Research Article
BibTex RIS Cite

Hindiba inulininin rumen fermantasyonu üzerine in vitro etkileri

Year 2009, Volume: 56 Issue: 3, 171 - 175, 01.09.2009
https://doi.org/10.1501/Vetfak_0000002212

Abstract

Bu araştırmanın amacı, farklı kaynaklardan gelen hindiba köklerinden elde edilen ve püskürtme tekniği ile kurutulmuş, inulinin in vitro ruminal fermantasyon üzerine etkilerini belirlemektir. Bu amaçla Rusitec tekniği (Rumen Simulation Technique) kullanılarak iki ayrı deneme yapıldı. Bu denemelerde 5 g/gün kuru ot ve 4 g/gün konsantre yemden oluşan bir rasyonun ruminal fermantasyonu, aynı rasyonun farklı kaynaklardan gelen inulinlerin varlığındaki fermantasyonu ile karşılaştırıldı. Birinci denemede Rusitec sistemin dokuz fermenterinden üçüne günde 1,5 g Hollanda, diğer üçüne de yine günde 1,5 g miktarında Danimarka kaynaklı inulin eklendi. Son üç fermentere ise hiçbir ilave yapılmayıp kontrol olarak kullanıldı. Bu araştırma düzeni ikinci denemede de aynen tekrarlandı, ancak burada Çin ve Almanya kökenli inulinler denendi. Kontrol ile karşılaştırıldığında, Çin ve Almanya kaynaklı inulinler ruminal pH’da belirgin bir azalmaya neden olurken, Hollanda ve Danimarka kökenli inulinler ruminal pH’da bir değişime yol açmadı. Danimarka ve Çin kaynaklı inulinler, toplam uçucu yağ asitleri, asetat, propiyonat, bütirat, iso-valerat ve valeratın günlük üretimlerinde artışa neden olurken, Hollanda kaynaklı inulin yalnızca bütirat, iso-valerat ve valerat miktarında artışa yol açtı. Çin kökenli inulin ise toplam uçucu yağ asitleri, asetat, bütirat, iso-valerat ve valerat üretimini artırdı. Kontrol fermenterleri ile karşılaştırıldığında, tüm inulin preparatlarının NH3-N konsantrasyonunu belirgin bir şekilde düşürdüğü tespit edildi. Organik madde sindirilebilirliği, Çin ve Almanya kökenli inulin uygulamalarından etkilenmedi, ancak Hollanda ve Danimarka kaynaklı inulinler organik madde sindirilebilirliğinde belirgin bir azalmaya neden oldu. Sonuç olarak kaynağı ile bağlantılı bir şekilde, inulinin in vitro ruminal fermantasyonu uyararak artırdığı ve özellikle ruminal amonyak konsantrasyonunun azaltılmasında etkili olduğu görüldü

