Letter to Editor
BibTex RIS Cite

Stress responses of Listeria monocytogenes

Year 2016, , 421 - 427, 01.12.2016
https://doi.org/10.1501/Vetfak_0000002764

Abstract

Bacteria are exposed to stress factors, such as heat, acid, freezing, desiccation and oxidation, in all links of the food chain. Listeria monocytogenes has the ability to grow at high salt concentrations, over wide pH and temperature ranges. Because of its ability to tolerate adverse conditions such as low water activity and low temperature, the elimination of L. monocytogenes and controlling of foodborne Listeria infections are difficult in food processing plants. Understanding the mechanisms of stress tolerance of L. monocytogenes may provide new ideas for controlling of listeriosis and the bacteria. In this paper cold, heat, osmotic, acid, alkali and oxidative stress responses of L. monocytogenes and the roles of sigma factors are reviewed

References

  • Abram F, Starr E, Karatzas KA, et al. (2008): Identification of components of the sigma B regulon in Listeria monocytogenes that contribute to acid and salt tolerance. Appl Environ Microbiol, 74, 6848-6858.
  • Andersson C (2016): Regulatory pathways and virulence inhibition in Listeria monocytogenes. Umeå University medical dissertations, 2016, 37 p.
  • Archambaud C, Nahori MA, Pizarro-Cerda J, et al. (2006): Control of Listeria superoxide dismutase by phosphorylation. J Biol Chem, 281, 31812-31822.
  • Azizoglu RO, Kathariou S (2010): Inactivation of a cold- induced putative RNA helicase gene of Listeria monocytogenes is accompanied by failure to grow at low temperatures but does not affect freeze-thaw tolerance. J Food Prot, 73, 1474-1479.
  • Azizoglu RO, Kathariou S (2010): Temperature- dependent requirement for catalase in aerobic growth of Listeria monocytogenes F2365. Appl Environ Microbiol, 76, 6998-7003.
  • Bathige SDNK, Umasuthan N, Park HC, et al. (2016): An invertebrate signal transducer and activator of transcription 5 (STAT5) ortholog from the disk abalone, Haliotis discus discus: Genomic structure, early developmental expression, and immune responses to bacterial and viral stresses. Dev Comp Immunol, 56, 46- 56.
  • Bowman JP, Lee Chang KJ, Pinfold T, et al. (2010): Transcriptomic and phenotypic responses of Listeria monocytogenes strains possessing different growth efficiencies under acidic conditions. Appl Environ Microbiol, 76, 4836-4850.
  • Burgess CM, Gianotti A, Gruzdev N, et al. (2016): The response of foodborne pathogens to osmotic and desiccation stresses in the food chain. Int J Food Microbiol, 221, 37-53.
  • Cacace G, Mazzeo MF, Sorrentino A, et al. (2010): Proteomics for the elucidation of cold adaptation mechanisms in Listeria monocytogenes. J Proteomics, 73, 2021-2030.
  • Chan YC, Hu Y, Chaturongakul S, et al. (2008): Contributions of two-component regulatory systems, alternative sigma factors, and negative regulators to Listeria monocytogenes cold adaptation and cold growth. J Food Prot, 1, 420-425.
  • Chan YC, Raengpradub S, Boor KJ, et al. (2007): Microarray-based monocytogenes cold regulon in log- and stationary-phase cells. Appl Environ Microbiol, 73, 6484-6498. Listeria
  • Chassaing D, Auvray F (2007): The lmo1078 gene encoding a putative UDP-glucose pyrophosphorylase is involved in growth of Listeria monocytogenes at low temperature. FEMS Microbiol Lett, 275, 31-37.
  • Chaturongakul S, Boor KJ (2004): RsbT and RsbV contribute environmental, energy, and intracellular stress conditions in Listeria monocytogenes. Appl Environ Microbiol, 70, 5349-5356. survival under
  • Chen J, Jiang L, Chen Q, et al. (2009): lmo0038 is involved in acid and heat stress responses and specific for Listeria monocytogenes lineages I and II, and Listeria ivanovii. Foodborne Pathog Dis, 6, 365-376.
  • Christiansen JK, Larsen MH, Ingmer H, et al. (2004): The RNA-binding protein Hfq of Listeria monocytogenes: role in stress tolerance and virulence. J Bacteriol, 186, 3355-3362.
  • Dussurget O, Dumas E, Archambaud C, et al. (2005): Listeria monocytogenes ferritin protects against multiple stresses and is required for virulence. FEMS Microbiol Lett, 15, 253-261.
  • Ferreira A, O’Byrne CP, Boor KJ (2001): Role of sigma (B) in heat, ethanol, acid, and oxidative stress resistance and during carbon starvation in Listeria monocytogenes. Appl Environ Microbiol, 67, 4454-4457.
