Research Article
BibTex RIS Cite

Effect of different garlic oil doses on in vitro gas production, rumen fermentation and methane production of sainfoin hay

Year 2019, , 289 - 296, 14.06.2019
https://doi.org/10.33988/auvfd.492584

Abstract

This study was conducted to determined, effects of addition of garlic oil (GO) 0 (control), 100, 200, 400, 800, 1200 and 1600 mg/L rumen fluid (RF) by in vitro gas production technique, on the true organic matter digestibility (TOMD), organic matter digestibility (OMD), neutral detergent fiber digestibility (NDFD), metabolizable energy (ME) compound and rumen fermentation parameters, carbon dioxide (CO2) and methane (CH4) gas production of the sainfoin (Onobrychis sativa L.) hay. In vitro gas production technique was used to determine the effects of different doses of GO on rumen fermentation, OMD and metabolic energy (ME) level. GKMS and NDFS contents of sainfoin hay were determined by Daisy incubator technique. The addition of GO significantly decreased the in vitro gas production, OMD, NDFD, ME, total volatile fatty acids content (VFA), acetic acid (AA), propionic acid (PA), butyric acid (BA) and the other volatile fatty acids levels of sainfoin hay (P<0.01). In addition, the addition of GO at different doses to the rumen fluid also reduced the production of CH4 and CO2 production (P <0.01). As a result, in vitro gas production, rumen fermentation, nutrient digestion, methane and carbon dioxide production on the most adverse effect garlic oil dose was found to be 1600 mg / L RF. It was concluded that it would be appropriate to use low doses (400 mg / L RF) because of the high GO doses that affect rumen fermentation and the digestion of feed.

