Letter to Editor
BibTex RIS Cite

The light microscopic investigation of the effects of in-ovo administered bisphenol A (BPA) on the development of testes

Year 2018, , 273 - 281, 01.09.2018
https://doi.org/10.1501/Vetfak_0000002857

Abstract

The aim of this study was to determine the effects of BPA on testes development in chicken embryos. For this purpose, 310 fertile eggs of Isa Brown laying parent stock were divided into five groups as control, vehicle-control, 50, 100, and 250 µg/egg BPA. Test solutions were injected into the yolk before incubation. At the 13th, 18th and 21st days of incubation, the eggs were opened until six living male embryos were obtained from each group. Tissue samples were fixed in 10% buffered formalin (pH 7.4). After routine histological processes, tissue samples were embedded in paraffin. Six µm thickness sections were stained with the Crossmon’s trichrome method. All histological evaluation and histometrical measurements were performed on the left testes. On the 13th, 18th and 21st days of the incubation, the groups that were treated with BPA showed growth retardation in testicular tissues, fewer cell cords and poorly cellular organization. At 21 days of the incubation, there were a significant decrease in the mean diameter of the seminiferous tubule in all experimental groups compared to control groups (p<0.05). The increase in mean cortical thickness was observed in the BPA treated groups compared to the control groups (p<0.05). The mean testes surface area was higher at 50 µg/egg and 100µg/egg BPA treated groups compared to the control groups and at 250 µg/egg BPA administered group (p<0.05). In 50 and 100 µg/egg BPA treated chicken embryos, BPA triggered ovo-testis formation by characterizing thickened cortex containing oocytelike cell clusters whereas BPA had toxic effects at 250 μg/egg. It was concluded that BPA can induce both estrogen-like and toxic effects in the developing testes of chicken embryos in a dose-dependent manner

