Letter to Editor
BibTex RIS Cite

Phenotypic characterization of ESBL- and AmpC- type beta- lactamases in Enterobacteriaceae from chicken meat and dairy products

Year 2017, , 267 - 272, 01.12.2017
https://doi.org/10.1501/Vetfak_0000002809

Abstract

The excess and off-label use of antibiotics results in development of antibiotic resistance among microorganisms. Although microbiological criteria have been appropriately considered in the Food Codex, an inspection for antibiotic-resistant bacteria has not come into force yet. Beta-lactamase producing Enterobacteriaceae adversely affects the human health by leading to therapeutic failures against infections. The objective of this study was to characterize ESBL- and/or AmpC- type beta-lactamases in Enterobacteriaceae isolated from chicken meat, raw milk and unpacked-fresh cheese samples phenotypically. In this study, a total of 327 samples (109 chicken meat, 135 raw milk and 83 unpacked fresh cheese) was examined microbiologically by performing preenrichment, enrichment on selective media, and oxidase test according to the Criteria by ISO/DIS21528-2. Overall, 80 ESBL- and/or AmpC positive isolates were identified by mass spectrometer. The most prevalent strain was Escherichia coli (68.8%), followed by Klebsiella pneumoniae (8.8%), Enterobacter cloacae (7.5%), Citrobacter spp. (6.2%), Hafnia alvei (6.2%), and Klebsiella oxytoca (2.5%). The beta-lactamases were screened by disc diffusion, disc diffusion confirmation, and MIC determination according to the Guidelines of Clinical and Laboratory Standards Institute. The most common beta-lactamase type was found as ESBL in 75 isolates, followed by a combination of ESBL & AmpC in 10 isolates, and AmpC in five isolates, respectively. In conclusion, our study showed that ESBL- and/or AmpC-type beta-lactamases were the most common enzymes in Enterobacteriaceae in the analyzed foods