References

  • Anassori E, Dalir-Naghadeh B, Pirmohammadi R ve ark. (2011): Garlic: A potential alternative for monensin as a rumen modifier. Livest Sci, 142, 276-287.
  • AOAC (2000): Official Methods of Analysis. 17th ed. 5th rev. Association of Official Analytical Chemists. Arlington, VA, USA. 930-954
  • Benchaar C, Calsamiglia S, Chaves AV ve ark. (2008): A review of plant-derived essential oils in ruminant nutrition and production. Anim Feed Sci Technol, 145, 209-228.
  • Benchaar, C, Chaves, A.V, Fraser, G.R ve ark. (2007). Effects of essential oils and their components on in vitro rumen microbial fermentation. Can J Anim Sci, 87 (3), 413-419.
  • Benchaar C, Greathead H (2011): Essential oils and opportunities to mitigate enteric methane emissions from ruminants. Anim Feed Sci Technol, 166, 338-355.
  • Blanch M, Carro MD, Ranilla MJ ve ark. (2016): Influence of a mixture of cinnamaldehyde and garlic oil on rumen fermentation, feeding behavior and performance of lactating dairy cow. Anim Feed Sci Technol, 219, 313-323.
  • Blümmel M, Steingass H, Becker K (1997): The relationship between in vitro gas production, in vitro microbial biomass yield and 15N incorporation and its implications for the prediction of voluntary feed intake of roughages. Br J Nutr, 77, 911-921.
  • Blümmel M, Aiple KP, Steingass H ve ark. (1999): A note on the stoichiometrical relationship of short chain fatty acid production and gas evolution in vitro in feedstuffs of widely differing quality. J Anim Physiol Anim Nutr, 81, 157-167.
  • Boadi D, Benchaar C, Chiquette J ve ark. (2004): Mitigation strategies to reduce enteric methane emissions from dairy cows: Update review. Can J Anim Sci, 84, 319-335.
  • Busquet M, Calsamiglia S, Ferret A ve ark. (2005): Effect of garlic oil and four of its compounds on rumen microbial fermentation. J Dairy Sci, 88, 4393-4404.
  • Calsamiglia S, Busquet M, Cardozo PW ve ark. (2007): Invited review: Essential oils as modifiers of rumen microbial fermentation. J Dairy Sci, 90, 2580-2595.
  • Cardozo PW, Calsamiglia S, Ferret A ve ark. (2004): Effects of natural plant extracts on ruminal protein degradation and fermentation profiles in continuous culture. J Anim Sci, 82, 3230-3236.
  • Castillejos L, Calsamiglia S, Ferret A (2006): Effect of essential oil active compounds on rumen microbial fermentation and nutrient flow in in vitro systems. J Dairy Sci, 89, 2649-2658.
  • Chaves AV, Stanford K, Dugan MER ve ark. (2008): Effects of cinnamaldehyde, garlic and juniper berry essential oils on rumen fermentation, blood metabolites, growth performance, and carcass characteristics of growing lambs. Livest Sci, 117, 215-224.
  • Chesson A (2006): Phasing out antibiotic feed additives in the EU: worldwide relevance for animal food production. Antimicrobial Growth Promoters-Where do We Go from Here? Wageningen Academic Publishers, The Netherlands, pp. 69-81.
  • Cobellis G, Trabalza-Marinucci M, Yu Z (2016): Critical evaluation of essential oils as rumen modifiers in ruminant nutrition: A review. Sci Total Environ, 545-546, 556-568.
  • Demeyer DI, Fiedler D, De Graeve KG (1996): Attempted induction of reductive acetogenesis into the rumen fermentation in vitro. Reprod Nutr Dev, 36, 233-240.
  • Deniz S, Akdeniz H, Avcı M ve ark. (2005): Faklı devrelerde biçilen korunganın verim potansiyeli ile sindirilebilirlik ve enerji düzeylerinin in vivo ve vitro yöntemlerle belirlenmesi. Vet Bil Derg, 21, 3-4, 47-55.
  • Fujisawa H, Watanabe K, Suma K ve ark. (2009): Antibacterial potential of garlic-derived allicin and its cancellation by sulfhydryl compounds. Biosci Biotechnol Biochem, 73, 1948-1955.
  • Hodjatpanah AA, Danesh Msegaran M, Vakili AR (2010): Effects of diets containing monensin, garlic oil or turmeric powder on ruminal and blood metabolite responses of sheep. J Anim Vet Adv, 9 (24): 3104-3108.
  • Hodjatpanah-montazeri A, Danesh Mesgaran M, Vakili A ve ark. (2014): In vitro effect of garlic oil and turmeric extract on methane production from gas test medium. Annu Res Rev Biol, 4, 1439-1447.
  • IPCC (Intergovermental Panel on Climate Change) (2007): IPCC Fourth Assessment Report.
  • Jouany JP, Morgavi DP (2007): Use of “natural” products as alternatives to antibiotic feed additives in ruminant production. Animal, 1, 1443-66.
  • Kallel F, Driss D, Chaari F ve ark. (2014): Garlic (Allium sativum L.) husk waste as a potential source of phenolic compounds: Influence of extracting solvents on its antimicrobial and antioxidant properties. Ind Crops Prod, 62, 34-41.