References

  • Gibson GR, Roberfroid MB (1995): Dietary modulation of the colonic microbiota: introducing the concept of prebiotics. J Nutr, 125, 1401–1412.
  • Havenaar R, Marol-Bonin S, Van Dokkum W, Petitet S, Shaafsma G (1999): Inulin: fermentation and microbial ecology in the intestinal tract. Food Rev Int, 15, 109–120.
  • Wang X, Gibson GR (1993): Effects of the in vitro fermentation of oligofructose and inulin by bacteria growing in the human large intestine. J Appl Bacteriol, 75, 373–380.
  • Ellegard L, Andersson H, Boseus L (1997): Inulin and oligofructose do not influence the absorption of cholesterol or the excretion of cholesterol, Ca, Mg, Zn, Fe or bile acids but increase energy excretion in ileostomy subjects. Eur J Clin Nutr, 51, 1–5.
  • Fischbein L, Kaplan M, Gough M (1988): Fructo- oligosaccharides: a review. Vet Hum Toxicol, 30, 104–107.
  • Roberfroid MB, Van Loo JAE, Gibson GR (1998): The bifidogenic nature of chicory inulin and its hydrolysis products. J Nutr, 128, 11–19.
  • Niness KR (1999): Inulin and oligofructose: What are they? J Nutr, 129, 1402-1406.
  • Flickinger EA, Van Loo J, Fahey GC (2003): Nutritional responses to the presence of inulin and oligofructose in the diets of domesticated animals: a review. Crit Rev Food Sci Nutr, 43, 19–60.
  • Chesson A, Forsberg CW (1988): Polysaccharide degradation by rumen micro-organisms. 251-284. In: PN Hobson (Ed), The Rumen Microbial Ecosystem, Elsevier Applied Science, London and New York.
  • Biggs DR, Hancock KR (1998): In vitro digestion of bacterial and plant fructans and effects on ammonia accumulation in cow and sheep rumen fluids. J Gen Appl Microbiol, 44, 167-171.
  • Öztürk H (2008): Effects of inulin on rumen metabolism in vitro. Vet J Ank Univ, 55, 79-82.
  • Czerkawski JW, Breckenridge G (1977): Design and development of long-term rumen simulation technique (RUSITEC). Br J Nutr, 38, 271–384.
  • Stuck K, Faul K, Hylla S, Stein J, Breves G (1995): The application of a semi-continuous colon simulation technique (COSITEC) for studying the effects of clindamycin on microbial hindgut metabolism. Z Gastroenterol, 33, 241–246.
  • Satter LD, Slyter LL (1974): Effect of ammonia concentration on ruminal microbial protein production in vitro. Br J Nutr, 32, 199–208.
  • Lee MRF, Merry RJ, Davies DR, Moorby JM, Humphreys MO, Theodorou MK, MacRae JC, Scollan ND (2003): Effect of increasing availability of water- soluble carbohydrates on in vitro rumen fermentation. Anim Feed Sci Technol, 104, 59-70.
  • Jorgensen H, Zhao XQ, Theil PK, Gabert VM, Bach Knudsen KE (2003): Energy metabolism and protein balance in growing rats fed different levels of dietary fibre and protein. Arch Anim Nutr, 57, 83–98.
  • Ernst M, Chatterton NJ, Harrison PA (1995): Carbohydrate changes in chicory (Cichorium intybus L var. foliosum) during growth and storage. Scientia Hort, 63, 251–261.
  • Öztürk, H (2003): In-vitro-Studien zum Einfluss von Topinamburmehl und Saccharomyces boulardii auf den mikrobiellen Vormagenstoffwechsel. Diss, Tierärztliche Hochschule Hannover, 96.
  • Van den Ende W, Mintiens A, Speleers H, Onuoha AA, Van Laere A (1996): The metabolism of fructans in roots of Cichorium intybus during growth, storage and forcing. New Phytol, 132, 555–563.
  • Baert JRA (1997): The effect of sowing and harvest date and cultivar on inulin yield and composition of chicory (Cichorium intybus L) roots. Indust Crops & Prod, 6, 195- 199.
  • Rossi M, Corradini C, Amaretti A, Nicolini M, Pompei A, Zanoni S, Matteuzzi D (2005): Fermentation of fructooligosaccharides and inulin by bifidobacteria: a comparative study of pure and fecal cultures. Appl Environ Microbiol, 71, 6150-6158.

Effects of chicory inulin on ruminal fermentation in vitro

Year 2009, Volume: 56 Issue: 3, 171 - 175, 01.09.2009
https://doi.org/10.1501/Vetfak_0000002212