  • Fraser KR, Sue D, Wiedmann M, et al. (2003): Role of sigma B in regulating the compatible solute uptake systems of Listeria monocytogenes: Osmotic induction of opuC is sigma B dependent. Appl Environ Microbiol, 69, 2015- 2022.
  • Gardan R, Cossart P, Labadie J (2003): European Listeria Genome Consortium. Identification of Listeria monocytogenes genes involved in salt and alkaline-pH tolerance. Appl Environ Microbiol, 69, 3137-3143.
  • Gardan R, Duché O, Leroy-Setrin S, et al. (2003): Role of ctc from Listeria monocytogenes in osmotolerance. Appl Environ Microbiol, 69, 154-161.
  • Giotis ES, Mcdowell DA, Blair IS, et al. (2007): Role of branched-chain fatty acids in pH stress tolerance in Listeria monocytogenes. Appl Environ Microbiol, 73, 997- 1001.
  • Giotis ES, Muthaiyan A, Natesan S, et al. (2010): Transcriptome analysis of alkali shock and alkali adaptation in Listeria monocytogenes 10403S. Foodborne Pathog Dis, 7, 1147-1157.
  • Hain T, Hossain H, Chatterjee SS, et al. (2008): Temporal transcriptomic analysis of the Listeria monocytogenes EGD-e sigmaB regulon. BMC Microbiol, 8, 20.
  • Hu Y, Oliver HF, Raengpradub S, et al. (2007): Transcriptomic and phenotypic analyses suggest a network between the transcriptional regulators HrcA and sigma B in Listeria monocytogenes. Appl Environ Microbiol, 73, 7981-7991.
  • Hu Y, Raengpradub S, Schwab U, et al. (2007): Phenotypic and transcriptomic analyses demonstrate interactions between the transcriptional regulators CtsR and Sigma B in Listeria monocytogenes. Appl Environ Microbiol, 73, 7967-7980.
  • Krawczyk‐Balska A, Markiewicz Z (2016): The intrinsic cephalosporin resistome of Listeria monocytogenes in the context of stress response, gene regulation, pathogenesis and therapeutics. J Appl Microbiol, 120, 251-265.
  • Liu S, Graham JE, Bigelow L, et al. (2002): Identification of Listeria monocytogenes genes expressed in response to growth at low temperature. Appl Environ Microbiol, 68, 1697-1705.
  • Liu X, Basu U, Miller P, et al. (2014): Stress response and adaptation of Listeria monocytogenes 08-5923 exposed to a sublethal dose of Carnocyclin a. Appl Environ Microbiol, 80, 3835-3841.
  • Lobacz A, Kowalik J, Tarczynska A (2013): Modeling the growth of Listeria monocytogenes in mold-ripened cheeses. J Dairy Sci, 96, 3449-3460.
  • Lungu B, Ricke SC, Johnson MG (2009): Growth, survival, proliferation and pathogenesis of Listeria monocytogenes under low oxygen or anaerobic conditions: a review. Anaerobe, 15, 7-17.
  • Madeo M, O'Riordan N, Fuchs TM, et al. (2012): Thiamine plays a critical role in the acid tolerance of Listeria monocytogenes. FEMS Microbiol Lett, 326, 137- 143.
  • Magalhães R, Ferreira V, Brandão TRS, et al. (2016): Persistent monocytogenes: A focus on growth kinetics under different temperature, salt, and pH conditions and their sensitivity to sanitizers. Food Microbiol, 57, 103-108. of Listeria
  • Mbandi E, Phinney BS, Whitten D, et al. (2007): Protein variations in Listeria monocytogenes exposed to sodium lactate, sodium diacetate, and their combination. J Food Protect, 70, 58-64.
  • Mclaughlin J, Rees CED (2009): Genus I. Listeria. 244- 257. In Bergey’s manual of systematic bacteriology. P. De Vos, G.M. Garrity, D.Jones, N.R. Krieg, W. Ludwig, F.A. Rainey et al (eds). 2nd edn. New York, USA, Springer.
  • Melo J, Andrew PW, Faleiro ML (2015): Listeria monocytogenes in cheese and the dairy environment remains a food safety challenge: The role of stress responses. Food Res Int, 67, 75-90.
  • Merrell DS, Camilli A (2002): Acid tolerance of gastrointestinal pathogens. Curr Opin Microbiol, 5, 51-55.
  • Mills S, Serrano LM, Griffin C, et al. (2011): Inhibitory activity of Lactobacillus plantarum LMG P-26358 against Listeria innocua when used as an adjunct starter in the manufacture of cheese. Microb Cell Fact, 10, 1.
  • Mondal TK, Emeny RT, Gao D, et al. (2015): A physical/psychological and biological stress combine to enhance endoplasmic reticulum stress. Toxicol Appl Pharm, 289, 313-322.
  • O’Driscoll B, Gahan CG, Hill C (1996): Adaptive acid tolerance response in Listeria monocytogenes: Isolation of an acid-tolerant mutant which demonstrates increased virulence. Appl Environ Microbiol, 62, 1693-1698.
  • Okada Y, Makıno S, Okada N, et al. (2008): Identification and analysis of the osmotolerance associated genes in Listeria monocytogenes. Food Addit Contam, 15, 1-6.