  • Karabulut A, Canbolat O, Kalkan H ve ark. (2007): Comparison of in vitro gas production, metabolizable energy, organic matter digestibility and microbial protein production of some legume hays. Asian-Australas J Anim Sci, 20, 517-522.
  • Kılıç U, Boğa M, Görgülü M ve ark. (2011): The effects of different compounds in some essential oils on in vitro gas production. J Animal Feed Sci, 20, 626-636.
  • Kim ET, Kim CH, Min KS ve ark. (2012): Effects of plant extracts on microbial population, methane emission and ruminal fermentation characteristics in in vitro. Asian-Australas J Anim Sci, 25, 806-811.
  • Klevenhusen F, Zeitz JO, Duval S ve ark. (2011): Garlic oil and its principal component diallyl disulfide fail to mitigate methane, but improve digestibility in sheep. Anim Feed Sci Technol, 166-167. 356-363.
  • Lawson L (1996): The composition and chemistry of garlic cloves and processed garlic. Pages 37-107 in Garlic. The Science and Therapeutic Application of Allium sativum L. and Related Species. H. P. Koch and L. D. Lawson, ed. Williams & Wilkins, Baltimore, MD.
  • Mateos I, Ranilla MJ, Tejido ML ve ark. (2013): The influence of diet type (dairy versus intensive fattening) on the effectiveness of garlic oil and cinnamaldehyde to manipulate in vitro ruminal fermentation and methane production. Anim Prod Sci, 53, 299-307.
  • Mbiriri DT, Cho S, Mamvura CI ve ark. (2015): Assessment of Rumen Microbial Adaptation to Garlic Oil, Carvacrol and Thymol Using the Consecutive Batch Culture System. J Vet Sci Anim Husb, 4, 1-7.
  • Menke KH, Raab L, Salewski A ve ark. (1979): The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J Agric Sci, 93, 217-222.
  • Menke KH, Steingass H (1988): Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim Res Dev, 28. 9-55.
  • Munchberg U, Anwar A, Mecklenburg S ve ark. (2007): Polysulfides as biologically active ingredients of garlic, Org Biomol Chem. 5, 1505-1518.
  • NRC (National Research Council) (2007): Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids. Washington, DC: The National Academies Press.
  • Panthee A, Matsuno A, Al-Mamun M ve ark. (2017): Effect of feeding garlic leaves on rumen fermentation, methane emission, plasma glucose kinetics, and nitrogen utilization in sheep. J Anim Sci Technol, 59, 1-9.
  • Patra AK (2011): Effects of essential oils on rumen fermentation, microbial ecology and ruminant production. Asian J Anim Vet Adv, 6, 416-428.
  • Patra AK, Kamra DN, Agarwal N (2010): Effects of extracts of spices on rumen methanogenesis, enzyme activities and fermentation of feeds in vitro. J Sci Food Agric, 90, 511-520.
  • Patra AK, Yu Z (2012): Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbialpopulations. Appl Environ Microbiol, 78, 4271-4280.
  • Patra A, Yu Z (2015): Effects of adaptation of in vitro rumen culture to garlic oil, nitrate, and saponin and their combinations on methanogenesis, fermentation, and abundances and diversity of microbial populations. Front Microbiol, 6, 1-11.
  • Ratika K, James Singh RK (2018). Plant derived essential oil in ruminant nutrition. Int J Curr Microbiol Appl Sci, 7, 1747-1753.
  • Reuter HD, Koch HP, Lawson D (1996): Therapeutic effects and applications of garlic and its preparations. In: Lawson, L.D. and Koch, H.P, Eds, Garlic: The Science and Therapeutic Applications of Allium sativum L. and Related Species, 2nd Edition, William & Wilkins, Baltimore, 135-212.
  • Roy D, Tomar SK, Sirohi SK ve ark. (2014): Efficacy of different essential oils in modulating rumen fermentation in vitro using buffalorumen liquor. Vet World, 7, 213-218.
  • SAS (Statistical Analysis Systems) (2004): SAS procedures guide. Release 9.1. (SAS Institute Inc.: Cary, NC).
  • Snedecor GW, Cochran WG (1967): Statistical Methots, 7th Edition, Iowa State University Press, Ames.
  • Takahashi J, Mwenya B, Santoso B ve ark. (2005): Mitigation of methane emission and energy recycling in animal agricultural systems. Asian-Australas J Anim Sci, 18, 1199-1208.
  • Van Soest PJJ, Robertson JB, Lewis BA (1991): Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci, 74, 3583-3597.
  • Wiedmeier RD, Arambell MJ, Walters, JL (1987): Effect of orally administered pilocarpine on ruminal characteristics and nutrient digestibility in cattle. J Dairy Sci, 70, 284-289.
  • Zhu Z, Mao S, Zhu W (2012): Effects of ruminal infusion of garlic oil on fermentation dynamics, fatty acid profile and abundance of bacteria involved in biohydrogenation in rumen of goats. Asian-Australas J Anim Sci, 25, 962-970.

