Letter to Editor
BibTex RIS Cite

High resolution 3D magnetic resonance imaging of the visceral organs in chicken (Gallus domesticus) by 3 Tesla MR unit and 15-channel transmit coil

Year 2013, , 229 - 233, 01.12.2013
https://doi.org/10.1501/Vetfak_0000002584

Abstract

Imaging studies conducted on the modern imaging techniques for birds are limited and probably insufficient for the clinicians. As in mammals, magnetic resonance (MR) imaging (MRI) can be used as a convenient method for the diagnosis and treatment of the avian diseases. In this study, the whole bodies of 2 male and 2 female chickens were imaged by a 3 Tesla superconductive magnet and 15-channel transmit-receive birdcage coil. After acquisition of three dimensional (3D) T1, T2 and proton density weighted (W) MR images; bodies were frozen in same position with the one in imaging process and sliced from matching sections with original and reformatted MR images. Anatomic structures were identified and labeled in both MR images and cadaver sections. After that, 3D multiplanar reconstruction was performed on the MR images. On T1W images, it was observed that the anatomical details were superior due to the high geometric resolution. On T2W images, the tissue contrast differences and fluid filled ducts were clearly detected. On three orthogonal and oblique planes reformatted and maximum intensity projection (MIP) colored images, the anatomic details were more clearly determined and the tissues were more easily distinguished from each other with high geometric and contrast resolution. The aim of this study was to define MRI features of the tissues, and to provide an overview of MRI anatomy of the avian body structures. Besides, the most convenient sequences for the avian MRI were also designated

