Research Article
BibTex RIS Cite

Ev Yapımı Elma ve Üzüm Sirkelerinin Kimyasal, Antibakteriyel ve Antiradikal Özelliklerinin Araştırılması

Year 2022, , 139 - 148, 25.03.2022
https://doi.org/10.33988/auvfd.865309

Abstract

Bu çalışma, ev yapımı elma ve üzüm sirkelerinin başlıca uçucu bileşikleri, organik asit, fenolik ve mineral içerikleri ile antiradikal ve antimikrobiyal özelliklerini araştırmayı amaçlamıştır. Üzüm sirkesinin elma sirkesine göre daha yüksek toplam asitlik, organik asit içeriği, toplam fenolik içerik (TPC) ve antiradikal aktiviteye sahip olduğu, aynı zamanda daha düşük minimum inhibitör konsantrasyon (MIC) değerleri gösterdiği tespit edildi. Üzüm sirkesinde asetik ve tartarik asitler en çok bulunan organik asitti. Elma sirkesinde ise en çok bulunan organik asitler asetik ve süksinik asitlerdi. Her iki sirke çeşidinde de en fazla bulunan fenolik bileşik gallik asitti. Üzüm ve elma sirkelerinin sırasıyla 18 ve 9 adet uçucu bileşik içerdiği belirlendi. Üzüm sirkesinde asetik asit ve asetoin en çok bulunan uçucu bileşikler iken; asetik asit, etil asetat, 2,4,5-trimetil-1,3-dioksolan elma sirkesinde en fazla bulunan uçucu bileşiklerdi. K, Ca ve Na, her iki sirkede en yaygın bulunan mineraller iken; üzüm sirkesinde elma sirkesine kıyasla daha fazla oranda bulundukları tespit edildi. Üzüm sirkesinde test edilen bakterilere karşı MIC değerlerinin % 6.25 olduğu, Minimum bakterisidal konsantrasyon (MBC) değerlerinin % 6.25 ile % 12.50 arasında değiştiği görüldü. Elma sirkesinin test edilen bakterilere karşı MIC değerleri % 12.50 olduğu, MBC değerlerinin ise tüm test bakterileri için % 12.50 ile % 25.00 arasında değiştiği görüldü. Sonuç olarak sirkelerin sahip olduğu antiradikal ve antibakteriyel aktivitelerinin, TPC, organik asit içerikleri ile ilişkili olduğunu düşünülmektedir.