Farklı sarımsak yağı dozlarının, korunga otunun in vitro gaz üretimi, rumen fermantasyonu ve metan üretimi üzerine etkisi

Year 2019, , 289 - 296, 14.06.2019
https://doi.org/10.33988/auvfd.492584

Abstract

Bu araştırma rumen sıvısına (RS) 0 (kontrol), 100, 200, 400, 800, 1200 ve 1600 mg/L sarımsak yağı (SY) ilavesinin korunga (Onobrychis sativa L.) otunun gerçek kuru madde sindirimi (GKMS), organik madde sindirimi (OMS), nötr deterjanda çözünmeyen lif sindirimi (NDFS), rumen sıvısı parametreleri ile karbondioksit (CO2) ve metan (CH4) gazı üretimi üzerine etkilerinin saptanması amacıyla düzenlenmiştir. Farklı SY dozlarının rumen fermantasyonu, OMS ve metabolik enerji (ME) düzeyinin saptanması için in vitro gaz üretim tekniği kullanılmıştır. Korunga otunun GKMS ve NDFS ise Daisy inkübatör tekniği ile saptanmıştır. Rumen sıvısına SY ilavesinin korunga otunun in vitro gaz üretimini, GKMS, OMS, NDFS ve metabolik enerji (ME) içerikleri ile rumen fermantasyonu sonucu oluşan toplam uçucu yağ asitleri (TUYA), asetik asit (AA), propiyonik asit (PA) ve butirik asit (BA) ve diğere uçucu yağ asidi düzeylerini azalttığı saptanmıştır (P<0.01). Ayrıca, rumen sıvısına farklı dozlarda SY ilavesi CH4 ve CO2 üretimini de düşürmüştür (P<0.01). Sonuç olarak, in vitro gaz üretimi, rumen fermantasyonu, besin maddeleri sindirimi, metan ve karbondioksit üretimi üzerinde, en fazla olumsuz etkili sarımsak yağı dozu 1600 mg/L RS olduğu saptanmıştır. Yüksek SY dozlarının rumen fermantasyonunu, yemlerin sindirimini olumsuz etkilemesi nedeniyle düşük dozlarda (400 mg/L RS) kullanılmasının uygun olacağı kanaatine varılmıştır.