  • Oliver HF, Orsi RH, Wiedmann M, et al. (2010): Listeria monocytogenes {sigma} B has a small core regulon and a conserved role in virulence but makes differential contributions to stress tolerance across a diverse collection of strains. Appl Environ Microbiol, 76, 4216-4232.
  • Phan-Thanh L, Jansch L (2006): Elucidation of mechanisms of acid stress in Listeria monocytogenes by proteomic analysis. Methods Biochem Anal, 49, 75-88.
  • Raengpradub S, Wiedmann M, Boor KJ (2008): Comparative analysis of the sigma B-dependent stress responses in Listeria monocytogenes and Listeria innocua strains exposed to selected stress conditions. Appl Environ Microbiol, 74, 158-171.
  • Raimann E, Schmid B, Stephan R, et al. (2009): The alternative sigma factor sigma(L) of L. monocytogenes promotes growth under diverse environmental stresses. Foodborne Pathog Dis, 6, 583-591. 45. Rea R, Hill C, Gahan monocytogenes PerR mutants display a small-colony phenotype, increased sensitivity to hydrogen peroxide, and significantly reduced murine virulence. Appl Environ Microbiol, 71, 8314-8322. CG (2005): Listeria
  • Ryan S, Begley M, Gahan CG, et al. (2009): Molecular characterization of the arginine deiminase system in Listeria monocytogenes: regulation and role in acid tolerance. Environ Microbiol, 11, 432-445.
  • Rychli K, Grunert T, Ciolacu L, et al. (2016): Exoproteome analysis reveals higher abundance of proteins linked to alkaline stress in persistent Listeria monocytogenes strains. Int J Food Microbiol, 218, 17-26.
  • Samara A, Koutsoumanis KP (2009): Effect of treating lettuce surfaces with acidulants on the behaviour of Listeria monocytogenes during storage at 5 and 20 C and subsequent exposure to simulated gastric fluid. Int J Food Microbiol, 129, 1-7.
  • Sarimehmetoglu B (1995): Sütte ve peynirde Listeria monocytogenes’in bulunuşu ve önemi. Gıda Dergisi, 20, 259-264.
  • Sarimehmetoglu B, Kaymaz S (1994): Türk salamura beyaz peynirinde yapim ve olgunlasma aşamalarının Listeria monocytogenes üzerine etkisi. Ankara Univ Vet Fak Derg, 41, 234-242.
  • Schmid B, Klumpp J, Raimann E, et al. (2009): Role of cold shock proteins in growth of Listeria monocytogenes under cold and osmotic stress conditions. Appl Environ Microbiol, 75, 1621-1627.
  • Schvartzman MS, Maffre A, Tenenhaus-Aziza F, et al. (2011): Modelling the fate of Listeria monocytogenes during manufacture and ripening of smeared cheese made with pasteurised or raw milk. Int J Food Microbiol, 145, 31-38.
  • Shen Q, Pandare P, Soni KA, et al. (2016): Influence of temperature on alkali stress adaptation in Listeria monocytogenes. Food Control, 62, 74-80.
  • Sleator RD, Hill C (2005): A novel role for the LisRK two-component osmotolerance. Clin Microbiol Infect, 11, 599-601. system in Listerial
  • Tasara T, Freitag J, Stephan R (2015): Proteins of the cold shock domain family (Csps) contribute to nisin and benzalkonium monocytogenes. Int Assoc Food Protect. July, 27, 2-201.
  • Van Der Veen S, Hain T, Wouters JA, et al. (2007): The heatshock response of Listeria monocytogenes comprises genes involved in heat shock, cell division, cell wall synthesis, and the SOS response. Microbiology, 153, 3593- 3607.
  • Wemekamp-Kamphuis HH, Wouters JA, De Leeuw PP, et al. (2004): Identification of sigma factor sigma B- controlled genes and their impact on acid stress, high hydrostatic pressure, and freeze survival in Listeria monocytogenes EGD-e. Appl Environ Microbiol, 70, 3457-3466.
  • Wonderling LD, Wilkinson BJ, Bayles DO (2004): The htrA (degP) gene of Listeria monocytogenes 10403S is essential for optimal growth under stress conditions. Appl Environ Microbiol, 70, 1935-1943.
  • Xia Y, Xin Y, Li X, et al. (2016): To modulate survival under secondary stress conditions, Listeria monocytogenes 10403S employs RsbX to downregulate σB activity in the post stress recovery stage or stationary phase. Appl Environ Microb, 82, 1126-1135.
  • Yildirim Y, Sarimehmetoglu B (2006): Beyaz peynir yapımında bazı probiyotik bakterilerin kullanılmasının Listeria monocytogenes üzerine etkisi. Erciyes Univ Vet Fak Derg, 3, 1-7.
  • Yousef AE, Courtney PD (2003): Basics of stress adaptation and implications in new-generation foods. Microb Stress Adaptation Food Safety, 1, 1-30.
  • Zhang C, Nietfeldt J, Zhang M, et al. (2005): Functional genome consequences monocytogenes: the lmo0423 and lmo0422 genes encode Sigma C and LstR, a lineage II-specific heat shock system. J Bacteriol, 187, 7243-7253. evolution in Listeria