References

  • Akbas M, Cabaroglu T (2010): Ülkemizde üretilen bazı üzüm sirkelerinin bileşimleri ve gıda mevzuatına uygunlukları üzerine bir araştırma. Gıda, 35, 183-188.
  • Alhendawi RA, Römheld V, Kirkby EA, et al (1997): Influence of increasing bicarbonate concentrations on plant growth, organic acid accumulation in roots and iron uptake by barley, sorghum and maize. J Plant Nutr, 20, 1731-1753.
  • Almasaudi SB, Al-Nahari AA, El Sayed M, et al (2017): Antimicrobial effect of different types of honey on Staphylococcus aureus. Saudi J Biol Sci, 24, 1255-1261.
  • Anonymus (2008): Gıda Maddelerinde Belirli Bulasanların Maksimum Seviyelerinin Belirlenmesi Hakkında Teblig, 2008/26 C.F.R. x 26879. Available at https://www.resmigazete.gov.tr/eskiler/2008/05/20080517-7.htm. (Accessed Jan 17, 2021).
  • Aydin S, Gokisik CD (2019): Total phenolic and flavonoid contents and antioxidant capacity of home-made Isabella grape (Vitis labrusca L.) vinegar. Int J Chem Technol, 3, 11-16.
  • Aykin E, Budak NH, Güzel-Seydim ZB (2015): Bioactive components of mother vinegar. J Am Coll Nutr, 34, 80-89.
  • Bakir S, Devecioglu D, Kayacan S, et al (2017): Investigating the antioxidant and antimicrobial activities of different vinegars. Eur Food Res Technol, 243, 2083-2094.
  • Bakir S, Toydemir G, Boyacioglu D, et al (2016): Fruit antioxidants during vinegar processing: Changes in content and in vitro bio-accessibility. Int J Mol Sci, 17, 1658.
  • Bayram NE, Canli D, Gercek YC, et al (2020): Macronutrient and micronutrient levels and phenolic compound characteristics of monofloral honey samples. J Food Nutr Res, 59, 311-322.
  • Bintsis T (2017): Foodborne pathogens. AIMS Microbiol, 3, 529–563.
  • Bouarab-Chibane L, Forquet V, Lantéri P, et al (2019): Antibacterial properties of polyphenols: characterization and QSAR (Quantitative structure–activity relationship) models. Front Microbiol, 10, 829.
  • Budak HN, Guzel‐Seydim ZB (2010): Antioxidant activity and phenolic content of wine vinegars produced by two different techniques. J Sci Food Agric, 90, 2021-2026.
  • Budak NH, Aykin E, Seydim AC, et al (2014): Functional properties of vinegar. J Food Sci, 79, R757-R764.
  • Cejudo‐Bastante C, Durán‐Guerrero E, García‐Barroso, et al (2018): Comparative study of submerged and surface culture acetification process for orange vinegar. J Sci Food Agric, 98, 1052-1060.
  • Chen CS, Zhang D, Wang, YQ, et al (2012): Effects of fruit bagging on the contents of phenolic compounds in the peel and flesh of ‘Golden Delicious’, ‘Red Delicious’, and ‘Royal Gala’apples. Sci Hortic, 142, 68-73.
  • Chen H, Chen T, Giudici P, et al (2016): Vinegar functions on health: Constituents, sources, and formation mechanisms. Compr Rev Food Sc Food Saf, 15, 1124-1138.
  • CLSI (2016): Performance Standards for Antimicrobial Susceptibility Testing. Approved standard (M100S) (26th ed). Clin. Lab. Standard. Inst. Publ., Wayne.
  • Gerbi V, Zeppa G, Beltramo R, et al (1998): Characterization of white vinegars of different sources with artificial neural networks. J Sci Food Agric, 78, 415-425.
  • Gokirmakli Ç, Budak HN, Güzel-Seydim ZB (2019): Antimicrobial Effect of Vinegar. TURJAF, 7, 1635-1640.
  • Gram L, Ravn L, Rasch M, et al (2002): Food spoilage-interactions between food spoilage bacteria. Int J Food Microbiol, 78, 79-97.
  • Hao C, Xia T, Du P, et al (2018): Chemical composition and antioxidant characteristic of traditional and industrial Zhenjiang aromatic vinegars during the aging process. Molecules, 23, 2949.
  • ISO - 20776 (2006): Clinical laboratory testing and in vitro diagnostic test systems – Susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility test devices. Part 1: Reference method for testing the in vitro activity of antimicrobial agents against rapidly growing aerobic bacteria involved in infectious diseases. Available at https://www.iso.org/standard/ 41630.html. (Accessed Jan 17, 2021).
  • Janchovska E, Janchovska M, Ristovski B, et al (2015): Antimicrobial and antioxidative activity of commercial versus traditional apple vinegar. 28-32. In: Proceedings of International Conference on Sustainable Development, Belgrade, Sebia.
  • Kalaba V, Balaban ŽM, Kalaba D (2019): Antibacterial Activity of Domestic Apple Cider Vinegar. AGROFOR, 4, 24-31.
  • Karta IW, Sundari CDWH, Susila LANKE, et al (2018): Analysis of active content in “Salacca Vinegar” in Sibetan village with potential as antidiabetic and anticancer. Indian J Public Health Res Dev, 9, 424-428.