References

  • Anassori E, Dalir-Naghadeh B, Pirmohammadi R ve ark. (2011): Garlic: A potential alternative for monensin as a rumen modifier. Livest Sci, 142, 276-287.
  • AOAC (2000): Official Methods of Analysis. 17th ed. 5th rev. Association of Official Analytical Chemists. Arlington, VA, USA. 930-954
  • Benchaar C, Calsamiglia S, Chaves AV ve ark. (2008): A review of plant-derived essential oils in ruminant nutrition and production. Anim Feed Sci Technol, 145, 209-228.
  • Benchaar, C, Chaves, A.V, Fraser, G.R ve ark. (2007). Effects of essential oils and their components on in vitro rumen microbial fermentation. Can J Anim Sci, 87 (3), 413-419.
  • Benchaar C, Greathead H (2011): Essential oils and opportunities to mitigate enteric methane emissions from ruminants. Anim Feed Sci Technol, 166, 338-355.
  • Blanch M, Carro MD, Ranilla MJ ve ark. (2016): Influence of a mixture of cinnamaldehyde and garlic oil on rumen fermentation, feeding behavior and performance of lactating dairy cow. Anim Feed Sci Technol, 219, 313-323.
  • Blümmel M, Steingass H, Becker K (1997): The relationship between in vitro gas production, in vitro microbial biomass yield and 15N incorporation and its implications for the prediction of voluntary feed intake of roughages. Br J Nutr, 77, 911-921.
  • Blümmel M, Aiple KP, Steingass H ve ark. (1999): A note on the stoichiometrical relationship of short chain fatty acid production and gas evolution in vitro in feedstuffs of widely differing quality. J Anim Physiol Anim Nutr, 81, 157-167.
  • Boadi D, Benchaar C, Chiquette J ve ark. (2004): Mitigation strategies to reduce enteric methane emissions from dairy cows: Update review. Can J Anim Sci, 84, 319-335.
  • Busquet M, Calsamiglia S, Ferret A ve ark. (2005): Effect of garlic oil and four of its compounds on rumen microbial fermentation. J Dairy Sci, 88, 4393-4404.
  • Calsamiglia S, Busquet M, Cardozo PW ve ark. (2007): Invited review: Essential oils as modifiers of rumen microbial fermentation. J Dairy Sci, 90, 2580-2595.
  • Cardozo PW, Calsamiglia S, Ferret A ve ark. (2004): Effects of natural plant extracts on ruminal protein degradation and fermentation profiles in continuous culture. J Anim Sci, 82, 3230-3236.
  • Castillejos L, Calsamiglia S, Ferret A (2006): Effect of essential oil active compounds on rumen microbial fermentation and nutrient flow in in vitro systems. J Dairy Sci, 89, 2649-2658.
  • Chaves AV, Stanford K, Dugan MER ve ark. (2008): Effects of cinnamaldehyde, garlic and juniper berry essential oils on rumen fermentation, blood metabolites, growth performance, and carcass characteristics of growing lambs. Livest Sci, 117, 215-224.
  • Chesson A (2006): Phasing out antibiotic feed additives in the EU: worldwide relevance for animal food production. Antimicrobial Growth Promoters-Where do We Go from Here? Wageningen Academic Publishers, The Netherlands, pp. 69-81.
  • Cobellis G, Trabalza-Marinucci M, Yu Z (2016): Critical evaluation of essential oils as rumen modifiers in ruminant nutrition: A review. Sci Total Environ, 545-546, 556-568.
  • Demeyer DI, Fiedler D, De Graeve KG (1996): Attempted induction of reductive acetogenesis into the rumen fermentation in vitro. Reprod Nutr Dev, 36, 233-240.
  • Deniz S, Akdeniz H, Avcı M ve ark. (2005): Faklı devrelerde biçilen korunganın verim potansiyeli ile sindirilebilirlik ve enerji düzeylerinin in vivo ve vitro yöntemlerle belirlenmesi. Vet Bil Derg, 21, 3-4, 47-55.
  • Fujisawa H, Watanabe K, Suma K ve ark. (2009): Antibacterial potential of garlic-derived allicin and its cancellation by sulfhydryl compounds. Biosci Biotechnol Biochem, 73, 1948-1955.
  • Hodjatpanah AA, Danesh Msegaran M, Vakili AR (2010): Effects of diets containing monensin, garlic oil or turmeric powder on ruminal and blood metabolite responses of sheep. J Anim Vet Adv, 9 (24): 3104-3108.
  • Hodjatpanah-montazeri A, Danesh Mesgaran M, Vakili A ve ark. (2014): In vitro effect of garlic oil and turmeric extract on methane production from gas test medium. Annu Res Rev Biol, 4, 1439-1447.
  • IPCC (Intergovermental Panel on Climate Change) (2007): IPCC Fourth Assessment Report.
  • Jouany JP, Morgavi DP (2007): Use of “natural” products as alternatives to antibiotic feed additives in ruminant production. Animal, 1, 1443-66.
  • Kallel F, Driss D, Chaari F ve ark. (2014): Garlic (Allium sativum L.) husk waste as a potential source of phenolic compounds: Influence of extracting solvents on its antimicrobial and antioxidant properties. Ind Crops Prod, 62, 34-41.