References

  • Alvarez-Fernandez E, Cancelo A, Diaz-Vega C, et al. (2013): Antimicrobial resistance in E. coli isolates from conventionally and organically reared poultry: a comparison of agar disc diffusion and Sensi Test Gram- negative methods. Food Control, 30, 227-234.
  • Apata DF (2009): Antibiotic resistance in poultry. Int J Poult Sci, 8, 404-408.
  • Ata Z, Dinç G, Yılbar A, et al. (2015): Extended spectrum beta-lactamase activity and multidrug resistance of Salmonella serovars isolated from chicken carcasses from different regions of Turkey. Vet J Ankara Univ, 62, 119-123.
  • Babic M, Hujer AM, Bonomo RA (2006): What's new in antibiotic resistance? Focus on beta-lactamases. Drug Resist Updat, 9, 142-156.
  • CLSI Clinical and Laboratory Standards Institute (2013): Susceptibility Supplement, CLSI Document M100-S23, CLSI, Wayne PA. for Antimicrobial Informational Testing; Twenty-Third
  • Dai L, Lu LM, Wu CM, et al. (2008): Characterization of antimicrobial resistance among Escherichia coli isolates from chickens in China between 2001 and 2006. FEMS Microbiol Lett, 286, 178-183.
  • Demirtürk N, Demirdal T (2004): The problem of the antimicrobial drug resistance. KTD, 5, 17-21.
  • EFSA (2011): Scientific opinion on the public health risks of bacterial strains producing extended-spectrum β- lactamases and/or AmpC β-lactamases in food and food- producing animals. EFSA Journal, 9, 2322-2417.
  • Falagas ME, Karageorgopoulos DE (2009): Extended- spectrum beta-lactamase-producing organisms. J Hosp Infect, 73, 345-354.
  • FAO (2014): Food balance sheets. (Available at http://faostatfaoorg/site/610 (Accessed 26 May 2014).
  • García-Tello A, Gimbernat H, Redondo C, et al. (2014): Extended-spectrum beta-lactamases in urinary tract infections caused by Enterobacteria: Understanding and guidelines for action. Actas Urol Esp, 38, 678-684.
  • Ghafourian S, Sadeghifard N, Soheili S, et al. (2014): Extended classification and epidemiology, Curr Issues Mol Biol, 17, 11-22. Definition,
  • Gündogan N, Avci E (2013): Prevalence and antibiotic resistance of extended-spectrum beta-lactamase (ESBL) producing Escherichia coli and Klebsiella species isolated from foods of animal origin in Turkey. Afr J Microbiol Res, 7, 4059-4064.
  • Kaya S, Çetin E, Arıkan S, et al. (2007): Tavuklardan izole edilen E coli, Klebsiella ve enterokoklarda antibiyotik duyarlılık durumları. SDÜ Tıp Fak Dergisi, 14, 24-27.
  • Lavilla S, Gonzalez-Lopez JJ, Miro E, et al. (2008): Dissemination of extended-spectrum beta –lactamase – producing bacteria: The food-borne outbreak lesson. J Antimicrobial Chem, 61, 1244-1251.
  • Lopez-Cerrero L, Egea P, Torres E, et al. (2012): Increased raw poultry meat colonization by extended spectrum beta-lactamase- producing Escherichia coli in the South of Spain. Int J Food Microbiol, 159, 69-73.
  • Makaa L, Maćkiwa E, Ścieżyńskaa H, et al. (2014): Antimicrobial susceptibility of Salmonella strains isolated from retail meat products in Poland between 2008 and 2012. Food Control, 38, 199-204.
  • Manges AR, Smith SP, Lau BJ, et al. (2007): Retail meat consumption and the acquisition of antimicrobial resistant Escherichia coli causing urinary tract infections: A case- control study. Foodborne Pathog Dis, 4, 419-431.
  • McEwen SA, Fedorka-Cray PJ (2002): Antimicrobial use and resistance in animals. Clin Infect Dis, 34 (Suppl 3), 93- 106.
  • Morosini MI, García-Castillo M, Coque TM, et al. (2006): Antibiotic coresistance in extended-spectrum-beta- lactamase-producing Enterobacteriaceae and in vitro activity of tigecycline. Antimicrob Agents Chemother, 50, 2695-2699.
  • Neu HC (1992): The crisis in antibiotic resistance. Science, 257, 1064-1073.
  • O’Neill J (2014): Antimicrobial resistance: Tackling a crisis for the health and wealth of nations. Review on antimicrobial Resistance. (Available at http://amr- review.org). (Accessed December 2014).
  • Overdevest I, Willemsen I, Rijnsburger M, et al. (2011): Extended-spectrum beta- lactamase genes of Escherichia coli in chicken meat and humans, the Netherlands. Emerg Infect Dis, 17, 1216-1222.
  • Özpınar H, Turan B, Tekiner İH, et al. (2013): Evaluation of pathogenic Escherichia coli occurrence in vegetable samples from district bazaars of İstanbul using real time PCR. Lett Appl Microbiol, 57, 362-367.
  • Phillips I, Casewell M, Cox T, et al. (2004): Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. J Antimicrobial Chem, 53, 28-52.
  • Samaha-Kfoury JN, Araj developments in beta lactamases and extended spectrum beta lactamases. BMJ, 327, 1209-1213. (2003): Recent
  • Schwaiger K, Huther S, Hölzel C, et al. (2012): Prevalence of antibiotic-resistant enterobacteriaceae isolated from chicken and pork meat purchased at the slaughterhouse and at retail in Bavaria, Germany. Int J Food Microbiol, 154, 206-211.
  • Shashwati N, Kiran T, Dhanvijay AG (2014): Study of extended Enterobacteriaceae and antibiotic coresistance in a tertiary care teaching hospital. J Nat Sci Biol Med, 5, 30-35.
  • Smet A, Martel A, Persoons D, et al. (2009): Broad- spectrum β-lactamases among Enterobacteriaceae of animal origin: Molecular aspects, mobility and impact on public health. FEMS Microbiology Reviews, 34, 295-316.
  • Stuart JC, van den Munckhof T, Voets G, et al. (2012): Comparison of ESBL contamination in organic and conventional retail chicken meat. Int J Food Microbiol, 154, 212-214.
  • Sudarwanto M, Akineden Ö, Odenthal S, et al. (2015): Extended-spectrum Klebsiella pneumoniae in bulk tank milk from dairy farms in Indonesia. Foodborne Pathog Dis, 12, 585-590.
  • Taneja N, Rao P, Arora J, et al. (2008): Occurrence of ESBL & Amp-C b-lactamases & susceptibility to newer antimicrobial agents in complicated UTI. Indian J Med Res, 127, 85-88.
  • Tekiner IH, Özpınar H (2016): Occurrence and characteristics of ESBL-producing Enterobacteriaceae from foods of animal origin. Braz J Microbiol, 47, 444-451.
  • Thorsteinsdottir TR, Haraldsson G, Fridriksdottir V, et al. (2010): Prevalence and genetic relatedness of antimicrobial resistant Escherichia coli isolated from animals, foods and humans in Iceland. Zoonoses Public Hlth, 57, 189-196.
  • Van Boeckel TP, Brower C, Gilbert M, et al. (2015): Global trends in antimicrobial use in food animals. Proc Natl Acad Sci USA, 112, 5649-5654.
  • Van den Bogaard AE, Stobberingh EE (2000): Epidemiology of resistance to antibiotics. Links between animals and humans. Int J Antimicrob Agents, 14, 327-335.
  • Van den Bogaard AE (2001): Human health aspects of antibiotic use in food animals: A review. Tijdschr Diergeneeskd, 126, 590-595.
  • Webb GF, D'Agata EMC, Magal P, et al. (2002): A model of antibiotic-resistant bacterial epidemics in hospitals. Proc Natl Acad Sci, 99, 2293-2298.
  • WHO (2015): Global Action plan on antimicrobial resistance. ISBN 9789241509763. Avenue Appia 20, 1211 Geneva, Switzerland.
  • Yıbar A, Soyutemiz E (2013): Antibiotics use in food- producing animals and possible residual risk. Atatürk Üniv Vet Bil Derg, 8, 97-104.
  • Zheng H, Zeng Z, Chen S, et al. (2012): Prevalence and CTX-M Escherichia coli isolates from healthy food animals in China. Int J Antimicrob Agents, 39, 305-310.
  • Zurfluh K, Hächler H, Nüesch-Inderbinen M, et al. (2013): Characteristics of extended-spectrum β-lactamase- and carbapenemase-producing Enterobacteriaceae Isolates from rivers and lakes in Switzerland. Appl Environ Microbiol, 79, 3021-3026.