  • Kelebek H, Kadiroğlu P, Demircan NB, et al (2017): Screening of bioactive components in grape and apple vinegars: Antioxidant and antimicrobial potential. J Inst Brew, 123, 407-416.
  • Keyvan E, Tutun H (2019): Effects of carvacrol on Staphyloccus aureus isolated from bulk tank milk. Med Weter, 75, 238-241.
  • Krapez KM, Abram V, Kac M, et al (2001): Determination of Organic Acids in White Wines by RP-HPLC. Food Technol Biotechnol, 39, 93-99.
  • Kumar N, Goel N (2019): Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol Rep, 24, 00370.
  • Li S, Li P, Feng F, et al (2015): Microbial diversity and their roles in the vinegar fermentation process. Appl Microbiol Biotechnol, 99, 4997-5024.
  • Liu Q, Tang GY, Zhao CN, et al (2019): Antioxidant activities, phenolic profiles, and organic acid contents of fruit vinegars. Antioxidants, 8, 78.
  • Mama M, Teshome T, Detamo J (2019): Antibacterial activity of honey against methicillin-resistant staphylococcus aureus: a laboratory-based experimental study. Int J Microbiol, 2019, 7686130.
  • Natera R, Castro R, De Valme García-Moreno M, et al (2003): Chemometric studies of vinegars from different raw materials and processes of production. Agric Food Chem, 51, 3345-3351.
  • Oh I, Baek Ej, Lee DH, et al (2019): Anti-obesity and anti-inflammatory effects of ginseng vinegar in high-fat diet fed mice. Food Sci Biotechnol, 28, 1829-1836.
  • Ozturk I, Caliskan O, Tornuk F, et al (2015): Antioxidant, antimicrobial, mineral, volatile, physicochemical and microbiological characteristics of traditional home-made Turkish vinegars. LWT-Food Sci Technol, 63, 144-151.
  • Park Sh, Choi MR, Park JW, et al (2011): Use of organic acids to inactivate Escherichia coli O157: H7, Salmonella Typhimurium, and Listeria monocytogenes on organic fresh apples and lettuce. J Food Sci, 76, M293-M298.
  • Ramos B, Brandão TR, Teixeira P, et al (2014): Balsamic vinegar from Modena: An easy and effective approach to reduce Listeria monocytogenes from lettuce. Food Control, 42, 38-42.
  • Sengun İY, Kiliç G (2020): Total phenolic content and antibacterial activity of homemade fig and mulberry vinegar. Eskişehir Technical Univ J of Sci and Tech C - Life Sci and Biotech, 9, 89-97.
  • Singh RP, Chidambara Murthy KN, Jayaprakasha, GK (2002): Studies on antioxidant activity of pomegranate (Punica granatum) peel extract using in vivo models. J Agric Food Chem, 50, 4791-4795.
  • Singleton VL, Rossi JA (1965): Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic, 16, 144-158.
  • Smid EJ, Gorris LG (1999): Natural antimicrobials for food preservation. 285-308. In: MS Rahmen (Ed), Hand Book of Food Preservation, Marcel Dekker Ink, New York, USA.
  • Soltan SS, Shehata MMEM (2012): Antidiabetic and hypocholesrolemic effect of different types of vinegar in rats. Life Sci, 9, 2141-2151.
  • Turhan EÜ, Canbaş A (2016): Chemical and sensory properties of vinegar from dimrit grape by submerged and surface method. Gıda/The Journal of Food, 41, 1-7.
  • Turkey National Standard-TSE (2016): Vinegar - product made from liquids of agricultural origin - definitions, requirements, marking (Vol. TS 1880 EN 13188/D1:2016), Ankara.
  • Tutun H, Koç N, Kart A (2018): Plant essential oils used against some bee diseases. TURJAF, 6, 34-45.
  • U.S. EPA (2014): "Method 6010D (SW-846): Inductively Coupled Plasma-Atomic Emission Spectrometry," Revision 4. Washington, DC. Available at https://www.epa.gov/esam/epa-method-6010d-sw-846-inductively-coupled-plasma-atomic-emission-spectrometry (Accessed Jan 15, 2021).
  • Verzelloni E, Tagliazucchi D, Conte A (2007): Relationship between the antioxidant properties and the phenolic and flavonoid content in traditional balsamic vinegar. Food Chem, 105, 564-571.
  • Yagnik D, Serafin V, Shah AJ (2018): Antimicrobial activity of apple cider vinegar against Escherichia coli, Staphylococcus aureus and Candida albicans; downregulating cytokine and microbial protein expression. Sci Rep, 8, 1-12.
  • Yang WH, Wu XF, Liu Q, et al (2018): Composition and antioxidant properties of taro vinegar. Curr Top Nutraceutical Res, 16, 225-234.
  • Zhang B, Xia T, Duan W, et al (2019): Effects of organic acids, amino acids and phenolic compounds on antioxidant characteristic of Zhenjiang aromatic vinegar. Molecules, 24, 3799