  • Karabulut A, Canbolat O, Kalkan H ve ark. (2007): Comparison of in vitro gas production, metabolizable energy, organic matter digestibility and microbial protein production of some legume hays. Asian-Australas J Anim Sci, 20, 517-522.
  • Kılıç U, Boğa M, Görgülü M ve ark. (2011): The effects of different compounds in some essential oils on in vitro gas production. J Animal Feed Sci, 20, 626-636.
  • Kim ET, Kim CH, Min KS ve ark. (2012): Effects of plant extracts on microbial population, methane emission and ruminal fermentation characteristics in in vitro. Asian-Australas J Anim Sci, 25, 806-811.
  • Klevenhusen F, Zeitz JO, Duval S ve ark. (2011): Garlic oil and its principal component diallyl disulfide fail to mitigate methane, but improve digestibility in sheep. Anim Feed Sci Technol, 166-167. 356-363.
  • Lawson L (1996): The composition and chemistry of garlic cloves and processed garlic. Pages 37-107 in Garlic. The Science and Therapeutic Application of Allium sativum L. and Related Species. H. P. Koch and L. D. Lawson, ed. Williams & Wilkins, Baltimore, MD.
  • Mateos I, Ranilla MJ, Tejido ML ve ark. (2013): The influence of diet type (dairy versus intensive fattening) on the effectiveness of garlic oil and cinnamaldehyde to manipulate in vitro ruminal fermentation and methane production. Anim Prod Sci, 53, 299-307.
  • Mbiriri DT, Cho S, Mamvura CI ve ark. (2015): Assessment of Rumen Microbial Adaptation to Garlic Oil, Carvacrol and Thymol Using the Consecutive Batch Culture System. J Vet Sci Anim Husb, 4, 1-7.
  • Menke KH, Raab L, Salewski A ve ark. (1979): The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J Agric Sci, 93, 217-222.
  • Menke KH, Steingass H (1988): Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim Res Dev, 28. 9-55.
  • Munchberg U, Anwar A, Mecklenburg S ve ark. (2007): Polysulfides as biologically active ingredients of garlic, Org Biomol Chem. 5, 1505-1518.
  • NRC (National Research Council) (2007): Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids. Washington, DC: The National Academies Press.
  • Panthee A, Matsuno A, Al-Mamun M ve ark. (2017): Effect of feeding garlic leaves on rumen fermentation, methane emission, plasma glucose kinetics, and nitrogen utilization in sheep. J Anim Sci Technol, 59, 1-9.
  • Patra AK (2011): Effects of essential oils on rumen fermentation, microbial ecology and ruminant production. Asian J Anim Vet Adv, 6, 416-428.
  • Patra AK, Kamra DN, Agarwal N (2010): Effects of extracts of spices on rumen methanogenesis, enzyme activities and fermentation of feeds in vitro. J Sci Food Agric, 90, 511-520.
  • Patra AK, Yu Z (2012): Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbialpopulations. Appl Environ Microbiol, 78, 4271-4280.
  • Patra A, Yu Z (2015): Effects of adaptation of in vitro rumen culture to garlic oil, nitrate, and saponin and their combinations on methanogenesis, fermentation, and abundances and diversity of microbial populations. Front Microbiol, 6, 1-11.
  • Ratika K, James Singh RK (2018). Plant derived essential oil in ruminant nutrition. Int J Curr Microbiol Appl Sci, 7, 1747-1753.
  • Reuter HD, Koch HP, Lawson D (1996): Therapeutic effects and applications of garlic and its preparations. In: Lawson, L.D. and Koch, H.P, Eds, Garlic: The Science and Therapeutic Applications of Allium sativum L. and Related Species, 2nd Edition, William & Wilkins, Baltimore, 135-212.
  • Roy D, Tomar SK, Sirohi SK ve ark. (2014): Efficacy of different essential oils in modulating rumen fermentation in vitro using buffalorumen liquor. Vet World, 7, 213-218.
  • SAS (Statistical Analysis Systems) (2004): SAS procedures guide. Release 9.1. (SAS Institute Inc.: Cary, NC).
  • Snedecor GW, Cochran WG (1967): Statistical Methots, 7th Edition, Iowa State University Press, Ames.
  • Takahashi J, Mwenya B, Santoso B ve ark. (2005): Mitigation of methane emission and energy recycling in animal agricultural systems. Asian-Australas J Anim Sci, 18, 1199-1208.
  • Van Soest PJJ, Robertson JB, Lewis BA (1991): Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci, 74, 3583-3597.
  • Wiedmeier RD, Arambell MJ, Walters, JL (1987): Effect of orally administered pilocarpine on ruminal characteristics and nutrient digestibility in cattle. J Dairy Sci, 70, 284-289.
  • Zhu Z, Mao S, Zhu W (2012): Effects of ruminal infusion of garlic oil on fermentation dynamics, fatty acid profile and abundance of bacteria involved in biohydrogenation in rumen of goats. Asian-Australas J Anim Sci, 25, 962-970.
There are 49 citations in total.