Listeria monocytogenes’in stres yanıtları

Year 2016, , 421 - 427, 01.12.2016
https://doi.org/10.1501/Vetfak_0000002764

Abstract

Bakteriler, gıda zincirinin tüm aşamalarında ısı, asit, dondurma, kuruma, oksidasyon gibi stress faktörlerine maruz kalmaktadır. Listeria monocytogenes yüksek tuz konsantrasyonlarında, geniş pH ve sıcaklık aralıklarında gelişebilmektedir. Düşük su kapasitesi ve düşük sıcaklık gibi zorlu şartları tolere edebildiği için gıda işletmelerinde yok edilmesi ve enfeksiyonlarının kontrolü zordur. L. monocytogenes’in stres tolerans mekanizmalarının anlaşılması, listeriosis ve bakterinin kontrolü için yeni fikirler sunabilir. Bu derlemede L. monocytogenes’in soğuk, sıcak, osmotik, asit, alkali, oksidatif stress cevapları ve sigma faktörleri değerlendirilmiştir

References

  • Abram F, Starr E, Karatzas KA, et al. (2008): Identification of components of the sigma B regulon in Listeria monocytogenes that contribute to acid and salt tolerance. Appl Environ Microbiol, 74, 6848-6858.
  • Andersson C (2016): Regulatory pathways and virulence inhibition in Listeria monocytogenes. Umeå University medical dissertations, 2016, 37 p.
  • Archambaud C, Nahori MA, Pizarro-Cerda J, et al. (2006): Control of Listeria superoxide dismutase by phosphorylation. J Biol Chem, 281, 31812-31822.
  • Azizoglu RO, Kathariou S (2010): Inactivation of a cold- induced putative RNA helicase gene of Listeria monocytogenes is accompanied by failure to grow at low temperatures but does not affect freeze-thaw tolerance. J Food Prot, 73, 1474-1479.
  • Azizoglu RO, Kathariou S (2010): Temperature- dependent requirement for catalase in aerobic growth of Listeria monocytogenes F2365. Appl Environ Microbiol, 76, 6998-7003.
  • Bathige SDNK, Umasuthan N, Park HC, et al. (2016): An invertebrate signal transducer and activator of transcription 5 (STAT5) ortholog from the disk abalone, Haliotis discus discus: Genomic structure, early developmental expression, and immune responses to bacterial and viral stresses. Dev Comp Immunol, 56, 46- 56.
  • Bowman JP, Lee Chang KJ, Pinfold T, et al. (2010): Transcriptomic and phenotypic responses of Listeria monocytogenes strains possessing different growth efficiencies under acidic conditions. Appl Environ Microbiol, 76, 4836-4850.
  • Burgess CM, Gianotti A, Gruzdev N, et al. (2016): The response of foodborne pathogens to osmotic and desiccation stresses in the food chain. Int J Food Microbiol, 221, 37-53.
  • Cacace G, Mazzeo MF, Sorrentino A, et al. (2010): Proteomics for the elucidation of cold adaptation mechanisms in Listeria monocytogenes. J Proteomics, 73, 2021-2030.
  • Chan YC, Hu Y, Chaturongakul S, et al. (2008): Contributions of two-component regulatory systems, alternative sigma factors, and negative regulators to Listeria monocytogenes cold adaptation and cold growth. J Food Prot, 1, 420-425.
  • Chan YC, Raengpradub S, Boor KJ, et al. (2007): Microarray-based monocytogenes cold regulon in log- and stationary-phase cells. Appl Environ Microbiol, 73, 6484-6498. Listeria
  • Chassaing D, Auvray F (2007): The lmo1078 gene encoding a putative UDP-glucose pyrophosphorylase is involved in growth of Listeria monocytogenes at low temperature. FEMS Microbiol Lett, 275, 31-37.