Bioactive components, antibacterial and antiradical properties of home-made apple and grape vinegar

Year 2022, , 139 - 148, 25.03.2022
https://doi.org/10.33988/auvfd.865309

Abstract

The present study aimed to investigate major volatile compounds, organic acid, phenolic and mineral contents, and antiradical and antimicrobial properties of home-made apple/grape vinegar. Grape vinegar showed higher total acidity, organic acid content, total phenolic content (TPC), antiradical activity and lower minimum inhibitory concentration (MIC) values compared to apple vinegar. While acetic and tartaric acids were the most abundant organic acids in grape vinegar, acetic and succinic acids were the most abundant organic acids in apple vinegar. The most abundant phenolic compound was gallic acid in both grape and apple vinegar. A total of 18 and 9 volatile compounds were determined in grape vinegar samples and apple vinegar samples, respectively. The most abundant volatile compounds were acetic acid and acetoin in grape vinegar, acetic acid, ethyl acetate and 2,4,5-trimethyl-1,3-dioxolane in apple vinegar. K, Ca and Na were common minerals in both vinegar and more in the grape vinegar compared to apple vinegar. Although MIC value for grape vinegar was at 6.25% with minimum bactericidal concentration (MBC) values ranged from 6.25% to 12.50%, MIC value for apple vinegar was at 12.50% with MBC values ranged from 12.50% to 25.00% for all test bacteria. The antiradical and antibacterial activities of the vinegar samples were correlated with their TPC and organic acid contents.

