 11(2), 11-34.
  • Demirbaş, M., & Aydin, R. (2020). 21. Yüzyılın en büyük tehdidi: küresel iklim değişikliği. Ecological Life Sciences, 15(4), 163-179. https://doi.org/10.12739/NWSA.2020.15.4.5A0143
  • Dölarslan, M., & Ebru, G. (2012). Toprak bitki ilişkileri açısından tuzluluk. Türk Bilimsel Derlemeler Dergisi, 2, 56-59.
  • Duan, E. (2013). Bazı deniz makroalglerinden (Ulva sp. Cystoseira sp. ve Corallina sp.) fermente sıvı organik gübre üretimi ve taze fasülye (Phaseolus vulgaris) verimine etkisinin belirlenmesi (Yüksek lisans tezi, Giresun Üniversitesi Fen Bilimleri Enstitüsü).
  • Efe, E, Bek, Y. & Şahin, M. (2000). SPSS’te Çözümleri ile İstatistik Yöntemler II, No. 10.
  • Fallahi, H. R., Fadaeian, G., Gholami, M., Daneshkhah, O., Hosseini, F. S., Aghhavani-Shajari, M., & Samadzadeh, A. (2015). Germination response of grasspea (Lathyrus sativus L.) and arugula (Eruca sativa L.) to osmotic and salinity stresses. Plant Breeding and Seed Science, 71(1), 97. https://doi.org/10.1515/plass-2015-0025
  • Fagerström, A., Al Seadi, T., Rasi, S., & Briseid, T. (2018). The role of anaerobic digestion and biogas in the circular economy,24s.
  • Hepsibha, B. T., & Geetha, A. (2019). Physicochemical characterization of traditionally fermented liquid manure from fish waste (Gunapaselam). Indian Journal of Traditional Knowledge, 18(4), 830-836.
  • Heydecker, W., & Gibbins, B. M. (1978). The'priming'of seeds.[Conference paper]. Acta Horticulturae (Netherlands). no. 83.
  • Hniličková, H., Hnilička, F., Martinkova, J., & Kraus, K. (2017). Effects of salt stress on water status, photosynthesis and chlorophyll fluorescence of rocket. Plant, Soil and Environment, 63(8), 362-367. https://doi.org/10.17221/398/2017-PSE
  • Ibrahim, E. A. (2016). Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology, 192, 38-46. https://doi.org/10.1016/j.jplph.2015.12.011
  • Jia, W., Wang, Y., Zhang, S., Zhang, J. (2002). Salt-stress-Induced ABA accumulation is more sensitively triggered in roots than in shoots. Journal of Experimental Botany, 53(378), 2201-2206. https://doi.org/10.1093/jxb/erf079
  • Jilani, M. I., Ali, A., Rehman, R., & Nisar, S. S. S. (2015). Health benefits of Arugula: A review. International Journal of Chemical and Biochemical Sciences, 8, 65-70.
  • Kabar, K. (1987). Alleviation of salinity stress by plant growth regulators on seed germination. Journal of Plant Physiology, 128(1-2), 179-183. https://doi.org/10.1016/S0176-1617(87)80193-1
  • Kabar, K. (1997). Comparison of Reversal of Abscisic Acid-induced Inhibition of Seed Germination and Seedling Growth of Some Gramineae and Liliaceae Members by Kinetin and Gibberellic Acid. Turkish Journal of Botany, 21, 203-210.
  • Kanber, R., Kırda, C., & Tekinel, O. (1992). Sulama suyu niteliği ve sulamada tuzluluk sorunları. ÇÜ Ziraat Fakültesi Genel Yayın, 21.
  • Kenanoğlu, B. B. (2016). Tohumların çimlendirilmesinde farklı organik ön çimlendirme (Ozmotik Koşullandırma) uygulamalarının kullanımı. Yüzüncü Yıl Üniversitesi Fen Bilim. Enstitüsü Dergisi, 21, 124–134.
  • Kumar, S., Malav, L. C., Malav, M. K., & Khan, S. A. (2015). Biogas slurry: source of nutrients for eco-friendly agriculture. International Journal of Extensive Research, 2(2), 42-46.
  • Kusvuran, S., Ellialtioglu, S., & Polat, Z. (2013). Applications of salt and drought stress on the antioxidative enzyme activities and malondialdehyde content in callus tissues of pumpkin genotypes. Journal of Food, Agriculture & Environment, 11(2), 496-500.
  • Kuşçu, H., Çayğaracı, A., & Ndayizeye, J. D. D. (2018). Tuz stresinin bazı kinoa (Chenopodium quinoa Willd.) çeşitlerinin çimlenme özellikleri üzerine etkisi. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 32(1), 89-99.
  • Leskovar, D., & Othman, Y. A. (2018). Organic and conventional farming differentially influenced soil respiration, physiology, growth and head quality of artichoke cultivars. Journal of soil science and plant nutrition, 18(3), 865-880. https://doi.org/10.4067/S071895162018005002502