References

  • Acconcia F, Pallottini V, Marino M (2015): Molecular mechanisms of action of BPA. Int J, 13, 1-9.
  • Berg C, Blomqvist A, Holm L, et al. (2004): Embryonic exposure to oestrogen causes eggshell thinning and altered shell gland carbonic anhydrase expression in the domestic hen. Reproduction, 128, 455-461.
  • Berg C, Halldin K, Brunström B (2001): Effects of bisphenol A and tetrabromobisphenol A on sex organ development in quail and chicken embryos. Environ Toxicol Chem, 20, 2836-40.
  • Berg C, Halldin K, Fridolfsson AK, et al. (1999): The avian egg as a test system for endocrine disrupters: effects of diethylstilbestrol and ethynylestradiol on sex organ develop. Sci Total Environ, 233, 57-66.
  • Birkhead T, Fletcher F, Pellatt E (1998): Testes asymmetry, condition and sexual selection in birds: an experimental test. P Roy Soc Lon B Bio, 265, 1185-89.
  • Chang G, Chen R, Qin Y, et al. (2012): The development of primordial germ cells (PGCs) and testis in the quail embryo. Pakistan Vet J, 32, 88-92.
  • Crain DA, Eriksen M, Iguchi T, et al. (2007): An ecological assessment of bisphenol-A: evidence from comparative biology. Reprod Toxicol, 24, 225-239.
  • Crossmon G (1937): A modification of Mollory’s connective tissue stain with a discussion of the principles involved. Anat Rec, 69, 33-38.
  • Drake VJ, Koprowski SL, Lough JW, et al. (2006): Gastrulating chick embryo as a model for evaluating teratogenicity: a comparison of three approaches. Birth Defects Res A Clin Mol Teratol, 76, 66-71.
  • El Gawish R, Ghanem M, Maeda T (2013): Effects of bisphenol A and DDT on mRNA expression of vitellogenin II in liver of quail embryos. Iran J Vet Res, 14, 237-240.
  • Elbajory SIA, El Tingari MD, Abdalla PA (2013): Morphological study of the testis of adult Sudanese duck (Anas platyrhynchos). Int J Anim Vet Adv, 5, 103-7.
  • Flint S, Markle T, Thompson S, et al. (2012): Bisphenol A exposure, effects, and policy: a wildlife perspective. J Environ Manage, 104, 19-34.
  • Ge LC, Chen ZJ, Liu H, et al. (2014): Signaling related with biphasic effects of bisphenol A (BPA) on Sertoli cell proliferation: a comparative proteomic analysis. Biochim Biophys Acta, 1840, 2663-73.
  • Goldman JM, Laws SC, Balchak SK, et al. (2000): Endocrine-disrupting chemicals: prepubertal exposures and effects on sexual maturation and thyroid activity in the female rat. Crc Cr Rev Toxicol, 30, 135-96.
  • Halldin K (2005): Impact of endocrine disrupting chemicals on reproduction in Japanese quail. Domest Anim Endocrin, 29, 420-429.
  • Halldin K, Berg C, Bergman A, et al. (2001): Distribution of bisphenol A and tetrabromobisphenol A in quail eggs, embryos and laying birds and studies on reproduction variables in adults following in ovo exposure. Arch Toxicol, 75, 597-603.
  • Ikezuki Y, Tsutsumi O, Takai Y, et al. (2002): Determination of bisphenol A concentrations in human biological fluids reveals significant early prenatal exposure. Hum Reprod, 17, 2839-41.
  • Jelinek R (1977): The Chick Embryotoxicity Screening Test (CHEST). 381-386. In: D Neubert, H Merker, T Kwasigrooh (Eds), Methods in prenatal toxicology. Georg Thieme, Stutgart.
  • Jelinek R, Peterka M, Rychter Z (1985): Chick embryotoxicity screening test-130 substances tested. Indian J Exp Biol, 23, 588-595.
  • Kabir ER, Rahman MS, Rahman I (2015): A review on endocrine disruptors and their possible impacts on human health. Environ Toxicol Pharm, 40, 241-258.
  • Kemper F, Luepke N (1986): Toxicity testing by the hen's egg test (HET). Food Chem Toxicol, 24, 647-648.
  • Lambeth LS, Raymond CS, Roeszler KN, et al. (2014): Over-expression of DMRT1 induces the male pathway in embryonic chicken gonads. Dev Biol, 389, 160-172.
  • Mattsson A, Mura E, Brunström B, et al. (2008): Selective activation of estrogen receptor alpha in Japanese quail embryos affects reproductive organ differentiation but not the male sexual behavior or the parvocellular vasotocin system. Gen Comp Endoc, 159, 150-157.
  • Miyawaki J, Sakayama K, Kato H, et al. (2007): Perinatal and postnatal exposure to bisphenol a increases adipose tissue mass and serum cholesterol level in mice. J Atheroscler Thromb, 14, 245-252.
  • Nakabayashi O, Kikuchi H, Kikuchi T, et al. (1998): Differential expression of genes for aromatase and estrogen receptor during the gonadal development in chicken embryos. J Mol Endocrinol, 20, 193-202.
  • Oshima A, Yamashita R, Nakamura K, et al. (2012): In ovo exposure to nonylphenol and bisphenol A resulted in dose‐independent feminization of male gonads in Japanese quail (Coturnix japonica) embryos. Environ Toxicol Chem, 31, 1091-97.
  • Smith CA, Sinclair AH (2004): Sex determination: insights from the chicken. Bioessays, 26, 120-132.
  • Stoloff L, Verrett MJ, Dantzman J, et al. (1972): Toxicological study of aflatoxin P1 using the fertile chicken egg. Toxicol Appl Pharm, 23, 528-531.
  • Vandenberg LN, Ehrlich S, Belcher SM, et al. (2013): Low dose effects of bisphenol A: An integrated review of in vitro, laboratory animal, and epidemiology studies. Endocr Disruptors, 1, e26490.
  • Vatsalya V, Arora KL (2012): Allometric growth of testes in relation to age, body weight and selected blood parameters in male Japanese quail (Coturnix japonica). Int J Poult Sci, 11, 251-258.
  • Veselý D, Vesela D (1991): The use of chick embryo for prediction of some embryotoxic effects of mycotoxins in mammals. Vet Med Praha, 36, 175-181.
  • Wetherill YB, Petre CE, Monk KR, et al. (2002): The xenoestrogen bisphenol A induces inappropriate androgen receptor adenocarcinoma cells 1. Mol Cancer Ther, 1, 515-524.
  • Yiğit F, Aktaş A, Dağlıoğlu S (2013): Effects of bisphenol A and diethylstilbestrol on the involution of bursa of Fabricius in the hens. İstanbul Üniv Vet Fak Derg, 39, 168- 174. Geliş tarihi: 16.05.2017 / Kabul tarihi: 22.09.2017 Address for correspondence: Dr.Emrah SUR Selçuk University, Faculty of Veterinary Medicine, Department of Histology and Embryology, Konya, Turkey. e-mail: emrahsur@selcuk.edu.tr