Details

Primary Language Turkish
Subjects Veterinary Surgery
Journal Section Research Article
Authors

Ahmet Uzatıcı 0000-0001-7600-1390

Önder Canbolat 0000-0001-7139-1334

Publication Date June 14, 2019
Published in Issue Year 2019

Cite

APA Uzatıcı, A., & Canbolat, Ö. (2019). Farklı sarımsak yağı dozlarının, korunga otunun in vitro gaz üretimi, rumen fermantasyonu ve metan üretimi üzerine etkisi. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 66(3), 289-296. https://doi.org/10.33988/auvfd.492584
AMA Uzatıcı A, Canbolat Ö. Farklı sarımsak yağı dozlarının, korunga otunun in vitro gaz üretimi, rumen fermantasyonu ve metan üretimi üzerine etkisi. Ankara Univ Vet Fak Derg. June 2019;66(3):289-296. doi:10.33988/auvfd.492584
Chicago Uzatıcı, Ahmet, and Önder Canbolat. “Farklı sarımsak yağı dozlarının, Korunga Otunun in Vitro Gaz üretimi, Rumen Fermantasyonu Ve Metan üretimi üzerine Etkisi”. Ankara Üniversitesi Veteriner Fakültesi Dergisi 66, no. 3 (June 2019): 289-96. https://doi.org/10.33988/auvfd.492584.
EndNote Uzatıcı A, Canbolat Ö (June 1, 2019) Farklı sarımsak yağı dozlarının, korunga otunun in vitro gaz üretimi, rumen fermantasyonu ve metan üretimi üzerine etkisi. Ankara Üniversitesi Veteriner Fakültesi Dergisi 66 3 289–296.
IEEE A. Uzatıcı and Ö. Canbolat, “Farklı sarımsak yağı dozlarının, korunga otunun in vitro gaz üretimi, rumen fermantasyonu ve metan üretimi üzerine etkisi”, Ankara Univ Vet Fak Derg, vol. 66, no. 3, pp. 289–296, 2019, doi: 10.33988/auvfd.492584.
ISNAD Uzatıcı, Ahmet - Canbolat, Önder. “Farklı sarımsak yağı dozlarının, Korunga Otunun in Vitro Gaz üretimi, Rumen Fermantasyonu Ve Metan üretimi üzerine Etkisi”. Ankara Üniversitesi Veteriner Fakültesi Dergisi 66/3 (June 2019), 289-296. https://doi.org/10.33988/auvfd.492584.
JAMA Uzatıcı A, Canbolat Ö. Farklı sarımsak yağı dozlarının, korunga otunun in vitro gaz üretimi, rumen fermantasyonu ve metan üretimi üzerine etkisi. Ankara Univ Vet Fak Derg. 2019;66:289–296.
MLA Uzatıcı, Ahmet and Önder Canbolat. “Farklı sarımsak yağı dozlarının, Korunga Otunun in Vitro Gaz üretimi, Rumen Fermantasyonu Ve Metan üretimi üzerine Etkisi”. Ankara Üniversitesi Veteriner Fakültesi Dergisi, vol. 66, no. 3, 2019, pp. 289-96, doi:10.33988/auvfd.492584.
Vancouver Uzatıcı A, Canbolat Ö. Farklı sarımsak yağı dozlarının, korunga otunun in vitro gaz üretimi, rumen fermantasyonu ve metan üretimi üzerine etkisi. Ankara Univ Vet Fak Derg. 2019;66(3):289-96.