Research Article
BibTex RIS Cite
Year 2020, , 185 - 192, 03.03.2020
https://doi.org/10.33988/auvfd.623821

Abstract

References

  • 1. ANKOM (2002): Operator’s manual. Ankom 200/220 fiber analyzer. Ankom Technology Corporation, Fairport.
  • 2. AOAC (2006): Official Methods of Analysis, 18th edn. Association of Official Analytical Chemists, Inc., Arlington, VA.
  • 3. Asanuma N, Hino T (2000): Activity and properties of fumarate reductase in ruminal bacteria. J Gen Appl Microbiol, 46, 119–125.
  • 4. Bharathidhasan A, Karunakaran A, Pugazhenthi TR, et al (2016): The effect of supplemental organic acid on methane reduction to decrease the global warming from dairy cattle. IJACSA, 3, 4.
  • 5. British Columbia Ministry of Forests (1996): Collection of Specimens. p.2-5. In: Techniques and procedures for collecting, preserving, processing, and storing botanical specimens. Res. Br., B.C. Min. For., Victoria, British Columbia.
  • 6. Burner DM, Carrier DJ, Belesky DP et al (2008): Yield components and nutritive value of Robinia pseudoacacia and Albizia julibrissin in Arkansas. Agroforest Syst, 72, 51-62.
  • 7. Callaway TR, Martin SA (1997): Effects of cellobiose and monensin on in vitro fermentation of organic acids by mixed ruminal bacteria. J Dairy Sci, 80, 1126–1135.
  • 8. Canbolat O, Kamalak A, Özköse E, et al (2005): Effect of polyethylene glycol on in vitro gas production, metabolizable energy and organic matter digestibility of Quercus cerris leaves. LRRD, 17, 4.
  • 9. Carro MD, Ranilla MJ (2003): Effect of the addition of malate on in vitro rumen fermentation of cereal grains. Brit J Nutr, 89, 181–188.
  • 10. Castillo C, Benedito JL, Méndez J, et al (2004): Organic acids as a substitute for monensin in diets for beef cattle. Anim Feed Sci Tech, 115, 101–116.
  • 11. Chen Y, Zhao Y, Fu ZY et al (2011): Chemical composition and in vitro ruminal fermentation characteristics of tetraploid black locust (Robinia pseudoacacia L.). Asian J Anim Vet Adv, 7, 706-714
  • 12. Ebrahimi SH, Datta MM, Heidarian V, et al (2015): Effects of fumaric or malic acid and 9,10 anthraquinone on digestiblity, micobial protein synthesis, methane emission and performance of growing calves. Indian J Anim Sci, 85, 1000-1005.
  • 13. Gill JL (1978): Design and Analysis of experiments in the Animal and Medical Sciences. Vol 1. The Iowa State Univ. Press, Ames, Iowa, USA.
  • 14. Kara K (2015): In vitro methane production and quality of corn silage treated with maleic acid. Ital J Anim Sci, 14, 3994.
  • 15. Kaya E, Kamalak A (2012): Potential Nutritive Value and Condensed Tannin Contents of Acorns from Different Oak Species. Kafkas Univ Vet Fak, 18, 1061-1066
  • 16. Khampa S, Wanapat M, Wachirapakorn C, et al (2006): Effect of levels of sodium DL-malate supplementation on ruminal fermentation efficiency of concentrates containing high levels of cassava chip in dairy steers. Asian Austral J Anim, 19, 368-375.
  • 17. Kluge H, Broz J, Eder K (2004): Untersuchungenzum Einfluss von Benzoesäureals Futterzusatz auf Leistungs parameter, Nährstoffverdaulichkeit, N-Bilanz, Mikroflora und Parameter des mikrobiellen Stoffwechselsim Verdauungstrakt von Absetzferkeln. Tagungfür Schweine und Geflügelernährung Halle (Saale) Germany, 42-45.
  • 18. Koleckar V, Kubikova K, Rehakova Z, et al (2008): Condensed and hydrolysable tannins as antioxidants influencing the health. Mini-Rev Med Chem, 8, 436-447.