Tavuk eti ve süt ürünleri kaynaklı Enterobacteriaceae suşlarında ESBL- ve AmpC- tipi betalaktamazların fenotipik karakterizasyonu

Year 2017, , 267 - 272, 01.12.2017
https://doi.org/10.1501/Vetfak_0000002809

Abstract

Aşırı ve bilinçsiz antibiyotik kullanımı mikroorganizmalarda antibiyotik direnci gelişimi ile sonuçlanmaktadır. Gıda kodeksinde mikrobiyolojik kriterler olmasına rağmen, antibiyotik dirençliliği için düzenleme henüz yapılmamıştır. Beta-laktamaz üreten Enterobacteriaceae suşları infeksiyonlara karşı tedaviyi başarısız kılarak, insan sağlığını olumsuz etkilemektedir. Bu çalışmada tavuk eti, çiğ süt ve açık taze peynir örneklerinden izole edilen Enterobacteriaceae suşlarında GSBL- ve/veya AmpC- tipi betalaktamazların varlıklarının incelenmesi amaçlanmıştır. Araştırmada, 109 adet tavuk eti, 135 adet çiğ süt ve 83 adet açık taze peynir olmak üzere toplam 327 adet gıda örneğinde ISO/DIS21528-2 talimatı uyarınca ön ve selektif zenginleştirme ile oksidaz testi uygulanarak mikrobiyolojik inceleme yapılmıştır. Toplam 80 adet GSBL- ve/veya AmpC- pozitif izolat kütle spektrometresi ile tiplendirilmiştir. İzolatlarda Enterobacteriaceae dağılımının %68,8 Escherichia coli, %8,8 Klebsiella pneumoniae, %7,5 Enterobacter cloacae, %6,2 Citrobacter spp., %6,2 Hafnia alvei ve %2,5 Klebsiella oxytoca olduğu saptanmıştır. Tiplendirilmiş izolatlarda betalaktamazların karakterizasyonu Klinik ve Laboratuvar Standartları Kurumu talimatlarına (CLSI 2013) göre disk difüzyon, disk difüzyon konfirmasyonu ve MİK değeri tespiti ile yapılmıştır. İnceleme sonucu 75 adet izolatta GSBL-, 10 adet izolatta GSBL- ve AmpC- kombinasyonu ve beş adet izolatta AmpC- tipi enzimler karakterize edilmiştir. Sonuç olarak, analiz edilen gıda maddelerinde GSBL- ve/veya Amp- tipi beta-laktamazların baskın enzimler oldukları saptanmıştır