  • Chaturongakul S, Boor KJ (2004): RsbT and RsbV contribute environmental, energy, and intracellular stress conditions in Listeria monocytogenes. Appl Environ Microbiol, 70, 5349-5356. survival under
  • Chen J, Jiang L, Chen Q, et al. (2009): lmo0038 is involved in acid and heat stress responses and specific for Listeria monocytogenes lineages I and II, and Listeria ivanovii. Foodborne Pathog Dis, 6, 365-376.
  • Christiansen JK, Larsen MH, Ingmer H, et al. (2004): The RNA-binding protein Hfq of Listeria monocytogenes: role in stress tolerance and virulence. J Bacteriol, 186, 3355-3362.
  • Dussurget O, Dumas E, Archambaud C, et al. (2005): Listeria monocytogenes ferritin protects against multiple stresses and is required for virulence. FEMS Microbiol Lett, 15, 253-261.
  • Ferreira A, O’Byrne CP, Boor KJ (2001): Role of sigma (B) in heat, ethanol, acid, and oxidative stress resistance and during carbon starvation in Listeria monocytogenes. Appl Environ Microbiol, 67, 4454-4457.
  • Fraser KR, Sue D, Wiedmann M, et al. (2003): Role of sigma B in regulating the compatible solute uptake systems of Listeria monocytogenes: Osmotic induction of opuC is sigma B dependent. Appl Environ Microbiol, 69, 2015- 2022.
  • Gardan R, Cossart P, Labadie J (2003): European Listeria Genome Consortium. Identification of Listeria monocytogenes genes involved in salt and alkaline-pH tolerance. Appl Environ Microbiol, 69, 3137-3143.
  • Gardan R, Duché O, Leroy-Setrin S, et al. (2003): Role of ctc from Listeria monocytogenes in osmotolerance. Appl Environ Microbiol, 69, 154-161.
  • Giotis ES, Mcdowell DA, Blair IS, et al. (2007): Role of branched-chain fatty acids in pH stress tolerance in Listeria monocytogenes. Appl Environ Microbiol, 73, 997- 1001.
  • Giotis ES, Muthaiyan A, Natesan S, et al. (2010): Transcriptome analysis of alkali shock and alkali adaptation in Listeria monocytogenes 10403S. Foodborne Pathog Dis, 7, 1147-1157.
  • Hain T, Hossain H, Chatterjee SS, et al. (2008): Temporal transcriptomic analysis of the Listeria monocytogenes EGD-e sigmaB regulon. BMC Microbiol, 8, 20.
  • Hu Y, Oliver HF, Raengpradub S, et al. (2007): Transcriptomic and phenotypic analyses suggest a network between the transcriptional regulators HrcA and sigma B in Listeria monocytogenes. Appl Environ Microbiol, 73, 7981-7991.
  • Hu Y, Raengpradub S, Schwab U, et al. (2007): Phenotypic and transcriptomic analyses demonstrate interactions between the transcriptional regulators CtsR and Sigma B in Listeria monocytogenes. Appl Environ Microbiol, 73, 7967-7980.
  • Krawczyk‐Balska A, Markiewicz Z (2016): The intrinsic cephalosporin resistome of Listeria monocytogenes in the context of stress response, gene regulation, pathogenesis and therapeutics. J Appl Microbiol, 120, 251-265.
  • Liu S, Graham JE, Bigelow L, et al. (2002): Identification of Listeria monocytogenes genes expressed in response to growth at low temperature. Appl Environ Microbiol, 68, 1697-1705.
  • Liu X, Basu U, Miller P, et al. (2014): Stress response and adaptation of Listeria monocytogenes 08-5923 exposed to a sublethal dose of Carnocyclin a. Appl Environ Microbiol, 80, 3835-3841.
  • Lobacz A, Kowalik J, Tarczynska A (2013): Modeling the growth of Listeria monocytogenes in mold-ripened cheeses. J Dairy Sci, 96, 3449-3460.