  • 19. Kolver E, Aspin P (2006): Supplemental fumarate did not influence milk solids or methane production from dairy cows fed high quality pasture. Proc Nz Soc Anim Prod, 66, 409–415.
  • 20. Kumar S, Puniya AK, Puniya M, et al (2009): Factors affecting rumen methanogens and methane mitigation strategies. World J Microb Biot, 25, 1557-1566.
  • 21. Kung L, Huber JT, Krummrey JD, et al (1982): Influence of adding malic acid to dairy cattle rations on milk production, rumen volatile acids, digestibility, and nitrogen utilization. J Dairy Sci, 65, 1170–1174.
  • 22. Li Z, Liu N, Cao Y, et al (2018): Effects of fumaric acid supplementation on methane production and rumen fermentation in goats fed diets varying in forage and concantrate particle size. J Anim Sci Biotechno, 9, 21.
  • 23. Lopez S, Valdes C, Newbold CJ, et al (1999): Influence of sodium fumarate addition on rumen fermentation in vitro. Brit J Nutr, 81, 59–64.
  • 24. Luginbuhl JM, Mueller JP (2000): Evaluation of fodder trees for meat goats. 77-79. In: L. Gruner and Y. Chabert (Ed). Nutrition and Feeding Strategies. 7th International Conference on Goats. Tours, France.
  • 25. Martin SA, Streeter MN, Nisbet DJ, et al (1999): Effects of Dl-malate on ruminal metabolism and performance of cattle fed high-concentrate diet. J Anim Sci, 77, 1008–15.
  • 26. Montano MF, Chai W, Zinn-Ware TE, et al (1999): Influence of malic acid supplementation on ruminal pH, lactic acid utilization, and digestive function in steers fed high-concentrate finishing diets. J Anim Sci, 77, 780–784.
  • 27. Ok JU, Ha DU, Lee SJ, et al (2012): Effects of organic acids on in vitro ruminal fermentation characteristics and methane emission. J Life Sci, 22, 1324-1329.
  • 28. Özyılmaz N (2019): Organik ve konvansiyonel yöntemlerle üretilen çayların (Camellia sinensis) fabrika çay atıklarında besin madde içeriği ve in vitro sindirilebilirlik değerlerinin belirlenmesi. Yüksek Lisans Tezi, Ondokuz Mayıs Üniversitesi Sağlık Bilimleri Enstitüsü, Samsun.
  • 29. Parissi ZM, Abraham EM, Roukos C, et al (2018): Seasonal Quality Assessment of Leaves and Stems of Fodder Ligneous Species. Not Bot Horti Agrobo, 6, 426-434.
  • 30. Partanen K (2001): Organic acids – their efficacy and modes of action in pigs. pp. 201-218. In: Piva E, Knudsen B, Lindberg JE (Ed), Gut environment of pigs. Nottingham University Press, Nottingham, UK.
  • 31. Ranilla MJ, Carro MD, Valdés C, et al (1997): A comparative study of ruminal activity in Churra and Merino sheep offered alfalfa hay. Anim Sci, 65, 121-128.
  • 32. Sahoo A, Jena B (2014): Organic acids as rumen modifiers. IJSR, 3,11.
  • 33. Sirohi SK, Pandey P, Goel N (2012): Response of Fumaric Acid Addition on Methanogenesis, Rumen Fermentation, and Dry Matter Degradability in Diets Containing Wheat Straw and Sorghum or Berseem as Roughage Source. ISRN Vet Sci, 1-8.
  • 34. SPSS (2007): Statistical packages for social science. Version 21, SPSS In., Illinois, USA.
  • 35. Stukelj M, Valencak Z, Krsnik M, et al (2010): The effect of the combination of acids and tannin in diet on the performance and selected biochemical, haematological and antioxidant enzyme parameters in grower pigs. Acta Vet Scand, 52, 19.
  • 36. Tieman TT, Lascano CE, Kreuzer M, et al (2008): The ruminal degradability of fibre explains part of the low nutritional value and reduced methanogenesis in highly tanniniferous tropical legumes. J Sci Food Agr, 88, 1794–1803.
  • 37. Van Soest PJ, Robertson JB, Lewis BA (1991): Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci, 74, 3583-3597.