References

  • Aagaard BD, Lazar DA, Lankerovich L, Andrus K, Hayes CE, Maravilla K, Kliot M (2003): High-resolution magnetic resonance imaging is a noninvasive method of observing injury and recovery in the peripheral nervous system. Neurosurgery, 53, 199-203.
  • Bartels T, Brinkmeier J, Portmann S, Baulain U, Zinke A, Junghanns MEK, Boos A, Wolf P, Kummerfeld N (2001): Magnetic resonance imaging of intracranial tissue accumulations in domestic ducks (Anas platyrhynchos f.dom.) with feather crests. Vet Radiol Ultrasound, 42, 254-258.
  • Baumel JJ, King AS, Breazile JE, Evans HE, Vanden Berge JC (1993): Nomina Anatomica Avium, MA: Nuttall Ornithological Club, Cambridge.
  • Belton PS, Gordon RE, Jones JM, Shaw D. (1983): A 31P topical magnetic resonance study of embryonic development in hens' eggs. Br Poult Sci, 24, 429-33.
  • Boumans T, Theunissen FE, Poirier C, Van Der Linden A (2007): Neural representation of spectral and temporal features of song in the auditory forebrain of zebra finches as revealed by functional MRI. Eur J Neurosci, 26, 2613- 2626.
  • Charuta A, Cooper RG (2012): Computed tomographic and densitometric analysis of tibiotarsal bone mineral density and content in postnatal Peking ducks (Anas platyrhynchos var. domestica) as influenced by age and sex. Pol J Vet Sci, 15, 537-545.
  • Falen SW, Szeverenyi NM, Packard DS Jr, Ruocco MJ (1991): Magnetic resonance imaging study of the structure of the yolk in the developing avian egg. J Morphol, 209, 331-342.
  • Graham JE, Werner JA, Lowestine LJ, Wallack, ST, Tell LA (2003): Periorbital liposarcoma in an African grey parrot (Psittacus erithacus). J Avian Med Surg, 17, 147-153.
  • Guglielmo CG, McGuire LP, Gerson AR, Seewagen CL (2011): Simple, rapid and non-invasive measurement of fat, lean and total water masses of live birds using quantitative magnetic resonance. J Ornithol, 152, 75-85.
  • Herberholz J, Mishra SH, Uma D, Germann MW, Edwards DH, Potter K (2011): Non-invasive imaging of neuro anatomical structures and neural activation with high-resolution MRI. Front Behav Neurosci, 31, 16.
  • König HE, Liebich HG (2004): Veterinary Anatomy of Domestic Mammals. Schattauer, Stuttgart- New York.
  • Leslie MA, Coleman RA, Moehn S, Ball RO, Korver DR (2006): Relationship between bicarbonate retention and bone characteristics in broiler chickens. Poult Sci, 85, 1917-1922.
  • Li X, Liu J, Davey M, Duce S, Jaberi N, Liu G, Davidson G, Tenent S, Mahood R, Brown P, Cunningham C, Bain A, Beattie K, McDonald L, Schmidt K, Towers M, Tickle C, Chudek S (2007): Micro-magnetic resonance imaging of avian embryos, 211, 798-809.
  • Misra LK, Entrikin RK (1988): Corticosteroid therapy in avian muscular dystrophy: evaluation by magnetic resonance relaxation times. Exp Neurol, 102, 217-220.
  • Nickel R, Schummer A, Seiferle E (1977): Anatomy of the Domestic Birds. Verlag Paul Parey, Berlin.
  • Notohamiprodjo M, Horng A, Kuschel B, Paul D, Li G, Raya JG, Reiser MF, Glaser C (2012): 3D-imaging of the knee with an optimized 3D-FSE-sequence and a 15- channel knee-coil. Eur J Radiol, 81, 3441-3449.
  • O'Malley B (2005): Clinical Anatomy and Physiology of Exotic Species: Structure and function of mammals, birds, reptiles and amphibians. Elsevier Saunders, Edinburg.
  • Oto Ç, Ekim O, Algin O, Şenel OO, İnce N, Hazıroğlu RM (2011): 3 Tesla Magnetic resonance imaging and multiplanar reconstruction of the brain and its associated structures in pig. Vet J Ankara Univ, 58, 75-78.
  • Oto Ç, Hazıroğlu RM (2011): Magnetic resonance imaging of the guttural pouch (diverticulum tubae auditivae) and its related structures in donkey (Equus asinus). Vet J Ankara Univ, 58, 1-4.
  • Pepperberg IM, Howell KS, Banta PA, Patterson DK, Meister M (1998): Measurement of grey parrot (Psittacus erithacus) trachea via magnetic resonance imaging, dissection, and electron beam computed tomography. J Morphol, 238, 81-91.
  • Pye GW, Bennett A, Newell SM, Kindred J, Johns R (2000): Magnetic resonance imaging in psittacine birds with chronic sinusitis. J Avian Med Surg, 14, 243-256.
  • Ruffins SW, Martin M, Keough L, Truong S, Fraser SE, Jacobs RE, Lansford R (2007): Digital Three- Dimensional Atlas of Quail Development Using High- Resolution MRI. ScientificWorldJournal, 7, 592-604.
  • Seki Y, Mackey M, Meyers MA (2012): Structure and micro-computed tomography-based finite element modeling of Toucan beak. J Mech Behav Biomed Mater. 9, 1-8.
  • Shastak Y, Witzig M, Hartung K, Bessei W, Rodehutscord M (2012): Comparison and evaluation of bone measurements for the assessment of mineral phosphorus sources in broilers. Poult Sci, 91, 2210-2220.
  • Shipov A, Sharir A, Zelzer E, Milgram J, Monsonego- Ornan E, Shahar R (2010): The influence of severe prolonged exercise restriction on the mechanical and structural properties of bone in an avian model. Vet J, 183, 153-160.
  • Stauber E, Holmes S, DeGhetto DL, Finch N (2007): Magnetic resonance imaging is superior to radiography in evaluating spinal cord trauma in three bald eagles (Haliaeetus leucocephalus). J Avian Med Surg, 21, 196- 200.
  • Vellema M, Verschueren J, Meir VV, Linden AV (2011): A customizable 3-dimensional digital atlas of the canary brain in multiple modalities. NeuroImage, 57, 352- 361.
  • Verhoye M, Van der Linden A, Van Audekerke J, Sijbers J, Eens M, Balthazart J (1998): Imaging birds in a bird cage: in-vivo FSE 3D MRI of bird brain. MAGMA, 6, 22-27.
  • Wirestam R, Fagerlund T, Rosen M, Hedenström A (2008): Magnetic Resonance Imaging for Noninvasive Analysis of Fat Storage in Migratory Birds. The Auk, 125, 965-971.