  • Lungu B, Ricke SC, Johnson MG (2009): Growth, survival, proliferation and pathogenesis of Listeria monocytogenes under low oxygen or anaerobic conditions: a review. Anaerobe, 15, 7-17.
  • Madeo M, O'Riordan N, Fuchs TM, et al. (2012): Thiamine plays a critical role in the acid tolerance of Listeria monocytogenes. FEMS Microbiol Lett, 326, 137- 143.
  • Magalhães R, Ferreira V, Brandão TRS, et al. (2016): Persistent monocytogenes: A focus on growth kinetics under different temperature, salt, and pH conditions and their sensitivity to sanitizers. Food Microbiol, 57, 103-108. of Listeria
  • Mbandi E, Phinney BS, Whitten D, et al. (2007): Protein variations in Listeria monocytogenes exposed to sodium lactate, sodium diacetate, and their combination. J Food Protect, 70, 58-64.
  • Mclaughlin J, Rees CED (2009): Genus I. Listeria. 244- 257. In Bergey’s manual of systematic bacteriology. P. De Vos, G.M. Garrity, D.Jones, N.R. Krieg, W. Ludwig, F.A. Rainey et al (eds). 2nd edn. New York, USA, Springer.
  • Melo J, Andrew PW, Faleiro ML (2015): Listeria monocytogenes in cheese and the dairy environment remains a food safety challenge: The role of stress responses. Food Res Int, 67, 75-90.
  • Merrell DS, Camilli A (2002): Acid tolerance of gastrointestinal pathogens. Curr Opin Microbiol, 5, 51-55.
  • Mills S, Serrano LM, Griffin C, et al. (2011): Inhibitory activity of Lactobacillus plantarum LMG P-26358 against Listeria innocua when used as an adjunct starter in the manufacture of cheese. Microb Cell Fact, 10, 1.
  • Mondal TK, Emeny RT, Gao D, et al. (2015): A physical/psychological and biological stress combine to enhance endoplasmic reticulum stress. Toxicol Appl Pharm, 289, 313-322.
  • O’Driscoll B, Gahan CG, Hill C (1996): Adaptive acid tolerance response in Listeria monocytogenes: Isolation of an acid-tolerant mutant which demonstrates increased virulence. Appl Environ Microbiol, 62, 1693-1698.
  • Okada Y, Makıno S, Okada N, et al. (2008): Identification and analysis of the osmotolerance associated genes in Listeria monocytogenes. Food Addit Contam, 15, 1-6.
  • Oliver HF, Orsi RH, Wiedmann M, et al. (2010): Listeria monocytogenes {sigma} B has a small core regulon and a conserved role in virulence but makes differential contributions to stress tolerance across a diverse collection of strains. Appl Environ Microbiol, 76, 4216-4232.
  • Phan-Thanh L, Jansch L (2006): Elucidation of mechanisms of acid stress in Listeria monocytogenes by proteomic analysis. Methods Biochem Anal, 49, 75-88.
  • Raengpradub S, Wiedmann M, Boor KJ (2008): Comparative analysis of the sigma B-dependent stress responses in Listeria monocytogenes and Listeria innocua strains exposed to selected stress conditions. Appl Environ Microbiol, 74, 158-171.
  • Raimann E, Schmid B, Stephan R, et al. (2009): The alternative sigma factor sigma(L) of L. monocytogenes promotes growth under diverse environmental stresses. Foodborne Pathog Dis, 6, 583-591. 45. Rea R, Hill C, Gahan monocytogenes PerR mutants display a small-colony phenotype, increased sensitivity to hydrogen peroxide, and significantly reduced murine virulence. Appl Environ Microbiol, 71, 8314-8322. CG (2005): Listeria
  • Ryan S, Begley M, Gahan CG, et al. (2009): Molecular characterization of the arginine deiminase system in Listeria monocytogenes: regulation and role in acid tolerance. Environ Microbiol, 11, 432-445.