The effects of fumaric and malic acids on the in vitro true digestibility of some alternative feedstuffs for ruminants

Year 2020, , 185 - 192, 03.03.2020
https://doi.org/10.33988/auvfd.623821

Abstract

The aim of this study was to determine the effects of the addition of different amounts of fumaric acid (FA) and malic acid (MA) to the leaves of Robinia pseudoacacia (Black locust, acacia), Prunus laurocerasus (cherry laurel), Quercus cerris (oak), and Camellia sinensis (tea factory wastes, TFW), to improve their value as alternative feeds for ruminants. The parameters examined were the in vitro true digestibility of feed (IVTDAs fed), dry matter (IVTDDM), organic matter (IVTDOM), neutral detergent fiber (IVTDNDF) and count of protozoans. The digestibility experiments were performed with a DAISY incubator system. Organic acids were not added in the control group and 0.1%, 0.2% or 0.3% FA or MA were added to the experimental groups. Each treatment was replicated 6 times. Samples were incubated for 48 hours. Fumaric acid significantly reduced (P<0.01) all digestibility values of R. pseudoacacia leaves. When FA was applied at 0.1% to C. sinensis factory wastes, the IVTDOM increased significantly (P <0.05), with the same effect observed for Q. cerris (P<0.01). However, for the addition of 0.1% FA, IVTDAs Fed, IVTDDM and IVTDNDF values decreased significantly (P<0.01). Separately, malic acid did not have a significant effect on the in vitro true digestibility values determined in this study (P>0.05). Rumen protozoan counts decreased for both organic acid applications compared to counts in the fresh rumen contents. Because 0.1% fumaric acid increased the IVTDOM values of both C. sinensis factory wastes and Q. cerris leaves they can be considered potential alternative feed sources for ruminants.