Yumurtaya verilen bisfenol A (BPA)' nın testislerin gelişimi üzerindeki etkilerinin ışık mikroskobikseviyede belirlenmesi

Year 2018, , 273 - 281, 01.09.2018
https://doi.org/10.1501/Vetfak_0000002857

Abstract

amaçla Isa Brown ırkı yumurtacı tavuklara ait 310 adet döllü yumurta kontrol, taşıyıcı kontrol, 50, 100, 250 µg/yumurta BPA olmak üzere 5 gruba ayrıldı. Test solüsyonları inkübasyondan önce yumurta sarısına enjekte edildi. İnkübasyonun 13. 18. ve 21. günlerinde her gruptan 6 adet canlı erkek embriyo elde edilene kadar yumurtalar açıldı. Alınan testis dokuları %10'luk tamponlu formalin (pH 7.4) solüsyonunda tespit edildi. Dokular rutin histolojik metotlarla takip edilerek parafinde bloklandı. Bloklardan alınan 6 μm kalınlığındaki kesitlere ise Crossmon'un üçlü boyama yöntemi uygulandı. Tüm histolojik ve histometrik değerlendirmeler sol testis’ler üzerinde yapıldı. İnkübasyonun 13. 18. ve 21. günlerinde BPA uygulanan gruplarda testis dokularında gelişme geriliği, az sayıda hücre kordonu ve zayıf hücresel organizasyon gözlendi. İnkübasyonun 21. gününde deney gruplarının ortalama seminifer tubul çaplarında kontrol gruplarına kıyasla belirgin düşüşler tespit edildi (p<0.05). Kontrol gruplarına kıyasla deney gruplarında ortalama korteks kalınlığında artış gözlendi (p<0.05). Elli ve 100 µg/yumurta dozunda BPA uygulanan gruplar kontrol grupları ve 250 µg/yumurta dozunda BPA uygulanan grupla karşılaştırıldığında ortalama testis yüzey alanında önemli bir artış tespit edildi (p<0.05). Elli ve 100 µg/yumurta dozunda BPA uygulanan tavuk embriyolarında BPA'nın oosit benzeri hücre toplulukları içeren kalınlaşmış korteksle karakterize ovotestis gelişimini tetiklediği, buna karşın 250 µg/yumurta dozunda uygulanan BPA'nın ise toksik etkiye sahip olduğu görüldü. BPA'nın tavuk embriyolarında gelişmekte olan testisler üzerinde doza bağlı olarak hem toksik hem de östrojen benzeri etkilere neden olabileceği sonucuna varıldı