Tavukta (Gallus domesticus) visseral organların 3 Tesla manyetik rezonans ünitesi ve 15-kanallı coil ileyüksek rezolüsyonlu 3B görüntülenmesi

Year 2013, , 229 - 233, 01.12.2013
https://doi.org/10.1501/Vetfak_0000002584

Abstract

Kuşlarda modern görüntüleme teknikleri üzerine yürütülmüş çalışmalar kısıtlıdır ve özellikle klinisyenler için yetersiz kalmaktadır. Manyetik rezonans (MR) görüntüleme (MRG), memelilerde olduğu gibi kanatlı hastalıklarının tanı ve tedavisi için de elverişli bir yöntemdir. Bu çalışmada; 2 horoz ve 2 tavuğun vücudu 3 Tesla MRG cihazı ile T1, T2 ve proton-dansite ağırlıklı (A) sekanslar ve 15-kanallı alıcı-verici koyil kullanılarak, 3 boyutlu (3B) olarak değerlendirildi. MRG işlemi sonrasında; görüntüleme işlemindeki pozisyonu ile aynı konumda dondurulmuş vücutlar, MR görüntüleri ile eşleşen bölümlerden dilimlendi. Anatomik yapılar, MR görüntüleri ve kadavra bölümlerinde tespit edildi ve işaretlendi. Daha sonra, MR görüntülerine 3B multiplanar rekonstrüksiyon uygulandı. T1A görüntülerde, anatomik detaylar yüksek geometrik çözünürlük nedeniyle daha iyi gözlendi. T2A görüntülerde, doku kontrastı farkları ve sıvı içerikli yapılar açıkça tespit edildi. 3B sekanslardan elde edilen oblik planlı ve maksimum yoğunluk gösteren renkli reformat görüntülerde, anatomik ayrıntılar daha net bir şekilde belirlendi ve dokular yüksek çözünürlük ile birbirinden daha kolay bir şekilde ayırt edildi. Bu çalışmadaki amaç; dokuların görüntüleme özelliklerini tanımlamak ve kuşların vücut yapılarının MRG’deki anatomisine genel bir bakış sağlamaktı. Bunların yanı sıra, kanatlılarda MRG için en uygun sekanslarda tayin edildi