References

  • Akbas M, Cabaroglu T (2010): Ülkemizde üretilen bazı üzüm sirkelerinin bileşimleri ve gıda mevzuatına uygunlukları üzerine bir araştırma. Gıda, 35, 183-188.
  • Alhendawi RA, Römheld V, Kirkby EA, et al (1997): Influence of increasing bicarbonate concentrations on plant growth, organic acid accumulation in roots and iron uptake by barley, sorghum and maize. J Plant Nutr, 20, 1731-1753.
  • Almasaudi SB, Al-Nahari AA, El Sayed M, et al (2017): Antimicrobial effect of different types of honey on Staphylococcus aureus. Saudi J Biol Sci, 24, 1255-1261.
  • Anonymus (2008): Gıda Maddelerinde Belirli Bulasanların Maksimum Seviyelerinin Belirlenmesi Hakkında Teblig, 2008/26 C.F.R. x 26879. Available at https://www.resmigazete.gov.tr/eskiler/2008/05/20080517-7.htm. (Accessed Jan 17, 2021).
  • Aydin S, Gokisik CD (2019): Total phenolic and flavonoid contents and antioxidant capacity of home-made Isabella grape (Vitis labrusca L.) vinegar. Int J Chem Technol, 3, 11-16.
  • Aykin E, Budak NH, Güzel-Seydim ZB (2015): Bioactive components of mother vinegar. J Am Coll Nutr, 34, 80-89.
  • Bakir S, Devecioglu D, Kayacan S, et al (2017): Investigating the antioxidant and antimicrobial activities of different vinegars. Eur Food Res Technol, 243, 2083-2094.
  • Bakir S, Toydemir G, Boyacioglu D, et al (2016): Fruit antioxidants during vinegar processing: Changes in content and in vitro bio-accessibility. Int J Mol Sci, 17, 1658.
  • Bayram NE, Canli D, Gercek YC, et al (2020): Macronutrient and micronutrient levels and phenolic compound characteristics of monofloral honey samples. J Food Nutr Res, 59, 311-322.
  • Bintsis T (2017): Foodborne pathogens. AIMS Microbiol, 3, 529–563.
  • Bouarab-Chibane L, Forquet V, Lantéri P, et al (2019): Antibacterial properties of polyphenols: characterization and QSAR (Quantitative structure–activity relationship) models. Front Microbiol, 10, 829.
  • Budak HN, Guzel‐Seydim ZB (2010): Antioxidant activity and phenolic content of wine vinegars produced by two different techniques. J Sci Food Agric, 90, 2021-2026.
  • Budak NH, Aykin E, Seydim AC, et al (2014): Functional properties of vinegar. J Food Sci, 79, R757-R764.
  • Cejudo‐Bastante C, Durán‐Guerrero E, García‐Barroso, et al (2018): Comparative study of submerged and surface culture acetification process for orange vinegar. J Sci Food Agric, 98, 1052-1060.
  • Chen CS, Zhang D, Wang, YQ, et al (2012): Effects of fruit bagging on the contents of phenolic compounds in the peel and flesh of ‘Golden Delicious’, ‘Red Delicious’, and ‘Royal Gala’apples. Sci Hortic, 142, 68-73.
  • Chen H, Chen T, Giudici P, et al (2016): Vinegar functions on health: Constituents, sources, and formation mechanisms. Compr Rev Food Sc Food Saf, 15, 1124-1138.
  • CLSI (2016): Performance Standards for Antimicrobial Susceptibility Testing. Approved standard (M100S) (26th ed). Clin. Lab. Standard. Inst. Publ., Wayne.
  • Gerbi V, Zeppa G, Beltramo R, et al (1998): Characterization of white vinegars of different sources with artificial neural networks. J Sci Food Agric, 78, 415-425.
  • Gokirmakli Ç, Budak HN, Güzel-Seydim ZB (2019): Antimicrobial Effect of Vinegar. TURJAF, 7, 1635-1640.
  • Gram L, Ravn L, Rasch M, et al (2002): Food spoilage-interactions between food spoilage bacteria. Int J Food Microbiol, 78, 79-97.
  • Hao C, Xia T, Du P, et al (2018): Chemical composition and antioxidant characteristic of traditional and industrial Zhenjiang aromatic vinegars during the aging process. Molecules, 23, 2949.
  • ISO - 20776 (2006): Clinical laboratory testing and in vitro diagnostic test systems – Susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility test devices. Part 1: Reference method for testing the in vitro activity of antimicrobial agents against rapidly growing aerobic bacteria involved in infectious diseases. Available at https://www.iso.org/standard/ 41630.html. (Accessed Jan 17, 2021).
  • Janchovska E, Janchovska M, Ristovski B, et al (2015): Antimicrobial and antioxidative activity of commercial versus traditional apple vinegar. 28-32. In: Proceedings of International Conference on Sustainable Development, Belgrade, Sebia.
  • Kalaba V, Balaban ŽM, Kalaba D (2019): Antibacterial Activity of Domestic Apple Cider Vinegar. AGROFOR, 4, 24-31.
  • Karta IW, Sundari CDWH, Susila LANKE, et al (2018): Analysis of active content in “Salacca Vinegar” in Sibetan village with potential as antidiabetic and anticancer. Indian J Public Health Res Dev, 9, 424-428.