Abstract

The objective of this study was to investigate the effects of spray dried inulin powder from chicory roots of different origins on in vitro ruminal fermentation. For this purpose, two long-term experiments were made with the Rumen Simulation Technique (Rusitec), in which the fermentation of a mixed ration of hay (5 g/d) and concentrate (4 g/d) was compared with the fermentation of the same diet in the presence of chicory inulin. The Rusitec system consisted of nine vessels (fermenters): three of them received daily 1.5 g of inulin powder from the Netherlands, three vessels received daily 1.5 g of inulin powder from Denmark and three vessels received no additives (control) in experiment I. This experimental setup was repeated in experiment II. However, 1.5 g of inulin from China and 1.5 g inulin from Germany were tested. Compared to control vessels, ruminal pH was significantly lower in the vessels supplemented with Chinese and German inulin. Dutch and Danish inulin had no effect on ruminal pH. Danish and Chinese inulin resulted in an increase of total-SCFA (short-chain fatty acids), acetate, propionate, butyrate, isovalerate and valerate production whereas Dutch inulin led to an increase in butyrate, iso-valerate and valerate production only. Addition of German inulin caused a significant increase in the production of total-SCFA, acetate, butyrate, iso-valerate and valerate in the rumen fluid. Compared to control, all inulin preparations decreased NH3-N concentrations in the fermentation vessels. The digestibility of organic matter was not statistically influenced by Chinese and German inulin. However, Dutch and Danisch inulin decreased significantly the digestibility of organic matter compared to control vessels. These results indicated that, in relation to its origin, inulin stimulated ruminal fermentation and it was especially effective at decreasing ruminal ammonia concentration in vitro

References

  • Gibson GR, Roberfroid MB (1995): Dietary modulation of the colonic microbiota: introducing the concept of prebiotics. J Nutr, 125, 1401–1412.
  • Havenaar R, Marol-Bonin S, Van Dokkum W, Petitet S, Shaafsma G (1999): Inulin: fermentation and microbial ecology in the intestinal tract. Food Rev Int, 15, 109–120.
  • Wang X, Gibson GR (1993): Effects of the in vitro fermentation of oligofructose and inulin by bacteria growing in the human large intestine. J Appl Bacteriol, 75, 373–380.
  • Ellegard L, Andersson H, Boseus L (1997): Inulin and oligofructose do not influence the absorption of cholesterol or the excretion of cholesterol, Ca, Mg, Zn, Fe or bile acids but increase energy excretion in ileostomy subjects. Eur J Clin Nutr, 51, 1–5.
  • Fischbein L, Kaplan M, Gough M (1988): Fructo- oligosaccharides: a review. Vet Hum Toxicol, 30, 104–107.
  • Roberfroid MB, Van Loo JAE, Gibson GR (1998): The bifidogenic nature of chicory inulin and its hydrolysis products. J Nutr, 128, 11–19.
  • Niness KR (1999): Inulin and oligofructose: What are they? J Nutr, 129, 1402-1406.
  • Flickinger EA, Van Loo J, Fahey GC (2003): Nutritional responses to the presence of inulin and oligofructose in the diets of domesticated animals: a review. Crit Rev Food Sci Nutr, 43, 19–60.
  • Chesson A, Forsberg CW (1988): Polysaccharide degradation by rumen micro-organisms. 251-284. In: PN Hobson (Ed), The Rumen Microbial Ecosystem, Elsevier Applied Science, London and New York.
  • Biggs DR, Hancock KR (1998): In vitro digestion of bacterial and plant fructans and effects on ammonia accumulation in cow and sheep rumen fluids. J Gen Appl Microbiol, 44, 167-171.
  • Öztürk H (2008): Effects of inulin on rumen metabolism in vitro. Vet J Ank Univ, 55, 79-82.
  • Czerkawski JW, Breckenridge G (1977): Design and development of long-term rumen simulation technique (RUSITEC). Br J Nutr, 38, 271–384.
  • Stuck K, Faul K, Hylla S, Stein J, Breves G (1995): The application of a semi-continuous colon simulation technique (COSITEC) for studying the effects of clindamycin on microbial hindgut metabolism. Z Gastroenterol, 33, 241–246.
  • Satter LD, Slyter LL (1974): Effect of ammonia concentration on ruminal microbial protein production in vitro. Br J Nutr, 32, 199–208.
  • Lee MRF, Merry RJ, Davies DR, Moorby JM, Humphreys MO, Theodorou MK, MacRae JC, Scollan ND (2003): Effect of increasing availability of water- soluble carbohydrates on in vitro rumen fermentation. Anim Feed Sci Technol, 104, 59-70.
  • Jorgensen H, Zhao XQ, Theil PK, Gabert VM, Bach Knudsen KE (2003): Energy metabolism and protein balance in growing rats fed different levels of dietary fibre and protein. Arch Anim Nutr, 57, 83–98.
  • Ernst M, Chatterton NJ, Harrison PA (1995): Carbohydrate changes in chicory (Cichorium intybus L var. foliosum) during growth and storage. Scientia Hort, 63, 251–261.
  • Öztürk, H (2003): In-vitro-Studien zum Einfluss von Topinamburmehl und Saccharomyces boulardii auf den mikrobiellen Vormagenstoffwechsel. Diss, Tierärztliche Hochschule Hannover, 96.
  • Van den Ende W, Mintiens A, Speleers H, Onuoha AA, Van Laere A (1996): The metabolism of fructans in roots of Cichorium intybus during growth, storage and forcing. New Phytol, 132, 555–563.
  • Baert JRA (1997): The effect of sowing and harvest date and cultivar on inulin yield and composition of chicory (Cichorium intybus L) roots. Indust Crops & Prod, 6, 195- 199.
  • Rossi M, Corradini C, Amaretti A, Nicolini M, Pompei A, Zanoni S, Matteuzzi D (2005): Fermentation of fructooligosaccharides and inulin by bifidobacteria: a comparative study of pure and fecal cultures. Appl Environ Microbiol, 71, 6150-6158.
There are 21 citations in total.