References

  • 1. ANKOM (2002): Operator’s manual. Ankom 200/220 fiber analyzer. Ankom Technology Corporation, Fairport.
  • 2. AOAC (2006): Official Methods of Analysis, 18th edn. Association of Official Analytical Chemists, Inc., Arlington, VA.
  • 3. Asanuma N, Hino T (2000): Activity and properties of fumarate reductase in ruminal bacteria. J Gen Appl Microbiol, 46, 119–125.
  • 4. Bharathidhasan A, Karunakaran A, Pugazhenthi TR, et al (2016): The effect of supplemental organic acid on methane reduction to decrease the global warming from dairy cattle. IJACSA, 3, 4.
  • 5. British Columbia Ministry of Forests (1996): Collection of Specimens. p.2-5. In: Techniques and procedures for collecting, preserving, processing, and storing botanical specimens. Res. Br., B.C. Min. For., Victoria, British Columbia.
  • 6. Burner DM, Carrier DJ, Belesky DP et al (2008): Yield components and nutritive value of Robinia pseudoacacia and Albizia julibrissin in Arkansas. Agroforest Syst, 72, 51-62.
  • 7. Callaway TR, Martin SA (1997): Effects of cellobiose and monensin on in vitro fermentation of organic acids by mixed ruminal bacteria. J Dairy Sci, 80, 1126–1135.
  • 8. Canbolat O, Kamalak A, Özköse E, et al (2005): Effect of polyethylene glycol on in vitro gas production, metabolizable energy and organic matter digestibility of Quercus cerris leaves. LRRD, 17, 4.
  • 9. Carro MD, Ranilla MJ (2003): Effect of the addition of malate on in vitro rumen fermentation of cereal grains. Brit J Nutr, 89, 181–188.
  • 10. Castillo C, Benedito JL, Méndez J, et al (2004): Organic acids as a substitute for monensin in diets for beef cattle. Anim Feed Sci Tech, 115, 101–116.
  • 11. Chen Y, Zhao Y, Fu ZY et al (2011): Chemical composition and in vitro ruminal fermentation characteristics of tetraploid black locust (Robinia pseudoacacia L.). Asian J Anim Vet Adv, 7, 706-714
  • 12. Ebrahimi SH, Datta MM, Heidarian V, et al (2015): Effects of fumaric or malic acid and 9,10 anthraquinone on digestiblity, micobial protein synthesis, methane emission and performance of growing calves. Indian J Anim Sci, 85, 1000-1005.
  • 13. Gill JL (1978): Design and Analysis of experiments in the Animal and Medical Sciences. Vol 1. The Iowa State Univ. Press, Ames, Iowa, USA.
  • 14. Kara K (2015): In vitro methane production and quality of corn silage treated with maleic acid. Ital J Anim Sci, 14, 3994.
  • 15. Kaya E, Kamalak A (2012): Potential Nutritive Value and Condensed Tannin Contents of Acorns from Different Oak Species. Kafkas Univ Vet Fak, 18, 1061-1066
  • 16. Khampa S, Wanapat M, Wachirapakorn C, et al (2006): Effect of levels of sodium DL-malate supplementation on ruminal fermentation efficiency of concentrates containing high levels of cassava chip in dairy steers. Asian Austral J Anim, 19, 368-375.
  • 17. Kluge H, Broz J, Eder K (2004): Untersuchungenzum Einfluss von Benzoesäureals Futterzusatz auf Leistungs parameter, Nährstoffverdaulichkeit, N-Bilanz, Mikroflora und Parameter des mikrobiellen Stoffwechselsim Verdauungstrakt von Absetzferkeln. Tagungfür Schweine und Geflügelernährung Halle (Saale) Germany, 42-45.
  • 18. Koleckar V, Kubikova K, Rehakova Z, et al (2008): Condensed and hydrolysable tannins as antioxidants influencing the health. Mini-Rev Med Chem, 8, 436-447.
  • 19. Kolver E, Aspin P (2006): Supplemental fumarate did not influence milk solids or methane production from dairy cows fed high quality pasture. Proc Nz Soc Anim Prod, 66, 409–415.
  • 20. Kumar S, Puniya AK, Puniya M, et al (2009): Factors affecting rumen methanogens and methane mitigation strategies. World J Microb Biot, 25, 1557-1566.
  • 21. Kung L, Huber JT, Krummrey JD, et al (1982): Influence of adding malic acid to dairy cattle rations on milk production, rumen volatile acids, digestibility, and nitrogen utilization. J Dairy Sci, 65, 1170–1174.
  • 22. Li Z, Liu N, Cao Y, et al (2018): Effects of fumaric acid supplementation on methane production and rumen fermentation in goats fed diets varying in forage and concantrate particle size. J Anim Sci Biotechno, 9, 21.
  • 23. Lopez S, Valdes C, Newbold CJ, et al (1999): Influence of sodium fumarate addition on rumen fermentation in vitro. Brit J Nutr, 81, 59–64.
  • 24. Luginbuhl JM, Mueller JP (2000): Evaluation of fodder trees for meat goats. 77-79. In: L. Gruner and Y. Chabert (Ed). Nutrition and Feeding Strategies. 7th International Conference on Goats. Tours, France.
  • 25. Martin SA, Streeter MN, Nisbet DJ, et al (1999): Effects of Dl-malate on ruminal metabolism and performance of cattle fed high-concentrate diet. J Anim Sci, 77, 1008–15.
  • 26. Montano MF, Chai W, Zinn-Ware TE, et al (1999): Influence of malic acid supplementation on ruminal pH, lactic acid utilization, and digestive function in steers fed high-concentrate finishing diets. J Anim Sci, 77, 780–784.
  • 27. Ok JU, Ha DU, Lee SJ, et al (2012): Effects of organic acids on in vitro ruminal fermentation characteristics and methane emission. J Life Sci, 22, 1324-1329.
  • 28. Özyılmaz N (2019): Organik ve konvansiyonel yöntemlerle üretilen çayların (Camellia sinensis) fabrika çay atıklarında besin madde içeriği ve in vitro sindirilebilirlik değerlerinin belirlenmesi. Yüksek Lisans Tezi, Ondokuz Mayıs Üniversitesi Sağlık Bilimleri Enstitüsü, Samsun.
  • 29. Parissi ZM, Abraham EM, Roukos C, et al (2018): Seasonal Quality Assessment of Leaves and Stems of Fodder Ligneous Species. Not Bot Horti Agrobo, 6, 426-434.
  • 30. Partanen K (2001): Organic acids – their efficacy and modes of action in pigs. pp. 201-218. In: Piva E, Knudsen B, Lindberg JE (Ed), Gut environment of pigs. Nottingham University Press, Nottingham, UK.
  • 31. Ranilla MJ, Carro MD, Valdés C, et al (1997): A comparative study of ruminal activity in Churra and Merino sheep offered alfalfa hay. Anim Sci, 65, 121-128.
  • 32. Sahoo A, Jena B (2014): Organic acids as rumen modifiers. IJSR, 3,11.
  • 33. Sirohi SK, Pandey P, Goel N (2012): Response of Fumaric Acid Addition on Methanogenesis, Rumen Fermentation, and Dry Matter Degradability in Diets Containing Wheat Straw and Sorghum or Berseem as Roughage Source. ISRN Vet Sci, 1-8.
  • 34. SPSS (2007): Statistical packages for social science. Version 21, SPSS In., Illinois, USA.
  • 35. Stukelj M, Valencak Z, Krsnik M, et al (2010): The effect of the combination of acids and tannin in diet on the performance and selected biochemical, haematological and antioxidant enzyme parameters in grower pigs. Acta Vet Scand, 52, 19.
  • 36. Tieman TT, Lascano CE, Kreuzer M, et al (2008): The ruminal degradability of fibre explains part of the low nutritional value and reduced methanogenesis in highly tanniniferous tropical legumes. J Sci Food Agr, 88, 1794–1803.
  • 37. Van Soest PJ, Robertson JB, Lewis BA (1991): Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci, 74, 3583-3597.
There are 37 citations in total.