  • Kelebek H, Kadiroğlu P, Demircan NB, et al (2017): Screening of bioactive components in grape and apple vinegars: Antioxidant and antimicrobial potential. J Inst Brew, 123, 407-416.
  • Keyvan E, Tutun H (2019): Effects of carvacrol on Staphyloccus aureus isolated from bulk tank milk. Med Weter, 75, 238-241.
  • Krapez KM, Abram V, Kac M, et al (2001): Determination of Organic Acids in White Wines by RP-HPLC. Food Technol Biotechnol, 39, 93-99.
  • Kumar N, Goel N (2019): Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol Rep, 24, 00370.
  • Li S, Li P, Feng F, et al (2015): Microbial diversity and their roles in the vinegar fermentation process. Appl Microbiol Biotechnol, 99, 4997-5024.
  • Liu Q, Tang GY, Zhao CN, et al (2019): Antioxidant activities, phenolic profiles, and organic acid contents of fruit vinegars. Antioxidants, 8, 78.
  • Mama M, Teshome T, Detamo J (2019): Antibacterial activity of honey against methicillin-resistant staphylococcus aureus: a laboratory-based experimental study. Int J Microbiol, 2019, 7686130.
  • Natera R, Castro R, De Valme García-Moreno M, et al (2003): Chemometric studies of vinegars from different raw materials and processes of production. Agric Food Chem, 51, 3345-3351.
  • Oh I, Baek Ej, Lee DH, et al (2019): Anti-obesity and anti-inflammatory effects of ginseng vinegar in high-fat diet fed mice. Food Sci Biotechnol, 28, 1829-1836.
  • Ozturk I, Caliskan O, Tornuk F, et al (2015): Antioxidant, antimicrobial, mineral, volatile, physicochemical and microbiological characteristics of traditional home-made Turkish vinegars. LWT-Food Sci Technol, 63, 144-151.
  • Park Sh, Choi MR, Park JW, et al (2011): Use of organic acids to inactivate Escherichia coli O157: H7, Salmonella Typhimurium, and Listeria monocytogenes on organic fresh apples and lettuce. J Food Sci, 76, M293-M298.
  • Ramos B, Brandão TR, Teixeira P, et al (2014): Balsamic vinegar from Modena: An easy and effective approach to reduce Listeria monocytogenes from lettuce. Food Control, 42, 38-42.
  • Sengun İY, Kiliç G (2020): Total phenolic content and antibacterial activity of homemade fig and mulberry vinegar. Eskişehir Technical Univ J of Sci and Tech C - Life Sci and Biotech, 9, 89-97.
  • Singh RP, Chidambara Murthy KN, Jayaprakasha, GK (2002): Studies on antioxidant activity of pomegranate (Punica granatum) peel extract using in vivo models. J Agric Food Chem, 50, 4791-4795.
  • Singleton VL, Rossi JA (1965): Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic, 16, 144-158.
  • Smid EJ, Gorris LG (1999): Natural antimicrobials for food preservation. 285-308. In: MS Rahmen (Ed), Hand Book of Food Preservation, Marcel Dekker Ink, New York, USA.
  • Soltan SS, Shehata MMEM (2012): Antidiabetic and hypocholesrolemic effect of different types of vinegar in rats. Life Sci, 9, 2141-2151.
  • Turhan EÜ, Canbaş A (2016): Chemical and sensory properties of vinegar from dimrit grape by submerged and surface method. Gıda/The Journal of Food, 41, 1-7.
  • Turkey National Standard-TSE (2016): Vinegar - product made from liquids of agricultural origin - definitions, requirements, marking (Vol. TS 1880 EN 13188/D1:2016), Ankara.
  • Tutun H, Koç N, Kart A (2018): Plant essential oils used against some bee diseases. TURJAF, 6, 34-45.
  • U.S. EPA (2014): "Method 6010D (SW-846): Inductively Coupled Plasma-Atomic Emission Spectrometry," Revision 4. Washington, DC. Available at https://www.epa.gov/esam/epa-method-6010d-sw-846-inductively-coupled-plasma-atomic-emission-spectrometry (Accessed Jan 15, 2021).
  • Verzelloni E, Tagliazucchi D, Conte A (2007): Relationship between the antioxidant properties and the phenolic and flavonoid content in traditional balsamic vinegar. Food Chem, 105, 564-571.
  • Yagnik D, Serafin V, Shah AJ (2018): Antimicrobial activity of apple cider vinegar against Escherichia coli, Staphylococcus aureus and Candida albicans; downregulating cytokine and microbial protein expression. Sci Rep, 8, 1-12.
  • Yang WH, Wu XF, Liu Q, et al (2018): Composition and antioxidant properties of taro vinegar. Curr Top Nutraceutical Res, 16, 225-234.
  • Zhang B, Xia T, Duan W, et al (2019): Effects of organic acids, amino acids and phenolic compounds on antioxidant characteristic of Zhenjiang aromatic vinegar. Molecules, 24, 3799
There are 50 citations in total.