  • Rychli K, Grunert T, Ciolacu L, et al. (2016): Exoproteome analysis reveals higher abundance of proteins linked to alkaline stress in persistent Listeria monocytogenes strains. Int J Food Microbiol, 218, 17-26.
  • Samara A, Koutsoumanis KP (2009): Effect of treating lettuce surfaces with acidulants on the behaviour of Listeria monocytogenes during storage at 5 and 20 C and subsequent exposure to simulated gastric fluid. Int J Food Microbiol, 129, 1-7.
  • Sarimehmetoglu B (1995): Sütte ve peynirde Listeria monocytogenes’in bulunuşu ve önemi. Gıda Dergisi, 20, 259-264.
  • Sarimehmetoglu B, Kaymaz S (1994): Türk salamura beyaz peynirinde yapim ve olgunlasma aşamalarının Listeria monocytogenes üzerine etkisi. Ankara Univ Vet Fak Derg, 41, 234-242.
  • Schmid B, Klumpp J, Raimann E, et al. (2009): Role of cold shock proteins in growth of Listeria monocytogenes under cold and osmotic stress conditions. Appl Environ Microbiol, 75, 1621-1627.
  • Schvartzman MS, Maffre A, Tenenhaus-Aziza F, et al. (2011): Modelling the fate of Listeria monocytogenes during manufacture and ripening of smeared cheese made with pasteurised or raw milk. Int J Food Microbiol, 145, 31-38.
  • Shen Q, Pandare P, Soni KA, et al. (2016): Influence of temperature on alkali stress adaptation in Listeria monocytogenes. Food Control, 62, 74-80.
  • Sleator RD, Hill C (2005): A novel role for the LisRK two-component osmotolerance. Clin Microbiol Infect, 11, 599-601. system in Listerial
  • Tasara T, Freitag J, Stephan R (2015): Proteins of the cold shock domain family (Csps) contribute to nisin and benzalkonium monocytogenes. Int Assoc Food Protect. July, 27, 2-201.
  • Van Der Veen S, Hain T, Wouters JA, et al. (2007): The heatshock response of Listeria monocytogenes comprises genes involved in heat shock, cell division, cell wall synthesis, and the SOS response. Microbiology, 153, 3593- 3607.
  • Wemekamp-Kamphuis HH, Wouters JA, De Leeuw PP, et al. (2004): Identification of sigma factor sigma B- controlled genes and their impact on acid stress, high hydrostatic pressure, and freeze survival in Listeria monocytogenes EGD-e. Appl Environ Microbiol, 70, 3457-3466.
  • Wonderling LD, Wilkinson BJ, Bayles DO (2004): The htrA (degP) gene of Listeria monocytogenes 10403S is essential for optimal growth under stress conditions. Appl Environ Microbiol, 70, 1935-1943.
  • Xia Y, Xin Y, Li X, et al. (2016): To modulate survival under secondary stress conditions, Listeria monocytogenes 10403S employs RsbX to downregulate σB activity in the post stress recovery stage or stationary phase. Appl Environ Microb, 82, 1126-1135.
  • Yildirim Y, Sarimehmetoglu B (2006): Beyaz peynir yapımında bazı probiyotik bakterilerin kullanılmasının Listeria monocytogenes üzerine etkisi. Erciyes Univ Vet Fak Derg, 3, 1-7.
  • Yousef AE, Courtney PD (2003): Basics of stress adaptation and implications in new-generation foods. Microb Stress Adaptation Food Safety, 1, 1-30.
  • Zhang C, Nietfeldt J, Zhang M, et al. (2005): Functional genome consequences monocytogenes: the lmo0423 and lmo0422 genes encode Sigma C and LstR, a lineage II-specific heat shock system. J Bacteriol, 187, 7243-7253. evolution in Listeria
There are 61 citations in total.