References

  • Aagaard BD, Lazar DA, Lankerovich L, Andrus K, Hayes CE, Maravilla K, Kliot M (2003): High-resolution magnetic resonance imaging is a noninvasive method of observing injury and recovery in the peripheral nervous system. Neurosurgery, 53, 199-203.
  • Bartels T, Brinkmeier J, Portmann S, Baulain U, Zinke A, Junghanns MEK, Boos A, Wolf P, Kummerfeld N (2001): Magnetic resonance imaging of intracranial tissue accumulations in domestic ducks (Anas platyrhynchos f.dom.) with feather crests. Vet Radiol Ultrasound, 42, 254-258.
  • Baumel JJ, King AS, Breazile JE, Evans HE, Vanden Berge JC (1993): Nomina Anatomica Avium, MA: Nuttall Ornithological Club, Cambridge.
  • Belton PS, Gordon RE, Jones JM, Shaw D. (1983): A 31P topical magnetic resonance study of embryonic development in hens' eggs. Br Poult Sci, 24, 429-33.
  • Boumans T, Theunissen FE, Poirier C, Van Der Linden A (2007): Neural representation of spectral and temporal features of song in the auditory forebrain of zebra finches as revealed by functional MRI. Eur J Neurosci, 26, 2613- 2626.
  • Charuta A, Cooper RG (2012): Computed tomographic and densitometric analysis of tibiotarsal bone mineral density and content in postnatal Peking ducks (Anas platyrhynchos var. domestica) as influenced by age and sex. Pol J Vet Sci, 15, 537-545.
  • Falen SW, Szeverenyi NM, Packard DS Jr, Ruocco MJ (1991): Magnetic resonance imaging study of the structure of the yolk in the developing avian egg. J Morphol, 209, 331-342.
  • Graham JE, Werner JA, Lowestine LJ, Wallack, ST, Tell LA (2003): Periorbital liposarcoma in an African grey parrot (Psittacus erithacus). J Avian Med Surg, 17, 147-153.
  • Guglielmo CG, McGuire LP, Gerson AR, Seewagen CL (2011): Simple, rapid and non-invasive measurement of fat, lean and total water masses of live birds using quantitative magnetic resonance. J Ornithol, 152, 75-85.
  • Herberholz J, Mishra SH, Uma D, Germann MW, Edwards DH, Potter K (2011): Non-invasive imaging of neuro anatomical structures and neural activation with high-resolution MRI. Front Behav Neurosci, 31, 16.
  • König HE, Liebich HG (2004): Veterinary Anatomy of Domestic Mammals. Schattauer, Stuttgart- New York.
  • Leslie MA, Coleman RA, Moehn S, Ball RO, Korver DR (2006): Relationship between bicarbonate retention and bone characteristics in broiler chickens. Poult Sci, 85, 1917-1922.
  • Li X, Liu J, Davey M, Duce S, Jaberi N, Liu G, Davidson G, Tenent S, Mahood R, Brown P, Cunningham C, Bain A, Beattie K, McDonald L, Schmidt K, Towers M, Tickle C, Chudek S (2007): Micro-magnetic resonance imaging of avian embryos, 211, 798-809.
  • Misra LK, Entrikin RK (1988): Corticosteroid therapy in avian muscular dystrophy: evaluation by magnetic resonance relaxation times. Exp Neurol, 102, 217-220.
  • Nickel R, Schummer A, Seiferle E (1977): Anatomy of the Domestic Birds. Verlag Paul Parey, Berlin.
  • Notohamiprodjo M, Horng A, Kuschel B, Paul D, Li G, Raya JG, Reiser MF, Glaser C (2012): 3D-imaging of the knee with an optimized 3D-FSE-sequence and a 15- channel knee-coil. Eur J Radiol, 81, 3441-3449.
  • O'Malley B (2005): Clinical Anatomy and Physiology of Exotic Species: Structure and function of mammals, birds, reptiles and amphibians. Elsevier Saunders, Edinburg.
  • Oto Ç, Ekim O, Algin O, Şenel OO, İnce N, Hazıroğlu RM (2011): 3 Tesla Magnetic resonance imaging and multiplanar reconstruction of the brain and its associated structures in pig. Vet J Ankara Univ, 58, 75-78.
  • Oto Ç, Hazıroğlu RM (2011): Magnetic resonance imaging of the guttural pouch (diverticulum tubae auditivae) and its related structures in donkey (Equus asinus). Vet J Ankara Univ, 58, 1-4.
  • Pepperberg IM, Howell KS, Banta PA, Patterson DK, Meister M (1998): Measurement of grey parrot (Psittacus erithacus) trachea via magnetic resonance imaging, dissection, and electron beam computed tomography. J Morphol, 238, 81-91.
  • Pye GW, Bennett A, Newell SM, Kindred J, Johns R (2000): Magnetic resonance imaging in psittacine birds with chronic sinusitis. J Avian Med Surg, 14, 243-256.
  • Ruffins SW, Martin M, Keough L, Truong S, Fraser SE, Jacobs RE, Lansford R (2007): Digital Three- Dimensional Atlas of Quail Development Using High- Resolution MRI. ScientificWorldJournal, 7, 592-604.
  • Seki Y, Mackey M, Meyers MA (2012): Structure and micro-computed tomography-based finite element modeling of Toucan beak. J Mech Behav Biomed Mater. 9, 1-8.
  • Shastak Y, Witzig M, Hartung K, Bessei W, Rodehutscord M (2012): Comparison and evaluation of bone measurements for the assessment of mineral phosphorus sources in broilers. Poult Sci, 91, 2210-2220.
  • Shipov A, Sharir A, Zelzer E, Milgram J, Monsonego- Ornan E, Shahar R (2010): The influence of severe prolonged exercise restriction on the mechanical and structural properties of bone in an avian model. Vet J, 183, 153-160.
  • Stauber E, Holmes S, DeGhetto DL, Finch N (2007): Magnetic resonance imaging is superior to radiography in evaluating spinal cord trauma in three bald eagles (Haliaeetus leucocephalus). J Avian Med Surg, 21, 196- 200.
  • Vellema M, Verschueren J, Meir VV, Linden AV (2011): A customizable 3-dimensional digital atlas of the canary brain in multiple modalities. NeuroImage, 57, 352- 361.
  • Verhoye M, Van der Linden A, Van Audekerke J, Sijbers J, Eens M, Balthazart J (1998): Imaging birds in a bird cage: in-vivo FSE 3D MRI of bird brain. MAGMA, 6, 22-27.
  • Wirestam R, Fagerlund T, Rosen M, Hedenström A (2008): Magnetic Resonance Imaging for Noninvasive Analysis of Fat Storage in Migratory Birds. The Auk, 125, 965-971.
There are 29 citations in total.