Details

Primary Language English
Subjects Veterinary Surgery
Journal Section Research Article
Authors

Hatice Ahu Kahraman 0000-0001-6600-239X

Hidayet Tutun 0000-0001-9512-8637

Erhan Keyvan 0000-0002-2981-437X

Burcu Menekşe Balkan 0000-0002-0206-6455

Publication Date March 25, 2022
Published in Issue Year 2022

Cite

APA Kahraman, H. A., Tutun, H., Keyvan, E., Balkan, B. M. (2022). Bioactive components, antibacterial and antiradical properties of home-made apple and grape vinegar. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 69(2), 139-148. https://doi.org/10.33988/auvfd.865309
AMA Kahraman HA, Tutun H, Keyvan E, Balkan BM. Bioactive components, antibacterial and antiradical properties of home-made apple and grape vinegar. Ankara Univ Vet Fak Derg. March 2022;69(2):139-148. doi:10.33988/auvfd.865309
Chicago Kahraman, Hatice Ahu, Hidayet Tutun, Erhan Keyvan, and Burcu Menekşe Balkan. “Bioactive Components, Antibacterial and Antiradical Properties of Home-Made Apple and Grape Vinegar”. Ankara Üniversitesi Veteriner Fakültesi Dergisi 69, no. 2 (March 2022): 139-48. https://doi.org/10.33988/auvfd.865309.
EndNote Kahraman HA, Tutun H, Keyvan E, Balkan BM (March 1, 2022) Bioactive components, antibacterial and antiradical properties of home-made apple and grape vinegar. Ankara Üniversitesi Veteriner Fakültesi Dergisi 69 2 139–148.
IEEE H. A. Kahraman, H. Tutun, E. Keyvan, and B. M. Balkan, “Bioactive components, antibacterial and antiradical properties of home-made apple and grape vinegar”, Ankara Univ Vet Fak Derg, vol. 69, no. 2, pp. 139–148, 2022, doi: 10.33988/auvfd.865309.
ISNAD Kahraman, Hatice Ahu et al. “Bioactive Components, Antibacterial and Antiradical Properties of Home-Made Apple and Grape Vinegar”. Ankara Üniversitesi Veteriner Fakültesi Dergisi 69/2 (March 2022), 139-148. https://doi.org/10.33988/auvfd.865309.
JAMA Kahraman HA, Tutun H, Keyvan E, Balkan BM. Bioactive components, antibacterial and antiradical properties of home-made apple and grape vinegar. Ankara Univ Vet Fak Derg. 2022;69:139–148.
MLA Kahraman, Hatice Ahu et al. “Bioactive Components, Antibacterial and Antiradical Properties of Home-Made Apple and Grape Vinegar”. Ankara Üniversitesi Veteriner Fakültesi Dergisi, vol. 69, no. 2, 2022, pp. 139-48, doi:10.33988/auvfd.865309.
Vancouver Kahraman HA, Tutun H, Keyvan E, Balkan BM. Bioactive components, antibacterial and antiradical properties of home-made apple and grape vinegar. Ankara Univ Vet Fak Derg. 2022;69(2):139-48.

Cited By