Details

Primary Language English
Subjects Veterinary Surgery
Other ID JA74PD42JM
Journal Section Research Article
Authors

Hakan Özturk

Publication Date September 1, 2009
Published in Issue Year 2009Volume: 56 Issue: 3

Cite

APA Özturk, H. (2009). Effects of chicory inulin on ruminal fermentation in vitro. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 56(3), 171-175. https://doi.org/10.1501/Vetfak_0000002212
AMA Özturk H. Effects of chicory inulin on ruminal fermentation in vitro. Ankara Univ Vet Fak Derg. September 2009;56(3):171-175. doi:10.1501/Vetfak_0000002212
Chicago Özturk, Hakan. “Effects of Chicory Inulin on Ruminal Fermentation in Vitro”. Ankara Üniversitesi Veteriner Fakültesi Dergisi 56, no. 3 (September 2009): 171-75. https://doi.org/10.1501/Vetfak_0000002212.
EndNote Özturk H (September 1, 2009) Effects of chicory inulin on ruminal fermentation in vitro. Ankara Üniversitesi Veteriner Fakültesi Dergisi 56 3 171–175.
IEEE H. Özturk, “Effects of chicory inulin on ruminal fermentation in vitro”, Ankara Univ Vet Fak Derg, vol. 56, no. 3, pp. 171–175, 2009, doi: 10.1501/Vetfak_0000002212.
ISNAD Özturk, Hakan. “Effects of Chicory Inulin on Ruminal Fermentation in Vitro”. Ankara Üniversitesi Veteriner Fakültesi Dergisi 56/3 (September 2009), 171-175. https://doi.org/10.1501/Vetfak_0000002212.
JAMA Özturk H. Effects of chicory inulin on ruminal fermentation in vitro. Ankara Univ Vet Fak Derg. 2009;56:171–175.
MLA Özturk, Hakan. “Effects of Chicory Inulin on Ruminal Fermentation in Vitro”. Ankara Üniversitesi Veteriner Fakültesi Dergisi, vol. 56, no. 3, 2009, pp. 171-5, doi:10.1501/Vetfak_0000002212.
Vancouver Özturk H. Effects of chicory inulin on ruminal fermentation in vitro. Ankara Univ Vet Fak Derg. 2009;56(3):171-5.