Details

Primary Language English
Subjects Veterinary Surgery
Other ID JA94TR29MT
Journal Section Research Article
Authors

Nurcay Kocaman

Belgin Sarımehmetoğlu

Publication Date December 1, 2016
Published in Issue Year 2016

Cite

APA Kocaman, N., & Sarımehmetoğlu, B. (2016). Stress responses of Listeria monocytogenes. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 63(4), 421-427. https://doi.org/10.1501/Vetfak_0000002764
AMA Kocaman N, Sarımehmetoğlu B. Stress responses of Listeria monocytogenes. Ankara Univ Vet Fak Derg. December 2016;63(4):421-427. doi:10.1501/Vetfak_0000002764
Chicago Kocaman, Nurcay, and Belgin Sarımehmetoğlu. “Stress Responses of Listeria Monocytogenes”. Ankara Üniversitesi Veteriner Fakültesi Dergisi 63, no. 4 (December 2016): 421-27. https://doi.org/10.1501/Vetfak_0000002764.
EndNote Kocaman N, Sarımehmetoğlu B (December 1, 2016) Stress responses of Listeria monocytogenes. Ankara Üniversitesi Veteriner Fakültesi Dergisi 63 4 421–427.
IEEE N. Kocaman and B. Sarımehmetoğlu, “Stress responses of Listeria monocytogenes”, Ankara Univ Vet Fak Derg, vol. 63, no. 4, pp. 421–427, 2016, doi: 10.1501/Vetfak_0000002764.
ISNAD Kocaman, Nurcay - Sarımehmetoğlu, Belgin. “Stress Responses of Listeria Monocytogenes”. Ankara Üniversitesi Veteriner Fakültesi Dergisi 63/4 (December 2016), 421-427. https://doi.org/10.1501/Vetfak_0000002764.
JAMA Kocaman N, Sarımehmetoğlu B. Stress responses of Listeria monocytogenes. Ankara Univ Vet Fak Derg. 2016;63:421–427.
MLA Kocaman, Nurcay and Belgin Sarımehmetoğlu. “Stress Responses of Listeria Monocytogenes”. Ankara Üniversitesi Veteriner Fakültesi Dergisi, vol. 63, no. 4, 2016, pp. 421-7, doi:10.1501/Vetfak_0000002764.
Vancouver Kocaman N, Sarımehmetoğlu B. Stress responses of Listeria monocytogenes. Ankara Univ Vet Fak Derg. 2016;63(4):421-7.