References

  • Acconcia F, Pallottini V, Marino M (2015): Molecular mechanisms of action of BPA. Int J, 13, 1-9.
  • Berg C, Blomqvist A, Holm L, et al. (2004): Embryonic exposure to oestrogen causes eggshell thinning and altered shell gland carbonic anhydrase expression in the domestic hen. Reproduction, 128, 455-461.
  • Berg C, Halldin K, Brunström B (2001): Effects of bisphenol A and tetrabromobisphenol A on sex organ development in quail and chicken embryos. Environ Toxicol Chem, 20, 2836-40.
  • Berg C, Halldin K, Fridolfsson AK, et al. (1999): The avian egg as a test system for endocrine disrupters: effects of diethylstilbestrol and ethynylestradiol on sex organ develop. Sci Total Environ, 233, 57-66.
  • Birkhead T, Fletcher F, Pellatt E (1998): Testes asymmetry, condition and sexual selection in birds: an experimental test. P Roy Soc Lon B Bio, 265, 1185-89.
  • Chang G, Chen R, Qin Y, et al. (2012): The development of primordial germ cells (PGCs) and testis in the quail embryo. Pakistan Vet J, 32, 88-92.
  • Crain DA, Eriksen M, Iguchi T, et al. (2007): An ecological assessment of bisphenol-A: evidence from comparative biology. Reprod Toxicol, 24, 225-239.
  • Crossmon G (1937): A modification of Mollory’s connective tissue stain with a discussion of the principles involved. Anat Rec, 69, 33-38.
  • Drake VJ, Koprowski SL, Lough JW, et al. (2006): Gastrulating chick embryo as a model for evaluating teratogenicity: a comparison of three approaches. Birth Defects Res A Clin Mol Teratol, 76, 66-71.
  • El Gawish R, Ghanem M, Maeda T (2013): Effects of bisphenol A and DDT on mRNA expression of vitellogenin II in liver of quail embryos. Iran J Vet Res, 14, 237-240.
  • Elbajory SIA, El Tingari MD, Abdalla PA (2013): Morphological study of the testis of adult Sudanese duck (Anas platyrhynchos). Int J Anim Vet Adv, 5, 103-7.
  • Flint S, Markle T, Thompson S, et al. (2012): Bisphenol A exposure, effects, and policy: a wildlife perspective. J Environ Manage, 104, 19-34.
  • Ge LC, Chen ZJ, Liu H, et al. (2014): Signaling related with biphasic effects of bisphenol A (BPA) on Sertoli cell proliferation: a comparative proteomic analysis. Biochim Biophys Acta, 1840, 2663-73.
  • Goldman JM, Laws SC, Balchak SK, et al. (2000): Endocrine-disrupting chemicals: prepubertal exposures and effects on sexual maturation and thyroid activity in the female rat. Crc Cr Rev Toxicol, 30, 135-96.
  • Halldin K (2005): Impact of endocrine disrupting chemicals on reproduction in Japanese quail. Domest Anim Endocrin, 29, 420-429.
  • Halldin K, Berg C, Bergman A, et al. (2001): Distribution of bisphenol A and tetrabromobisphenol A in quail eggs, embryos and laying birds and studies on reproduction variables in adults following in ovo exposure. Arch Toxicol, 75, 597-603.
  • Ikezuki Y, Tsutsumi O, Takai Y, et al. (2002): Determination of bisphenol A concentrations in human biological fluids reveals significant early prenatal exposure. Hum Reprod, 17, 2839-41.
  • Jelinek R (1977): The Chick Embryotoxicity Screening Test (CHEST). 381-386. In: D Neubert, H Merker, T Kwasigrooh (Eds), Methods in prenatal toxicology. Georg Thieme, Stutgart.
  • Jelinek R, Peterka M, Rychter Z (1985): Chick embryotoxicity screening test-130 substances tested. Indian J Exp Biol, 23, 588-595.
  • Kabir ER, Rahman MS, Rahman I (2015): A review on endocrine disruptors and their possible impacts on human health. Environ Toxicol Pharm, 40, 241-258.
  • Kemper F, Luepke N (1986): Toxicity testing by the hen's egg test (HET). Food Chem Toxicol, 24, 647-648.
  • Lambeth LS, Raymond CS, Roeszler KN, et al. (2014): Over-expression of DMRT1 induces the male pathway in embryonic chicken gonads. Dev Biol, 389, 160-172.
  • Mattsson A, Mura E, Brunström B, et al. (2008): Selective activation of estrogen receptor alpha in Japanese quail embryos affects reproductive organ differentiation but not the male sexual behavior or the parvocellular vasotocin system. Gen Comp Endoc, 159, 150-157.
  • Miyawaki J, Sakayama K, Kato H, et al. (2007): Perinatal and postnatal exposure to bisphenol a increases adipose tissue mass and serum cholesterol level in mice. J Atheroscler Thromb, 14, 245-252.
  • Nakabayashi O, Kikuchi H, Kikuchi T, et al. (1998): Differential expression of genes for aromatase and estrogen receptor during the gonadal development in chicken embryos. J Mol Endocrinol, 20, 193-202.
  • Oshima A, Yamashita R, Nakamura K, et al. (2012): In ovo exposure to nonylphenol and bisphenol A resulted in dose‐independent feminization of male gonads in Japanese quail (Coturnix japonica) embryos. Environ Toxicol Chem, 31, 1091-97.
  • Smith CA, Sinclair AH (2004): Sex determination: insights from the chicken. Bioessays, 26, 120-132.
  • Stoloff L, Verrett MJ, Dantzman J, et al. (1972): Toxicological study of aflatoxin P1 using the fertile chicken egg. Toxicol Appl Pharm, 23, 528-531.
  • Vandenberg LN, Ehrlich S, Belcher SM, et al. (2013): Low dose effects of bisphenol A: An integrated review of in vitro, laboratory animal, and epidemiology studies. Endocr Disruptors, 1, e26490.
  • Vatsalya V, Arora KL (2012): Allometric growth of testes in relation to age, body weight and selected blood parameters in male Japanese quail (Coturnix japonica). Int J Poult Sci, 11, 251-258.
  • Veselý D, Vesela D (1991): The use of chick embryo for prediction of some embryotoxic effects of mycotoxins in mammals. Vet Med Praha, 36, 175-181.
  • Wetherill YB, Petre CE, Monk KR, et al. (2002): The xenoestrogen bisphenol A induces inappropriate androgen receptor adenocarcinoma cells 1. Mol Cancer Ther, 1, 515-524.
  • Yiğit F, Aktaş A, Dağlıoğlu S (2013): Effects of bisphenol A and diethylstilbestrol on the involution of bursa of Fabricius in the hens. İstanbul Üniv Vet Fak Derg, 39, 168- 174. Geliş tarihi: 16.05.2017 / Kabul tarihi: 22.09.2017 Address for correspondence: Dr.Emrah SUR Selçuk University, Faculty of Veterinary Medicine, Department of Histology and Embryology, Konya, Turkey. e-mail: emrahsur@selcuk.edu.tr
There are 33 citations in total.