Details

Primary Language English
Subjects Veterinary Surgery
Other ID JA85YV22PK
Journal Section Research Article
Authors

Okan Ekim

Çağdaş Oto

Oktay Algın

Caner Bakıcı

Publication Date December 1, 2013
Published in Issue Year 2013

Cite

APA Ekim, O., Oto, Ç., Algın, O., Bakıcı, C. (2013). High resolution 3D magnetic resonance imaging of the visceral organs in chicken (Gallus domesticus) by 3 Tesla MR unit and 15-channel transmit coil. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 60(4), 229-233. https://doi.org/10.1501/Vetfak_0000002584
AMA Ekim O, Oto Ç, Algın O, Bakıcı C. High resolution 3D magnetic resonance imaging of the visceral organs in chicken (Gallus domesticus) by 3 Tesla MR unit and 15-channel transmit coil. Ankara Univ Vet Fak Derg. December 2013;60(4):229-233. doi:10.1501/Vetfak_0000002584
Chicago Ekim, Okan, Çağdaş Oto, Oktay Algın, and Caner Bakıcı. “High Resolution 3D Magnetic Resonance Imaging of the Visceral Organs in Chicken (Gallus Domesticus) by 3 Tesla MR Unit and 15-Channel Transmit Coil”. Ankara Üniversitesi Veteriner Fakültesi Dergisi 60, no. 4 (December 2013): 229-33. https://doi.org/10.1501/Vetfak_0000002584.
EndNote Ekim O, Oto Ç, Algın O, Bakıcı C (December 1, 2013) High resolution 3D magnetic resonance imaging of the visceral organs in chicken (Gallus domesticus) by 3 Tesla MR unit and 15-channel transmit coil. Ankara Üniversitesi Veteriner Fakültesi Dergisi 60 4 229–233.
IEEE O. Ekim, Ç. Oto, O. Algın, and C. Bakıcı, “High resolution 3D magnetic resonance imaging of the visceral organs in chicken (Gallus domesticus) by 3 Tesla MR unit and 15-channel transmit coil”, Ankara Univ Vet Fak Derg, vol. 60, no. 4, pp. 229–233, 2013, doi: 10.1501/Vetfak_0000002584.
ISNAD Ekim, Okan et al. “High Resolution 3D Magnetic Resonance Imaging of the Visceral Organs in Chicken (Gallus Domesticus) by 3 Tesla MR Unit and 15-Channel Transmit Coil”. Ankara Üniversitesi Veteriner Fakültesi Dergisi 60/4 (December 2013), 229-233. https://doi.org/10.1501/Vetfak_0000002584.
JAMA Ekim O, Oto Ç, Algın O, Bakıcı C. High resolution 3D magnetic resonance imaging of the visceral organs in chicken (Gallus domesticus) by 3 Tesla MR unit and 15-channel transmit coil. Ankara Univ Vet Fak Derg. 2013;60:229–233.
MLA Ekim, Okan et al. “High Resolution 3D Magnetic Resonance Imaging of the Visceral Organs in Chicken (Gallus Domesticus) by 3 Tesla MR Unit and 15-Channel Transmit Coil”. Ankara Üniversitesi Veteriner Fakültesi Dergisi, vol. 60, no. 4, 2013, pp. 229-33, doi:10.1501/Vetfak_0000002584.
Vancouver Ekim O, Oto Ç, Algın O, Bakıcı C. High resolution 3D magnetic resonance imaging of the visceral organs in chicken (Gallus domesticus) by 3 Tesla MR unit and 15-channel transmit coil. Ankara Univ Vet Fak Derg. 2013;60(4):229-33.