References

  • Alvarez-Fernandez E, Cancelo A, Diaz-Vega C, et al. (2013): Antimicrobial resistance in E. coli isolates from conventionally and organically reared poultry: a comparison of agar disc diffusion and Sensi Test Gram- negative methods. Food Control, 30, 227-234.
  • Apata DF (2009): Antibiotic resistance in poultry. Int J Poult Sci, 8, 404-408.
  • Ata Z, Dinç G, Yılbar A, et al. (2015): Extended spectrum beta-lactamase activity and multidrug resistance of Salmonella serovars isolated from chicken carcasses from different regions of Turkey. Vet J Ankara Univ, 62, 119-123.
  • Babic M, Hujer AM, Bonomo RA (2006): What's new in antibiotic resistance? Focus on beta-lactamases. Drug Resist Updat, 9, 142-156.
  • CLSI Clinical and Laboratory Standards Institute (2013): Susceptibility Supplement, CLSI Document M100-S23, CLSI, Wayne PA. for Antimicrobial Informational Testing; Twenty-Third
  • Dai L, Lu LM, Wu CM, et al. (2008): Characterization of antimicrobial resistance among Escherichia coli isolates from chickens in China between 2001 and 2006. FEMS Microbiol Lett, 286, 178-183.
  • Demirtürk N, Demirdal T (2004): The problem of the antimicrobial drug resistance. KTD, 5, 17-21.
  • EFSA (2011): Scientific opinion on the public health risks of bacterial strains producing extended-spectrum β- lactamases and/or AmpC β-lactamases in food and food- producing animals. EFSA Journal, 9, 2322-2417.
  • Falagas ME, Karageorgopoulos DE (2009): Extended- spectrum beta-lactamase-producing organisms. J Hosp Infect, 73, 345-354.
  • FAO (2014): Food balance sheets. (Available at http://faostatfaoorg/site/610 (Accessed 26 May 2014).
  • García-Tello A, Gimbernat H, Redondo C, et al. (2014): Extended-spectrum beta-lactamases in urinary tract infections caused by Enterobacteria: Understanding and guidelines for action. Actas Urol Esp, 38, 678-684.
  • Ghafourian S, Sadeghifard N, Soheili S, et al. (2014): Extended classification and epidemiology, Curr Issues Mol Biol, 17, 11-22. Definition,
  • Gündogan N, Avci E (2013): Prevalence and antibiotic resistance of extended-spectrum beta-lactamase (ESBL) producing Escherichia coli and Klebsiella species isolated from foods of animal origin in Turkey. Afr J Microbiol Res, 7, 4059-4064.
  • Kaya S, Çetin E, Arıkan S, et al. (2007): Tavuklardan izole edilen E coli, Klebsiella ve enterokoklarda antibiyotik duyarlılık durumları. SDÜ Tıp Fak Dergisi, 14, 24-27.
  • Lavilla S, Gonzalez-Lopez JJ, Miro E, et al. (2008): Dissemination of extended-spectrum beta –lactamase – producing bacteria: The food-borne outbreak lesson. J Antimicrobial Chem, 61, 1244-1251.
  • Lopez-Cerrero L, Egea P, Torres E, et al. (2012): Increased raw poultry meat colonization by extended spectrum beta-lactamase- producing Escherichia coli in the South of Spain. Int J Food Microbiol, 159, 69-73.
  • Makaa L, Maćkiwa E, Ścieżyńskaa H, et al. (2014): Antimicrobial susceptibility of Salmonella strains isolated from retail meat products in Poland between 2008 and 2012. Food Control, 38, 199-204.
  • Manges AR, Smith SP, Lau BJ, et al. (2007): Retail meat consumption and the acquisition of antimicrobial resistant Escherichia coli causing urinary tract infections: A case- control study. Foodborne Pathog Dis, 4, 419-431.
  • McEwen SA, Fedorka-Cray PJ (2002): Antimicrobial use and resistance in animals. Clin Infect Dis, 34 (Suppl 3), 93- 106.
  • Morosini MI, García-Castillo M, Coque TM, et al. (2006): Antibiotic coresistance in extended-spectrum-beta- lactamase-producing Enterobacteriaceae and in vitro activity of tigecycline. Antimicrob Agents Chemother, 50, 2695-2699.
  • Neu HC (1992): The crisis in antibiotic resistance. Science, 257, 1064-1073.