Details

Primary Language English
Subjects Veterinary Surgery
Other ID JA75DC96TF
Journal Section Research Article
Authors

Banu Kandil

Emrah Sur

Publication Date September 1, 2018
Published in Issue Year 2018

Cite

APA Kandil, B., & Sur, E. (2018). The light microscopic investigation of the effects of in-ovo administered bisphenol A (BPA) on the development of testes. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 65(3), 273-281. https://doi.org/10.1501/Vetfak_0000002857
AMA Kandil B, Sur E. The light microscopic investigation of the effects of in-ovo administered bisphenol A (BPA) on the development of testes. Ankara Univ Vet Fak Derg. September 2018;65(3):273-281. doi:10.1501/Vetfak_0000002857
Chicago Kandil, Banu, and Emrah Sur. “The Light Microscopic Investigation of the Effects of in-Ovo Administered Bisphenol A (BPA) on the Development of Testes”. Ankara Üniversitesi Veteriner Fakültesi Dergisi 65, no. 3 (September 2018): 273-81. https://doi.org/10.1501/Vetfak_0000002857.
EndNote Kandil B, Sur E (September 1, 2018) The light microscopic investigation of the effects of in-ovo administered bisphenol A (BPA) on the development of testes. Ankara Üniversitesi Veteriner Fakültesi Dergisi 65 3 273–281.
IEEE B. Kandil and E. Sur, “The light microscopic investigation of the effects of in-ovo administered bisphenol A (BPA) on the development of testes”, Ankara Univ Vet Fak Derg, vol. 65, no. 3, pp. 273–281, 2018, doi: 10.1501/Vetfak_0000002857.
ISNAD Kandil, Banu - Sur, Emrah. “The Light Microscopic Investigation of the Effects of in-Ovo Administered Bisphenol A (BPA) on the Development of Testes”. Ankara Üniversitesi Veteriner Fakültesi Dergisi 65/3 (September 2018), 273-281. https://doi.org/10.1501/Vetfak_0000002857.
JAMA Kandil B, Sur E. The light microscopic investigation of the effects of in-ovo administered bisphenol A (BPA) on the development of testes. Ankara Univ Vet Fak Derg. 2018;65:273–281.
MLA Kandil, Banu and Emrah Sur. “The Light Microscopic Investigation of the Effects of in-Ovo Administered Bisphenol A (BPA) on the Development of Testes”. Ankara Üniversitesi Veteriner Fakültesi Dergisi, vol. 65, no. 3, 2018, pp. 273-81, doi:10.1501/Vetfak_0000002857.
Vancouver Kandil B, Sur E. The light microscopic investigation of the effects of in-ovo administered bisphenol A (BPA) on the development of testes. Ankara Univ Vet Fak Derg. 2018;65(3):273-81.