  • Liu, Y., Wang, Q., Zhang, Y., Cui, J., Chen, G., Xie, B., & Liu, H. (2014). Synergistic and antagonistic effects of salinity and pH on germination in switchgrass (Panicum virgatum L.). PloS one, 9(1), e85282. DOI: https://doi.org/10.1371/journal.pone.0085282
  • Matthews, S., & Khajeh-Hosseini, M. (2007). Length of the lag period of germination and metabolic repair explain vigour differences in seed lots of maize (Zea mays). Seed Science and Technology, 35: 200-212. https://doi.org/10.15258/sst.2007.35.1.18
  • Phibunwatthanawong, T., & Riddech, N. (2019). Liquid organic fertilizer production for growing vegetables under hydroponic condition. International Journal of Recycling of Organic Waste in Agriculture, 8, 369-380. https://doi.org/10.1007/s40093-019-0257-7
  • Pill, W. G., Necker, A. D. (2001). The effects of seed treatments on germination and establishment of Kentucky bluegrass (Poapratense L.). Seed Science and Technology. 29, 65-72.
  • Pita Villamil, J. M., Perez-Garcia, F., & Martinez-Laborde, J. B. (2002). Time of seed collection and germination in rocket, Eruca vesicaria (L.) Cav. (Brassicaceae). Genetic Resources and Crop Evolution, 49, 47-51. https://doi.org/10.1023/A:1013875614186
  • Polat, T., & Okant, M. (2022). Tarımda son trendler tasarlama. Ankara. 296s.
  • Schopfer, P., Bajracharya, D., Plachy, C. (1979). Control of Seed Germination by Abscisic Acid: I. Time Course of Action in Sinapis alba L. Plant Physiology, 64(5), 822-827. https://doi.org/10.1104/pp.64.5.822
  • Tabur, S., & Demir, K. (2009). Cytogenetic response of 24-epibrassinolide on the root meristem cells of barley seeds under salinity. Plant Growth Regulation, 58, 119-123. https://doi.org/10.1007/s10725-008-9357-5
  • Theuerl, S., Herrmann, C., Heiermann, M., Grundmann, P., Landwehr, N., Kreidenweis, U., & Prochnow, A. (2019). The future agricultural biogas plant in Germany: A vision. Energies, 12(3), 396. https://doi.org/10.3390/en12030396
  • Tort, N., Türkyılmaz, B. (2003). Physiological Effects of NaCl on Two Barley (Hordeum vulgare L.) Cultivars. Turkish Journal Of Field Crops, 8, 68-75.
  • Turner, N. C. (1981). Techniques and experimental approaches for the measurement of plant water status. Plant and soil, 58(1-3), 339-366.
  • TÜİK. (2021). Türkiye İstatistik Kurumu. Bitkisel üretim istatistikleri. Türkiye İstatistik Kurumu, Ankara. Yasir, T. A., Khan, A., Skalicky, M., Wasaya, A., Rehmani, M. I. A., Sarwar, N., Mubeen, K., Aziz, M., Hassan, M. M.,
  • Hassan, F. A. S., Iqbal, M. A., Brestic, M., Islam, M. S., Danish, S., & El Sabagh, A. (2021). Exogenous Sodium Nitroprusside Mitigates Salt Stress in Lentil (Lens culinaris Medik.) by Affecting the Growth, Yield, and Biochemical Properties. Molecules, 26(9), 2576. https://doi.org/10.3390/molecules26092576
  • Zeevaart, J. A., & Creelman, R. A. (1988). Metabolism and physiology of abscisic acid. Annual review of plant physiology and plant molecular biology, 39(1), 439-473.
  • Zhao, Y., Yang, Q. S., Yang, S., Zhao, H. M., Duan, Q. S., Yang, Y. X., & Qin, X. D. (2014). Effects of biogas slurry pretreatment on germination and seedling growth of Vicia faba L. Advanced Materials Research, 955, 208-212. https://doi.org/10.4028/www.scientific.net/AMR.955-959.208
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bahçe Bitkileri Yetiştirme ve Islahı (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Leman Çetinkol Bu kişi benim 0009-0004-7821-9755

Aslıhan Cesur Turgut 0000-0002-5824-971X

Proje Numarası 0898-YL-23
Erken Görünüm Tarihi 23 Haziran 2023
Yayımlanma Tarihi 23 Haziran 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 5 Sayı: 1

Kaynak Göster

APA Çetinkol, L., & Cesur Turgut, A. (2023). Biyogaz Sistemlerinden Elde Edilen Sıvı Fermente Gübrenin Tuz Stresi Altındaki Rokanın (Eruca sativa L. cv. Bengi) Çimlenmesine ve Bazı Büyüme Parametrelerine Etkisi. Türk Bilim Ve Mühendislik Dergisi, 5(1), 29-35. https://doi.org/10.55979/tjse.1313191