  • O’Neill J (2014): Antimicrobial resistance: Tackling a crisis for the health and wealth of nations. Review on antimicrobial Resistance. (Available at http://amr- review.org). (Accessed December 2014).
  • Overdevest I, Willemsen I, Rijnsburger M, et al. (2011): Extended-spectrum beta- lactamase genes of Escherichia coli in chicken meat and humans, the Netherlands. Emerg Infect Dis, 17, 1216-1222.
  • Özpınar H, Turan B, Tekiner İH, et al. (2013): Evaluation of pathogenic Escherichia coli occurrence in vegetable samples from district bazaars of İstanbul using real time PCR. Lett Appl Microbiol, 57, 362-367.
  • Phillips I, Casewell M, Cox T, et al. (2004): Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. J Antimicrobial Chem, 53, 28-52.
  • Samaha-Kfoury JN, Araj developments in beta lactamases and extended spectrum beta lactamases. BMJ, 327, 1209-1213. (2003): Recent
  • Schwaiger K, Huther S, Hölzel C, et al. (2012): Prevalence of antibiotic-resistant enterobacteriaceae isolated from chicken and pork meat purchased at the slaughterhouse and at retail in Bavaria, Germany. Int J Food Microbiol, 154, 206-211.
  • Shashwati N, Kiran T, Dhanvijay AG (2014): Study of extended Enterobacteriaceae and antibiotic coresistance in a tertiary care teaching hospital. J Nat Sci Biol Med, 5, 30-35.
  • Smet A, Martel A, Persoons D, et al. (2009): Broad- spectrum β-lactamases among Enterobacteriaceae of animal origin: Molecular aspects, mobility and impact on public health. FEMS Microbiology Reviews, 34, 295-316.
  • Stuart JC, van den Munckhof T, Voets G, et al. (2012): Comparison of ESBL contamination in organic and conventional retail chicken meat. Int J Food Microbiol, 154, 212-214.
  • Sudarwanto M, Akineden Ö, Odenthal S, et al. (2015): Extended-spectrum Klebsiella pneumoniae in bulk tank milk from dairy farms in Indonesia. Foodborne Pathog Dis, 12, 585-590.
  • Taneja N, Rao P, Arora J, et al. (2008): Occurrence of ESBL & Amp-C b-lactamases & susceptibility to newer antimicrobial agents in complicated UTI. Indian J Med Res, 127, 85-88.
  • Tekiner IH, Özpınar H (2016): Occurrence and characteristics of ESBL-producing Enterobacteriaceae from foods of animal origin. Braz J Microbiol, 47, 444-451.
  • Thorsteinsdottir TR, Haraldsson G, Fridriksdottir V, et al. (2010): Prevalence and genetic relatedness of antimicrobial resistant Escherichia coli isolated from animals, foods and humans in Iceland. Zoonoses Public Hlth, 57, 189-196.
  • Van Boeckel TP, Brower C, Gilbert M, et al. (2015): Global trends in antimicrobial use in food animals. Proc Natl Acad Sci USA, 112, 5649-5654.
  • Van den Bogaard AE, Stobberingh EE (2000): Epidemiology of resistance to antibiotics. Links between animals and humans. Int J Antimicrob Agents, 14, 327-335.
  • Van den Bogaard AE (2001): Human health aspects of antibiotic use in food animals: A review. Tijdschr Diergeneeskd, 126, 590-595.
  • Webb GF, D'Agata EMC, Magal P, et al. (2002): A model of antibiotic-resistant bacterial epidemics in hospitals. Proc Natl Acad Sci, 99, 2293-2298.
  • WHO (2015): Global Action plan on antimicrobial resistance. ISBN 9789241509763. Avenue Appia 20, 1211 Geneva, Switzerland.
  • Yıbar A, Soyutemiz E (2013): Antibiotics use in food- producing animals and possible residual risk. Atatürk Üniv Vet Bil Derg, 8, 97-104.
  • Zheng H, Zeng Z, Chen S, et al. (2012): Prevalence and CTX-M Escherichia coli isolates from healthy food animals in China. Int J Antimicrob Agents, 39, 305-310.
  • Zurfluh K, Hächler H, Nüesch-Inderbinen M, et al. (2013): Characteristics of extended-spectrum β-lactamase- and carbapenemase-producing Enterobacteriaceae Isolates from rivers and lakes in Switzerland. Appl Environ Microbiol, 79, 3021-3026.
There are 42 citations in total.