Details

Primary Language English
Subjects Veterinary Surgery
Journal Section Research Article
Authors

Buğra Genç 0000-0002-7561-4993

Mustafa Salman 0000-0003-0828-5998

Bora Bölükbaş 0000-0002-0732-0192

İsmail Kaya 0000-0002-2570-0877

Mustafa Açıcı 0000-0002-8406-9739

Publication Date March 3, 2020
Published in Issue Year 2020

Cite

APA Genç, B., Salman, M., Bölükbaş, B., Kaya, İ., et al. (2020). The effects of fumaric and malic acids on the in vitro true digestibility of some alternative feedstuffs for ruminants. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 67(2), 185-192. https://doi.org/10.33988/auvfd.623821
AMA Genç B, Salman M, Bölükbaş B, Kaya İ, Açıcı M. The effects of fumaric and malic acids on the in vitro true digestibility of some alternative feedstuffs for ruminants. Ankara Univ Vet Fak Derg. March 2020;67(2):185-192. doi:10.33988/auvfd.623821
Chicago Genç, Buğra, Mustafa Salman, Bora Bölükbaş, İsmail Kaya, and Mustafa Açıcı. “The Effects of Fumaric and Malic Acids on the in Vitro True Digestibility of Some Alternative Feedstuffs for Ruminants”. Ankara Üniversitesi Veteriner Fakültesi Dergisi 67, no. 2 (March 2020): 185-92. https://doi.org/10.33988/auvfd.623821.
EndNote Genç B, Salman M, Bölükbaş B, Kaya İ, Açıcı M (March 1, 2020) The effects of fumaric and malic acids on the in vitro true digestibility of some alternative feedstuffs for ruminants. Ankara Üniversitesi Veteriner Fakültesi Dergisi 67 2 185–192.
IEEE B. Genç, M. Salman, B. Bölükbaş, İ. Kaya, and M. Açıcı, “The effects of fumaric and malic acids on the in vitro true digestibility of some alternative feedstuffs for ruminants”, Ankara Univ Vet Fak Derg, vol. 67, no. 2, pp. 185–192, 2020, doi: 10.33988/auvfd.623821.
ISNAD Genç, Buğra et al. “The Effects of Fumaric and Malic Acids on the in Vitro True Digestibility of Some Alternative Feedstuffs for Ruminants”. Ankara Üniversitesi Veteriner Fakültesi Dergisi 67/2 (March 2020), 185-192. https://doi.org/10.33988/auvfd.623821.
JAMA Genç B, Salman M, Bölükbaş B, Kaya İ, Açıcı M. The effects of fumaric and malic acids on the in vitro true digestibility of some alternative feedstuffs for ruminants. Ankara Univ Vet Fak Derg. 2020;67:185–192.
MLA Genç, Buğra et al. “The Effects of Fumaric and Malic Acids on the in Vitro True Digestibility of Some Alternative Feedstuffs for Ruminants”. Ankara Üniversitesi Veteriner Fakültesi Dergisi, vol. 67, no. 2, 2020, pp. 185-92, doi:10.33988/auvfd.623821.
Vancouver Genç B, Salman M, Bölükbaş B, Kaya İ, Açıcı M. The effects of fumaric and malic acids on the in vitro true digestibility of some alternative feedstuffs for ruminants. Ankara Univ Vet Fak Derg. 2020;67(2):185-92.