Details

Primary Language English
Subjects Veterinary Surgery
Other ID JA38PN98JD
Journal Section Research Article
Authors

Haydar Özpınar

İsmail Hakkı Tekiner

Birsen Sarıcı

Burcu Çakmak

Fatma Gökalp

Aylin Özadam

Publication Date December 1, 2017
Published in Issue Year 2017

Cite

APA Özpınar, H., Tekiner, İ. H., Sarıcı, B., Çakmak, B., et al. (2017). Phenotypic characterization of ESBL- and AmpC- type beta- lactamases in Enterobacteriaceae from chicken meat and dairy products. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 64(4), 267-272. https://doi.org/10.1501/Vetfak_0000002809
AMA Özpınar H, Tekiner İH, Sarıcı B, Çakmak B, Gökalp F, Özadam A. Phenotypic characterization of ESBL- and AmpC- type beta- lactamases in Enterobacteriaceae from chicken meat and dairy products. Ankara Univ Vet Fak Derg. December 2017;64(4):267-272. doi:10.1501/Vetfak_0000002809
Chicago Özpınar, Haydar, İsmail Hakkı Tekiner, Birsen Sarıcı, Burcu Çakmak, Fatma Gökalp, and Aylin Özadam. “Phenotypic Characterization of ESBL- and AmpC- Type Beta- Lactamases in Enterobacteriaceae from Chicken Meat and Dairy Products”. Ankara Üniversitesi Veteriner Fakültesi Dergisi 64, no. 4 (December 2017): 267-72. https://doi.org/10.1501/Vetfak_0000002809.
EndNote Özpınar H, Tekiner İH, Sarıcı B, Çakmak B, Gökalp F, Özadam A (December 1, 2017) Phenotypic characterization of ESBL- and AmpC- type beta- lactamases in Enterobacteriaceae from chicken meat and dairy products. Ankara Üniversitesi Veteriner Fakültesi Dergisi 64 4 267–272.
IEEE H. Özpınar, İ. H. Tekiner, B. Sarıcı, B. Çakmak, F. Gökalp, and A. Özadam, “Phenotypic characterization of ESBL- and AmpC- type beta- lactamases in Enterobacteriaceae from chicken meat and dairy products”, Ankara Univ Vet Fak Derg, vol. 64, no. 4, pp. 267–272, 2017, doi: 10.1501/Vetfak_0000002809.
ISNAD Özpınar, Haydar et al. “Phenotypic Characterization of ESBL- and AmpC- Type Beta- Lactamases in Enterobacteriaceae from Chicken Meat and Dairy Products”. Ankara Üniversitesi Veteriner Fakültesi Dergisi 64/4 (December 2017), 267-272. https://doi.org/10.1501/Vetfak_0000002809.
JAMA Özpınar H, Tekiner İH, Sarıcı B, Çakmak B, Gökalp F, Özadam A. Phenotypic characterization of ESBL- and AmpC- type beta- lactamases in Enterobacteriaceae from chicken meat and dairy products. Ankara Univ Vet Fak Derg. 2017;64:267–272.
MLA Özpınar, Haydar et al. “Phenotypic Characterization of ESBL- and AmpC- Type Beta- Lactamases in Enterobacteriaceae from Chicken Meat and Dairy Products”. Ankara Üniversitesi Veteriner Fakültesi Dergisi, vol. 64, no. 4, 2017, pp. 267-72, doi:10.1501/Vetfak_0000002809.
Vancouver Özpınar H, Tekiner İH, Sarıcı B, Çakmak B, Gökalp F, Özadam A. Phenotypic characterization of ESBL- and AmpC- type beta- lactamases in Enterobacteriaceae from chicken meat and dairy products. Ankara Univ Vet Fak Derg. 2017;64(4):267-72.